Ejemplo n.º 1
0
    def primal_dual_hess(self, x, z, **kwargs):
        """
        Assemble the "primal-dual" Hessian matrix of the merit function
        at (x,z):

        [ H + 2 X^{-1} Z     I     ]
        [      I          Z^{-1} X ].
        """
        mu = kwargs.get('mu', self.mu)

        nlp = self.nlp ; nx = nlp.n ; nz = self.nz
        Lvar = nlp.Lvar ; Uvar = nlp.Uvar
        lB = nlp.lowerB ; uB = nlp.upperB ; rB = nlp.rangeB
        nlB = nlp.nlowerB ; nuB = nlp.nupperB ; nrB = nlp.nrangeB
        rlB = self.rlB ; ruB = self.ruB ; rrB = self.rrB

        # Segment s and z for conciseness.
        slB  = x[lB] - Lvar[lB] ; zlB  = z[:nlB]
        suB  = Uvar[uB] - x[uB] ; zuB  = z[nlB:nlB+nuB]
        srlB = x[rB] - Lvar[rB] ; zrlB = z[nlB+nuB:nlB+nuB+nrB]
        sruB = Uvar[rB] - x[rB] ; zruB = z[nlB+nuB+nrB:]

        H = sp(nrow=nx+nz, ncol=nx+nz,
               sizeHint=self.nlp.nnzh+3*nz, symmetric=True)

        # Leading block: H + 2 * mu X^{-2}.
        H[:nx,:nx] = self.nlp.hess(x, self.nlp.pi0)
        H.addAt(2 * zlB / slB, lB, lB)
        H.addAt(2 * zuB / suB, uB, uB)
        H.addAt(2 * zrlB/srlB, rB, rB)
        H.addAt(2 * zruB/sruB, rB, rB)

        # Bottom left block: identity-ish.
        n1 = nx + rlB       ; H.put( 1, n1, lB)
        n2 = nx + ruB       ; H.put(-1, n2, uB)
        n3 = nx + rrB       ; H.put( 1, n3, rB)
        n4 = nx + nrB + rrB ; H.put(-1, n4, rB)

        # Bottom right block: mu * Z^{-2}.
        H.put(slB / zlB, n1, n1)
        H.put(suB / zuB, n2, n2)
        H.put(srlB/zrlB, n3, n3)
        H.put(sruB/zruB, n4, n4)

        return H
Ejemplo n.º 2
0
    def _hess_template(self, **kwargs):
        """
        Assemble the part of the modified Hessian matrix of the primal-dual
        merit function that is iteration independent.
        """
        nlp = self.nlp ; nx = nlp.n ; nz = self.nz
        Lvar = nlp.Lvar ; Uvar = nlp.Uvar
        lB = nlp.lowerB ; uB = nlp.upperB ; rB = nlp.rangeB
        nlB = nlp.nlowerB ; rlB = self.rlB
        nuB = nlp.nupperB ; ruB = self.ruB
        nrB = nlp.nrangeB ; rrB = self.rrB

        B = sp(nrow=nx+nz, ncol=nx+nz,
               sizeHint=self.nlp.nnzh+3*nz, symmetric=True)

        # Bottom left block: identity-ish.
        n1 = nx + rlB       ; B.put( 1, n1, lB)
        n2 = nx + ruB       ; B.put(-1, n2, uB)
        n3 = nx + rrB       ; B.put( 1, n3, rB)
        n4 = nx + nrB + rrB ; B.put(-1, n4, rB)

        return B
Ejemplo n.º 3
0
    def _hess_template(self, **kwargs):
        """
        Assemble the part of the modified Hessian matrix of the primal-dual
        merit function that is iteration independent.
        """
        nlp = self.nlp
        nx = nlp.n
        nz = self.nz
        Lvar = nlp.Lvar
        Uvar = nlp.Uvar
        lB = nlp.lowerB
        uB = nlp.upperB
        rB = nlp.rangeB
        nlB = nlp.nlowerB
        rlB = self.rlB
        nuB = nlp.nupperB
        ruB = self.ruB
        nrB = nlp.nrangeB
        rrB = self.rrB

        B = sp(nrow=nx + nz,
               ncol=nx + nz,
               sizeHint=self.nlp.nnzh + 3 * nz,
               symmetric=True)

        # Bottom left block: identity-ish.
        n1 = nx + rlB
        B.put(1, n1, lB)
        n2 = nx + ruB
        B.put(-1, n2, uB)
        n3 = nx + rrB
        B.put(1, n3, rB)
        n4 = nx + nrB + rrB
        B.put(-1, n4, rB)

        return B
Ejemplo n.º 4
0
    def primal_dual_hess(self, x, z, **kwargs):
        """
        Assemble the "primal-dual" Hessian matrix of the merit function
        at (x,z):

        [ H + 2 X^{-1} Z     I     ]
        [      I          Z^{-1} X ].
        """
        mu = kwargs.get('mu', self.mu)

        nlp = self.nlp
        nx = nlp.n
        nz = self.nz
        Lvar = nlp.Lvar
        Uvar = nlp.Uvar
        lB = nlp.lowerB
        uB = nlp.upperB
        rB = nlp.rangeB
        nlB = nlp.nlowerB
        nuB = nlp.nupperB
        nrB = nlp.nrangeB
        rlB = self.rlB
        ruB = self.ruB
        rrB = self.rrB

        # Segment s and z for conciseness.
        slB = x[lB] - Lvar[lB]
        zlB = z[:nlB]
        suB = Uvar[uB] - x[uB]
        zuB = z[nlB:nlB + nuB]
        srlB = x[rB] - Lvar[rB]
        zrlB = z[nlB + nuB:nlB + nuB + nrB]
        sruB = Uvar[rB] - x[rB]
        zruB = z[nlB + nuB + nrB:]

        H = sp(nrow=nx + nz,
               ncol=nx + nz,
               sizeHint=self.nlp.nnzh + 3 * nz,
               symmetric=True)

        # Leading block: H + 2 * mu X^{-2}.
        H[:nx, :nx] = self.nlp.hess(x, self.nlp.pi0)
        H.addAt(2 * zlB / slB, lB, lB)
        H.addAt(2 * zuB / suB, uB, uB)
        H.addAt(2 * zrlB / srlB, rB, rB)
        H.addAt(2 * zruB / sruB, rB, rB)

        # Bottom left block: identity-ish.
        n1 = nx + rlB
        H.put(1, n1, lB)
        n2 = nx + ruB
        H.put(-1, n2, uB)
        n3 = nx + rrB
        H.put(1, n3, rB)
        n4 = nx + nrB + rrB
        H.put(-1, n4, rB)

        # Bottom right block: mu * Z^{-2}.
        H.put(slB / zlB, n1, n1)
        H.put(suB / zuB, n2, n2)
        H.put(srlB / zrlB, n3, n3)
        H.put(sruB / zruB, n4, n4)

        return H