Ejemplo n.º 1
0
def time_elliptical_small_subpixel_1():
    elliptical_overlap_grid(-4.,
                            4.,
                            -4.,
                            4.,
                            10,
                            10,
                            3.,
                            2.,
                            1.,
                            use_exact=0,
                            subpixels=1)
Ejemplo n.º 2
0
def time_elliptical_big_subpixel_5():
    elliptical_overlap_grid(-4.,
                            4.,
                            -4.,
                            4.,
                            100,
                            100,
                            3.,
                            2.,
                            1.,
                            use_exact=1,
                            subpixels=5)
Ejemplo n.º 3
0
    def to_mask(self, x_size, y_size):
        """
        This function ...
        :param x_size:
        :param y_size:
        :return:
        """

        rel_center = self.center

        a = self.radius.x if isinstance(self.radius, Extent) else self.radius
        b = self.radius.y if isinstance(self.radius, Extent) else self.radius

        # theta in radians !
        theta = self.angle.radian

        x_min = -rel_center.x
        x_max = x_size - rel_center.x
        y_min = -rel_center.y
        y_max = y_size - rel_center.y

        # Calculate the mask
        if a * b * x_size * y_size == 0:
            fraction = 0
        else:
            fraction = elliptical_overlap_grid(x_min,
                                               x_max,
                                               y_min,
                                               y_max,
                                               x_size,
                                               y_size,
                                               a,
                                               b,
                                               theta,
                                               use_exact=0,
                                               subpixels=1)

        #xmin, xmax, ymin, ymax : float
        #    Extent of the grid in the x and y direction.
        #nx, ny : int
        #    Grid dimensions.
        #rx : float
        #    The semimajor axis of the ellipse.
        #ry : float
        #    The semiminor axis of the ellipse.
        #theta : float
        #    The position angle of the semimajor axis in radians (counterclockwise).
        #use_exact : 0 or 1
        #    If set to 1, calculates the exact overlap, while if set to 0, uses a
        #    subpixel sampling method with ``subpixel`` subpixels in each direction.
        #subpixels : int
        #    If ``use_exact`` is 0, each pixel is resampled by this factor in each
        #    dimension. Thus, each pixel is divided into ``subpixels ** 2``
        #    subpixels.

        return Mask(fraction)
Ejemplo n.º 4
0
Archivo: ellipse.py Proyecto: SKIRT/PTS
    def to_mask(self, x_size, y_size, invert=False):

        """
        This function ...
        :param x_size:
        :param y_size:
        :param invert:
        :return:
        """

        rel_center = self.center

        a = self.radius.x
        b = self.radius.y

        # theta in radians !
        theta = self.angle.radian

        x_min = - rel_center.x
        x_max = x_size - rel_center.x
        y_min = - rel_center.y
        y_max = y_size - rel_center.y

        # Calculate the mask
        fraction = elliptical_overlap_grid(x_min, x_max, y_min, y_max, x_size, y_size, a, b, theta, use_exact=0, subpixels=1)

        # xmin, xmax, ymin, ymax : float
        #    Extent of the grid in the x and y direction.
        # nx, ny : int
        #    Grid dimensions.
        # rx : float
        #    The semimajor axis of the ellipse.
        # ry : float
        #    The semiminor axis of the ellipse.
        # theta : float
        #    The position angle of the semimajor axis in radians (counterclockwise).
        # use_exact : 0 or 1
        #    If set to 1, calculates the exact overlap, while if set to 0, uses a
        #    subpixel sampling method with ``subpixel`` subpixels in each direction.
        # subpixels : int
        #    If ``use_exact`` is 0, each pixel is resampled by this factor in each
        #    dimension. Thus, each pixel is divided into ``subpixels ** 2``
        #    subpixels.

        mask = Mask(fraction)

        # Return
        if invert: return mask.inverse()
        else: return mask
Ejemplo n.º 5
0
def calc_masked_aperture(ap, image, method='mmm', mask=None):

    positions = ap.positions
    extents = np.zeros((len(positions), 4), dtype=int)
    
    if isinstance(ap, EllipticalAnnulus):
        radius = ap.a_out
    elif isinstance(ap, CircularAnnulus):
        radius = ap.r_out
    elif isinstance(ap, CircularAperture):
        radius = ap.r
    elif isinstance(ap, EllipticalAperture):
        radius = ap.a
    
    extents[:, 0] = positions[:, 0] - radius + 0.5
    extents[:, 1] = positions[:, 0] + radius + 1.5
    extents[:, 2] = positions[:, 1] - radius + 0.5
    extents[:, 3] = positions[:, 1] + radius + 1.5
    
    ood_filter, extent, phot_extent = get_phot_extents(image, positions,
                                                       extents)
    
    x_min, x_max, y_min, y_max = extent
    x_pmin, x_pmax, y_pmin, y_pmax = phot_extent
    
    bkg = np.zeros(len(positions))
    area = np.zeros(len(positions))
    
