Ejemplo n.º 1
0
def get_mc_calibration_coeffs(tel_id):
    """
    Get the calibration coefficients from the MC data file to the
    data.  This is ahack (until we have a real data structure for the
    calibrated data), it should move into `ctapipe.io.hessio_event_source`.

    returns
    -------
    (peds,gains) : arrays of the pedestal and pe/dc ratios.
    """
    peds = pyhessio.get_pedestal(tel_id)[0]
    gains = pyhessio.get_calibration(tel_id)[0]
    return peds, gains
Ejemplo n.º 2
0
def get_mc_calibration_coeffs(tel_id):
    """
    Get the calibration coefficients from the MC data file to the
    data.  This is ahack (until we have a real data structure for the
    calibrated data), it should move into `ctapipe.io.hessio_event_source`.

    returns
    -------
    (peds,gains) : arrays of the pedestal and pe/dc ratios.
    """
    peds = pyhessio.get_pedestal(tel_id)[0]
    gains = pyhessio.get_calibration(tel_id)[0]
    return peds, gains
def get_mc_calibration_coeffs(tel_id):
    """
    Get the calibration coefficients from the MC data file to the data.
    This is ahack (until we have a real data structure for the calibrated
    data), it should move into `ctapipe.io.hessio_event_source`.

    Parameters
    ----------
    tel_id : int
        The ID of the telescope to process.

    Returns
    -------
    tuple of Numpy array
        A tuble containing 2 elements: ``pedestal`` a 2D arrays of the pedestal
        (one dimension for each channel) and ``gain`` a 2D arrays of the PE/DC
        ratios (one dimension for each channel).
    """
    pedestal = pyhessio.get_pedestal(tel_id)
    gains = pyhessio.get_calibration(tel_id)

    return pedestal, gains
def get_mc_calibration_coeffs(tel_id):
    """
    Get the calibration coefficients from the MC data file to the data.
    This is ahack (until we have a real data structure for the calibrated
    data), it should move into `ctapipe.io.hessio_event_source`.

    Parameters
    ----------
    tel_id : int
        The ID of the telescope to process.

    Returns
    -------
    tuple of Numpy array
        A tuble containing 2 elements: ``pedestal`` a 2D arrays of the pedestal
        (one dimension for each channel) and ``gain`` a 2D arrays of the PE/DC
        ratios (one dimension for each channel).
    """
    pedestal = pyhessio.get_pedestal(tel_id)
    gains = pyhessio.get_calibration(tel_id)

    return pedestal, gains
Ejemplo n.º 5
0
def hessio_event_source(url, max_events=None, allowed_tels=None):
    """A generator that streams data from an EventIO/HESSIO MC data file
    (e.g. a standard CTA data file.)

    Parameters
    ----------
    url : str
        path to file to open
    max_events : int, optional
        maximum number of events to read
    allowed_tels : list[int]
        select only a subset of telescope, if None, all are read. This can
        be used for example emulate the final CTA data format, where there
        would be 1 telescope per file (whereas in current monte-carlo,
        they are all interleaved into one file)

    """

    ret = pyhessio.file_open(url)

    if ret is not 0:
        raise RuntimeError("hessio_event_source failed to open '{}'"
                           .format(url))

    # the container is initialized once, and data is replaced within
    # it after each yield

    counter = 0
    eventstream = pyhessio.move_to_next_event()
    if allowed_tels is not None:
        allowed_tels = set(allowed_tels)
    event = EventContainer()
    event.meta.source = "hessio"

    # some hessio_event_source specific parameters
    event.meta.add_item('hessio__input', url)
    event.meta.add_item('hessio__max_events', max_events)

    for run_id, event_id in eventstream:

        event.dl0.run_id = run_id
        event.dl0.event_id = event_id
        event.dl0.tels_with_data = set(pyhessio.get_teldata_list())
        
        # handle telescope filtering by taking the intersection of
        # tels_with_data and allowed_tels
        if allowed_tels is not None:
            selected = event.dl0.tels_with_data & allowed_tels
            if len(selected) == 0:
                continue  # skip event
            event.dl0.tels_with_data = selected

        event.trig.tels_with_trigger \
            = pyhessio.get_central_event_teltrg_list()
        time_s, time_ns = pyhessio.get_central_event_gps_time()
        event.trig.gps_time = Time(time_s * u.s, time_ns * u.ns,
                                   format='gps', scale='utc')
        event.mc.energy = pyhessio.get_mc_shower_energy() * u.TeV
        event.mc.alt = Angle(pyhessio.get_mc_shower_altitude(), u.rad)
        event.mc.az = Angle(pyhessio.get_mc_shower_azimuth(), u.rad)
        event.mc.core_x = pyhessio.get_mc_event_xcore() * u.m
        event.mc.core_y = pyhessio.get_mc_event_ycore() * u.m
        event.mc.h_first_int = pyhessio.get_mc_shower_h_first_int() * u.m

        event.count = counter

        # this should be done in a nicer way to not re-allocate the
        # data each time (right now it's just deleted and garbage
        # collected)

        event.dl0.tel = dict()  # clear the previous telescopes
        event.mc.tel = dict()  # clear the previous telescopes

        for tel_id in event.dl0.tels_with_data:

            # fill pixel position dictionary, if not already done:
            if tel_id not in event.meta.pixel_pos:
                event.meta.pixel_pos[tel_id] \
                    = pyhessio.get_pixel_position(tel_id) * u.m
                event.meta.optical_foclen[
                    tel_id] = pyhessio.get_optical_foclen(tel_id) * u.m

            # fill telescope position dictionary, if not already done:
            if tel_id not in event.meta.tel_pos:
                event.meta.tel_pos[
                    tel_id] = pyhessio.get_telescope_position(tel_id) * u.m

            nchans = pyhessio.get_num_channel(tel_id)
            npix = pyhessio.get_num_pixels(tel_id)
            nsamples = pyhessio.get_num_samples(tel_id)
            event.dl0.tel[tel_id] = RawCameraData(tel_id)
            event.dl0.tel[tel_id].num_channels = nchans
            event.dl0.tel[tel_id].num_pixels = npix
            event.dl0.tel[tel_id].num_samples = nsamples
            event.mc.tel[tel_id] = MCCamera(tel_id)

            event.dl0.tel[tel_id].calibration \
                = pyhessio.get_calibration(tel_id)
            event.dl0.tel[tel_id].pedestal \
                = pyhessio.get_pedestal(tel_id)

            # load the data per telescope/chan
            for chan in range(nchans):
                event.dl0.tel[tel_id].adc_samples[chan] \
                    = pyhessio.get_adc_sample(channel=chan,
                                              telescope_id=tel_id)
                event.dl0.tel[tel_id].adc_sums[chan] \
                    = pyhessio.get_adc_sum(channel=chan,
                                           telescope_id=tel_id)
                event.mc.tel[tel_id].refshapes[chan] = \
                    pyhessio.get_ref_shapes(tel_id, chan)

            # load the data per telescope/pixel
            event.mc.tel[tel_id].photo_electrons \
                = pyhessio.get_mc_number_photon_electron(telescope_id=tel_id)
            event.mc.tel[tel_id].refstep = pyhessio.get_ref_step(tel_id)
            event.mc.tel[tel_id].lrefshape = pyhessio.get_lrefshape(tel_id)
            event.mc.tel[tel_id].time_slice = \
                pyhessio.get_time_slice(tel_id)
        yield event
        counter += 1

        if max_events is not None and counter >= max_events:
            return