Ejemplo n.º 1
0
    def testSubstitutionMap(self):
        """Test that we can use degree symbols in substitutions.
        """
        # Create a point and convert it to text containing a degree symbol.
        myPoint = QgsPointXY(12.3, -33.33)
        myCoordinates = myPoint.toDegreesMinutesSeconds(2)
        myTokens = myCoordinates.split(',')
        myLongitude = myTokens[0]
        myLatitude = myTokens[1]
        myText = 'Latitude: %s, Longitude: %s' % (myLatitude, myLongitude)

        # Load the composition with the substitutions
        myComposition = QgsComposition(QgsProject.instance())
        mySubstitutionMap = {'replace-me': myText}
        myFile = os.path.join(TEST_DATA_DIR, 'template-for-substitution.qpt')
        with open(myFile) as f:
            myTemplateContent = f.read()
        myDocument = QDomDocument()
        myDocument.setContent(myTemplateContent)
        myComposition.loadFromTemplate(myDocument, mySubstitutionMap)

        # We should be able to get map0
        myMap = myComposition.getComposerMapById(0)
        myMessage = ('Map 0 could not be found in template %s', myFile)
        assert myMap is not None, myMessage
Ejemplo n.º 2
0
class TestQgsPointXY(unittest.TestCase):

    def __init__(self, methodName):
        """Run once on class initialization."""
        unittest.TestCase.__init__(self, methodName)

    def setUp(self):
        self.mPoint = QgsPointXY(10.0, 10.0)

    def test_Point(self):
        myExpectedValue = 10.0
        myActualValue = self.mPoint.x()
        myMessage = 'Expected: %s Got: %s' % (myExpectedValue, myActualValue)
        assert myExpectedValue == myActualValue, myMessage

    def test_pointToString(self):
        myExpectedValue = '10, 10'
        myActualValue = self.mPoint.toString()
        myMessage = 'Expected: %s Got: %s' % (myExpectedValue, myActualValue)
        assert myExpectedValue == myActualValue, myMessage

    def test_hash(self):
        a = QgsPointXY(2.0, 1.0)
        b = QgsPointXY(2.0, 2.0)
        c = QgsPointXY(1.0, 2.0)
        d = QgsPointXY(1.0, 1.0)
        e = QgsPointXY(2.0, 1.0)
        assert a.__hash__() != b.__hash__()
        assert e.__hash__() == a.__hash__()

        mySet = set([a, b, c, d, e])
        assert len(mySet) == 4
Ejemplo n.º 3
0
    def testRenderMetersInMapUnits(self):

        crs_wsg84 = QgsCoordinateReferenceSystem.fromOgcWmsCrs('EPSG:4326')
        rt_extent = QgsRectangle(13.37768985634235, 52.51625705830762, 13.37771931686235, 52.51628651882762)
        point_berlin_wsg84 = QgsPointXY(13.37770458660236, 52.51627178856762)
        length_wsg84_mapunits = 0.00001473026350140572
        meters_test = 2.40
        da_wsg84 = QgsDistanceArea()
        da_wsg84.setSourceCrs(crs_wsg84, QgsProject.instance().transformContext())
        if (da_wsg84.sourceCrs().isGeographic()):
            da_wsg84.setEllipsoid(da_wsg84.sourceCrs().ellipsoidAcronym())
        length_meter_mapunits = da_wsg84.measureLineProjected(point_berlin_wsg84, 1.0, (math.pi / 2))
        meters_test_mapunits = meters_test * length_wsg84_mapunits
        meters_test_pixel = meters_test * length_wsg84_mapunits
        ms = QgsMapSettings()
        ms.setDestinationCrs(crs_wsg84)
        ms.setExtent(rt_extent)
        r = QgsRenderContext.fromMapSettings(ms)
        r.setExtent(rt_extent)
        self.assertEqual(r.extent().center().toString(7), point_berlin_wsg84.toString(7))
        c = QgsMapUnitScale()
        r.setDistanceArea(da_wsg84)
        result_test_painterunits = r.convertToPainterUnits(meters_test, QgsUnitTypes.RenderMetersInMapUnits, c)
        self.assertEqual(QgsDistanceArea.formatDistance(result_test_painterunits, 7, QgsUnitTypes.DistanceUnknownUnit, True), QgsDistanceArea.formatDistance(meters_test_mapunits, 7, QgsUnitTypes.DistanceUnknownUnit, True))
        result_test_mapunits = r.convertToMapUnits(meters_test, QgsUnitTypes.RenderMetersInMapUnits, c)
        self.assertEqual(QgsDistanceArea.formatDistance(result_test_mapunits, 7, QgsUnitTypes.DistanceDegrees, True), QgsDistanceArea.formatDistance(meters_test_mapunits, 7, QgsUnitTypes.DistanceDegrees, True))
        result_test_meters = r.convertFromMapUnits(meters_test_mapunits, QgsUnitTypes.RenderMetersInMapUnits)
        self.assertEqual(QgsDistanceArea.formatDistance(result_test_meters, 1, QgsUnitTypes.DistanceMeters, True), QgsDistanceArea.formatDistance(meters_test, 1, QgsUnitTypes.DistanceMeters, True))
    def __init__(self, plugin, filepath, title, screenExtent):
        QgsPluginLayer.__init__(
            self, FreehandRasterGeoreferencerLayer.LAYER_TYPE, title)
        self.plugin = plugin
        self.iface = plugin.iface