    for i in range(len(bkg)):
        if isinstance(ap, EllipticalAnnulus):
            fraction = elliptical_overlap_grid(x_pmin[i], x_pmax[i],
                                               y_pmin[i], y_pmax[i],
                                               x_max[i] - x_min[i],
                                               y_max[i] - y_min[i],
                                               ap.a_out, ap.b_out, ap.theta, 0,
                                               1)
            b_in = ap.a_in * ap.b_out / ap.a_out
            fraction -= elliptical_overlap_grid(x_pmin[i], x_pmax[i],
                                                y_pmin[i], y_pmax[i],
                                                x_max[i] - x_min[i],
                                                y_max[i] - y_min[i],
                                                ap.a_in, b_in, ap.theta,
                                                0, 1)
        elif isinstance(ap, CircularAnnulus):
            fraction = circular_overlap_grid(x_pmin[i], x_pmax[i],
                                             y_pmin[i], y_pmax[i],
                                             x_max[i] - x_min[i],
                                             y_max[i] - y_min[i],
                                             ap.r_out, 0, 1)
            
            fraction -= circular_overlap_grid(x_pmin[i], x_pmax[i],
                                                y_pmin[i], y_pmax[i],
                                                x_max[i] - x_min[i],
                                                y_max[i] - y_min[i],
                                                ap.r_in, 0, 1)
        elif isinstance(ap, CircularAperture):
            fraction = circular_overlap_grid(x_pmin[i], x_pmax[i],
                                             y_pmin[i], y_pmax[i],
                                             x_max[i] - x_min[i],
                                             y_max[i] - y_min[i],
                                             ap.r, 0, 1) 
        
        elif isinstance(ap, EllipticalAperture):
            fraction = elliptical_overlap_grid(x_pmin[i], x_pmax[i],
                                               y_pmin[i], y_pmax[i],
                                               x_max[i] - x_min[i],
                                               y_max[i] - y_min[i],
                                               ap.a, ap.b, ap.theta, 0,
                                               1)
        
        pixel_data = image[y_min[i]:y_max[i], x_min[i]:x_max[i]] * fraction
        if mask is not None:
            pixel_data[mask[y_min[i]:y_max[i], x_min[i]:x_max[i]]] = 0.0
        
        good_pixels = pixel_data[pixel_data != 0.0].flatten()
        
        if method == 'mmm':
            skymod, skysigma, skew = mmm(good_pixels)
            bkg[i] = skymod
        elif method == 'sum':
            bkg[i] = np.sum(good_pixels)
        elif method == 'max':
            bkg[i] = np.nanmax(good_pixels)
        area[i] = len(good_pixels)

    return bkg, area
Ejemplo n.º 6
0
    def elliptical_mask(self, major, minor, pa=0.0, xoff=0.0, yoff=0.0, use_exact=1, subsampling=1, transparency=1.0):
        """
        Define an elliptical mask within the grid with specified major/minor axes, position angle,
        and offset from center by xoff/yoff. Use photutils.geometry to create masks that calculate
        the fraction of a pixel subtended by the mask.  use_exact=1 performs the exact geometric
        calculation while use_exact=0 will sub-sample the pixels by the specfied subsampling parameter
        to estimate the subtended area.

        Parameters
        ----------
        major: float
            Semi-major axis of the elliptical mask
        minor: float
            Semi-minor axis of the mask
        pa: float
            Position angle of the ellipse in degrees measured clockwise (positive in +X direction)
        xoff: float
            X position of the center of the mask
        yoff: float
            Y position of the center of the mask
        use_exact: int (default: 1)
            If 1, then use exact geometrical calculation to weight pixels partially covered by mask.
            This parameter is passed directly on to photutils.geometry.circular_overlap_grid()
        subsampling: int (default: 1)
            If use_exact=0, then subsample pixels by this factor to calculate area of each pixel subtended
            by the mask. The default value of 1 will force no partial pixels to be included in the mask.
            This parameter is passed directly on to photutils.geometry.circular_overlap_grid()
        transparency: float (default: 1.0)
            Transparency of the mask

        Returns
        -------
        mask: 2D np.ndarray
            2D mask image
        """
        if transparency < 0.0 or transparency > 1.0:
            msg = "Mask transparency, %f, must be in the range of 0.0 (fully opaque) to 1.0 (fully clear)." % transparency
            raise EngineInputError(value=msg)

        theta = np.pi * pa / 180.0  # photutils uses angles in radians

        t = self.as_dict()
        # we need to use flipud because we use an origin in the UL corner of an image
        # while photutils uses the LL corner.
        mask = np.flipud(
            elliptical_overlap_grid(
                t['x_min'] - xoff,
                t['x_max'] - xoff,
                t['y_min'] - yoff,
                t['y_max'] - yoff,
                t['x_size'],
                t['y_size'],
                major,
                minor,
                theta,
                use_exact,
                subsampling
            )
        )
        mask *= transparency
        return mask
Ejemplo n.º 7
0
def time_elliptical_big_subpixel_5():
    elliptical_overlap_grid(-4., 4., -4., 4., 100, 100, 3., 2., 1.,
                            use_exact=1, subpixels=5)
Ejemplo n.º 8
0
def time_elliptical_small_subpixel_1():
    elliptical_overlap_grid(-4., 4., -4., 4., 10, 10, 3., 2., 1.,
                            use_exact=0, subpixels=1)