        self.title = title
        self.filepath = filepath
        self.screenExtent = screenExtent
        self.history = []
        # set custom properties
        self.setCustomProperty("title", title)
        self.setCustomProperty("filepath", self.filepath)

        self.setValid(True)

        self.setTransparency(LayerDefaultSettings.TRANSPARENCY)
        self.setBlendModeByName(LayerDefaultSettings.BLEND_MODE)

        # dummy data: real init is done in intializeLayer
        self.center = QgsPointXY(0, 0)
        self.rotation = 0.0
        self.xScale = 1.0
        self.yScale = 1.0

        self.error = False
        self.initializing = False
        self.initialized = False
        self.initializeLayer(screenExtent)
        self._extent = None

        self.provider = FreehandRasterGeoreferencerLayerProvider(self)
Ejemplo n.º 5
0
    def testPoint(self):
        point = QgsReferencedPointXY(QgsPointXY(1.0, 2.0), QgsCoordinateReferenceSystem('epsg:3111'))
        self.assertEqual(point.x(), 1.0)
        self.assertEqual(point.y(), 2.0)
        self.assertEqual(point.crs().authid(), 'EPSG:3111')

        point.setCrs(QgsCoordinateReferenceSystem('epsg:28356'))
        self.assertEqual(point.crs().authid(), 'EPSG:28356')

        # in variant
        v = QVariant(QgsReferencedPointXY(QgsPointXY(3.0, 4.0), QgsCoordinateReferenceSystem('epsg:3111')))
        self.assertEqual(v.value().x(), 3.0)
        self.assertEqual(v.value().y(), 4.0)
        self.assertEqual(v.value().crs().authid(), 'EPSG:3111')

        # to QgsPointXY
        p = QgsPointXY(point)
        self.assertEqual(p.x(), 1.0)
        self.assertEqual(p.y(), 2.0)
Ejemplo n.º 6
0
    def test_hash(self):
        a = QgsPointXY(2.0, 1.0)
        b = QgsPointXY(2.0, 2.0)
        c = QgsPointXY(1.0, 2.0)
        d = QgsPointXY(1.0, 1.0)
        e = QgsPointXY(2.0, 1.0)
        assert a.__hash__() != b.__hash__()
        assert e.__hash__() == a.__hash__()

        mySet = set([a, b, c, d, e])
        assert len(mySet) == 4
Ejemplo n.º 7
0
    def checkPoint(self, point):
        state = 'yellow'

        if type(point) != QgsPointXY:
            try:
                if type(point) == list and len(point) == 2:
                    point = QgsPointXY(point[0], point[1])
                else:
                    point = QgsPointXY(point)
            except TypeError:
                return state, None
            
        if self.dhm != {}:
            extent = self.dhm['extent']
            [extLx, extHy, extHx, extLy] = extent
            
            if extLx <= float(point.x()) <= extHx \
                    and extLy <= float(point.y()) <= extHy:
                state = 'green'
            else:
                state = 'red'

        return state, point
 def readXml(self, node, context):
     self.readCustomProperties(node)
     self.title = self.customProperty("title", "")
     self.filepath = self.customProperty("filepath", "")
     self.xScale = float(self.customProperty("xScale", 1.0))
     self.yScale = float(self.customProperty("yScale", 1.0))
     self.rotation = float(self.customProperty("rotation", 0.0))
     xCenter = float(self.customProperty("xCenter", 0.0))
     yCenter = float(self.customProperty("yCenter", 0.0))
     self.center = QgsPointXY(xCenter, yCenter)
     self.setTransparency(int(self.customProperty(
         "transparency", LayerDefaultSettings.TRANSPARENCY)))
     self.setBlendModeByName(self.customProperty(
         "blendMode", LayerDefaultSettings.BLEND_MODE))
     return True
Ejemplo n.º 9
0
    def processAlgorithm(self, parameters, context, feedback):
        layer = QgsProcessingUtils.mapLayerFromString(self.getParameterValue(self.INPUT_VECTOR), context)
        startPoints = QgsProcessingUtils.mapLayerFromString(self.getParameterValue(self.START_POINTS), context)
        endPoint = self.getParameterValue(self.END_POINT)
        strategy = self.getParameterValue(self.STRATEGY)

        directionFieldName = self.getParameterValue(self.DIRECTION_FIELD)
        forwardValue = self.getParameterValue(self.VALUE_FORWARD)
        backwardValue = self.getParameterValue(self.VALUE_BACKWARD)
        bothValue = self.getParameterValue(self.VALUE_BOTH)
        defaultDirection = self.getParameterValue(self.DEFAULT_DIRECTION)
        bothValue = self.getParameterValue(self.VALUE_BOTH)
        defaultDirection = self.getParameterValue(self.DEFAULT_DIRECTION)
        speedFieldName = self.getParameterValue(self.SPEED_FIELD)
        defaultSpeed = self.getParameterValue(self.DEFAULT_SPEED)
        tolerance = self.getParameterValue(self.TOLERANCE)

        fields = QgsFields()
        fields.append(QgsField('start', QVariant.String, '', 254, 0))
        fields.append(QgsField('end', QVariant.String, '', 254, 0))
        fields.append(QgsField('cost', QVariant.Double, '', 20, 7))

        feat = QgsFeature()
        feat.setFields(fields)

        writer = self.getOutputFromName(
            self.OUTPUT_LAYER).getVectorWriter(fields, QgsWkbTypes.LineString, layer.crs(), context)

        tmp = endPoint.split(',')
        endPoint = QgsPointXY(float(tmp[0]), float(tmp[1]))

        directionField = -1
        if directionFieldName is not None:
            directionField = layer.fields().lookupField(directionFieldName)
        speedField = -1
        if speedFieldName is not None:
            speedField = layer.fields().lookupField(speedFieldName)

        director = QgsVectorLayerDirector(layer,
                                          directionField,
                                          forwardValue,
                                          backwardValue,
                                          bothValue,
                                          defaultDirection)

        distUnit = iface.mapCanvas().mapSettings().destinationCrs().mapUnits()
        multiplier = QgsUnitTypes.fromUnitToUnitFactor(distUnit, QgsUnitTypes.DistanceMeters)
        if strategy == 0:
            strategy = QgsNetworkDistanceStrategy()
        else:
            strategy = QgsNetworkSpeedStrategy(speedField,
                                               defaultSpeed,
                                               multiplier * 1000.0 / 3600.0)
            multiplier = 3600

        director.addStrategy(strategy)
        builder = QgsGraphBuilder(iface.mapCanvas().mapSettings().destinationCrs(),
                                  True,
                                  tolerance)

        feedback.pushInfo(self.tr('Loading start points...'))
        request = QgsFeatureRequest()
        request.setFlags(request.flags() ^ QgsFeatureRequest.SubsetOfAttributes)
        features = QgsProcessingUtils.getFeatures(startPoints, context, request)
        count = QgsProcessingUtils.featureCount(startPoints, context)

        points = [endPoint]
        for f in features:
            points.append(f.geometry().asPoint())

        feedback.pushInfo(self.tr('Building graph...'))
        snappedPoints = director.makeGraph(builder, points)

        feedback.pushInfo(self.tr('Calculating shortest paths...'))
        graph = builder.graph()

        idxEnd = graph.findVertex(snappedPoints[0])
        route = []

        total = 100.0 / count if count else 1
        for i in range(1, count + 1):
            idxStart = graph.findVertex(snappedPoints[i])
            tree, cost = QgsGraphAnalyzer.dijkstra(graph, idxStart, 0)

            if tree[idxEnd] == -1:
                msg = self.tr('There is no route from start point ({}) to end point ({}).'.format(points[i].toString(), endPoint.toString()))
                feedback.setProgressText(msg)
                QgsMessageLog.logMessage(msg, self.tr('Processing'), QgsMessageLog.WARNING)
                continue

            cost = 0.0
            current = idxEnd
            while current != idxStart:
                cost += graph.edge(tree[current]).cost(0)
                route.append(graph.vertex(graph.edge(tree[current]).inVertex()).point())
                current = graph.edge(tree[current]).outVertex()

            route.append(snappedPoints[i])
            route.reverse()

            geom = QgsGeometry.fromPolyline(route)
            feat.setGeometry(geom)
            feat['start'] = points[i].toString()
            feat['end'] = endPoint.toString()
            feat['cost'] = cost / multiplier
            writer.addFeature(feat, QgsFeatureSink.FastInsert)

            route[:] = []

            feedback.setProgress(int(i * total))

        del writer
Ejemplo n.º 10
0
    def processAlgorithm(self, parameters, context, feedback):
        source = self.parameterAsSource(parameters, self.INPUT, context)
        if source is None:
            raise QgsProcessingException(self.invalidSourceError(parameters, self.INPUT))

        proximity = self.parameterAsDouble(parameters, self.PROXIMITY, context)
        radius = self.parameterAsDouble(parameters, self.DISTANCE, context)
        horizontal = self.parameterAsBool(parameters, self.HORIZONTAL, context)

        (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context,
                                               source.fields(), source.wkbType(), source.sourceCrs())
        if sink is None:
            raise QgsProcessingException(self.invalidSinkError(parameters, self.OUTPUT))

        features = source.getFeatures()

        total = 100.0 / source.featureCount() if source.featureCount() else 0

        def searchRect(p):
            return QgsRectangle(p.x() - proximity, p.y() - proximity, p.x() + proximity, p.y() + proximity)

        index = QgsSpatialIndex()

        # NOTE: this is a Python port of QgsPointDistanceRenderer::renderFeature. If refining this algorithm,
        # please port the changes to QgsPointDistanceRenderer::renderFeature also!

        clustered_groups = []
        group_index = {}
        group_locations = {}
        for current, f in enumerate(features):
            if feedback.isCanceled():
                break

            if not f.hasGeometry():
                continue

            point = f.geometry().asPoint()

            other_features_within_radius = index.intersects(searchRect(point))
            if not other_features_within_radius:
                index.insertFeature(f)
                group = [f]
                clustered_groups.append(group)
                group_index[f.id()] = len(clustered_groups) - 1
                group_locations[f.id()] = point
            else:
                # find group with closest location to this point (may be more than one within search tolerance)
                min_dist_feature_id = other_features_within_radius[0]
                min_dist = group_locations[min_dist_feature_id].distance(point)
                for i in range(1, len(other_features_within_radius)):
                    candidate_id = other_features_within_radius[i]
                    new_dist = group_locations[candidate_id].distance(point)
                    if new_dist < min_dist:
                        min_dist = new_dist
                        min_dist_feature_id = candidate_id

                group_index_pos = group_index[min_dist_feature_id]
                group = clustered_groups[group_index_pos]

                # calculate new centroid of group
                old_center = group_locations[min_dist_feature_id]
                group_locations[min_dist_feature_id] = QgsPointXY((old_center.x() * len(group) + point.x()) / (len(group) + 1.0),
                                                                  (old_center.y() * len(group) + point.y()) / (len(group) + 1.0))
                # add to a group
                clustered_groups[group_index_pos].append(f)
                group_index[f.id()] = group_index_pos

            feedback.setProgress(int(current * total))

        current = 0
        total = 100.0 / len(clustered_groups) if clustered_groups else 1
        feedback.setProgress(0)

        fullPerimeter = 2 * math.pi

        for group in clustered_groups:
            if feedback.isCanceled():
                break

            count = len(group)
            if count == 1:
                sink.addFeature(group[0], QgsFeatureSink.FastInsert)
            else:
                angleStep = fullPerimeter / count
                if count == 2 and horizontal:
                    currentAngle = math.pi / 2
                else:
                    currentAngle = 0

                old_point = group_locations[group[0].id()]

                for f in group:
                    if feedback.isCanceled():
                        break

                    sinusCurrentAngle = math.sin(currentAngle)
                    cosinusCurrentAngle = math.cos(currentAngle)
                    dx = radius * sinusCurrentAngle
                    dy = radius * cosinusCurrentAngle

                    # we want to keep any existing m/z values
                    point = f.geometry().constGet().clone()
                    point.setX(old_point.x() + dx)
                    point.setY(old_point.y() + dy)
                    f.setGeometry(QgsGeometry(point))

                    sink.addFeature(f, QgsFeatureSink.FastInsert)
                    currentAngle += angleStep

            current += 1
            feedback.setProgress(int(current * total))

        return {self.OUTPUT: dest_id}
class FreehandRasterGeoreferencerLayer(QgsPluginLayer):

    LAYER_TYPE = "FreehandRasterGeoreferencerLayer"
    transformParametersChanged = pyqtSignal(tuple)

    def __init__(self, plugin, filepath, title, screenExtent):
        QgsPluginLayer.__init__(
            self, FreehandRasterGeoreferencerLayer.LAYER_TYPE, title)
        self.plugin = plugin
        self.iface = plugin.iface

        self.title = title
        self.filepath = filepath
        self.screenExtent = screenExtent
        self.history = []
        # set custom properties
        self.setCustomProperty("title", title)
        self.setCustomProperty("filepath", self.filepath)

        self.setValid(True)

        self.setTransparency(LayerDefaultSettings.TRANSPARENCY)
        self.setBlendModeByName(LayerDefaultSettings.BLEND_MODE)

        # dummy data: real init is done in intializeLayer
        self.center = QgsPointXY(0, 0)
        self.rotation = 0.0
        self.xScale = 1.0
        self.yScale = 1.0

        self.error = False
        self.initializing = False
        self.initialized = False
        self.initializeLayer(screenExtent)
        self._extent = None

        self.provider = FreehandRasterGeoreferencerLayerProvider(self)

    def dataProvider(self):
        # issue with DBManager if the dataProvider of the QgsLayerPlugin
        # returns None
        return self.provider

    def setScale(self, xScale, yScale):
        self.xScale = xScale
        self.yScale = yScale

    def setRotation(self, rotation):
        rotation = round(rotation, 1)
        # keep in -180,180 interval
        if rotation < -180:
            rotation += 360
        if rotation > 180:
            rotation -= 360
        self.rotation = rotation

    def setCenter(self, center):
        self.center = center

    def commitTransformParameters(self):
        QgsProject.instance().setDirty(True)
        self._extent = None
        self.setCustomProperty("xScale", self.xScale)
        self.setCustomProperty("yScale", self.yScale)
        self.setCustomProperty("rotation", self.rotation)
        self.setCustomProperty("xCenter", self.center.x())
        self.setCustomProperty("yCenter", self.center.y())
        self.transformParametersChanged.emit(
            (self.xScale, self.yScale, self.rotation, self.center))

    def reprojectTransformParameters(self, oldCrs, newCrs):
        transform = QgsCoordinateTransform(oldCrs, newCrs,
                                           QgsProject.instance())

        newCenter = transform.transform(self.center)
        newExtent = transform.transform(self.extent())

        # transform the parameters except rotation
        # TODO rotation could be better handled (maybe check rotation between
        # old and new extent)
        # but not really worth the effort ?
        self.setCrs(newCrs)
        self.setCenter(newCenter)
        self.resetScale(newExtent.width(), newExtent.height())

    def resetTransformParametersToNewCrs(self):
        """
        Attempts to keep the layer on the same region of the map when
        the map CRS is changed
        """
        oldCrs = self.crs()
        newCrs = self.iface.mapCanvas().mapSettings().destinationCrs()
        self.reprojectTransformParameters(oldCrs, newCrs)
        self.commitTransformParameters()

    def setupCrsEvents(self):
        layerId = self.id()

        def removeCrsChangeHandler(layerIds):
            if layerId in layerIds:
                try:
                    self.iface.mapCanvas().destinationCrsChanged.disconnect(
                        self.resetTransformParametersToNewCrs)
                except Exception:
                    pass
                try:
                    QgsProject.instance().disconnect(
                        removeCrsChangeHandler)
                except Exception:
                    pass

        self.iface.mapCanvas().destinationCrsChanged.connect(
            self.resetTransformParametersToNewCrs)
        QgsProject.instance().layersRemoved.connect(
            removeCrsChangeHandler)

    def setupCrs(self):
        mapCrs = self.iface.mapCanvas().mapSettings().destinationCrs()
        self.setCrs(mapCrs)

        self.setupCrsEvents()

    def repaint(self):
        self.repaintRequested.emit()

    def transformParameters(self):
        return (self.center, self.rotation, self.xScale, self.yScale)

    def initializeLayer(self, screenExtent=None):
        if self.error or self.initialized or self.initializing:
            return

        if self.filepath is not None:
            # not safe...
            self.initializing = True
            filepath = self.getAbsoluteFilepath()

            if not os.path.exists(filepath):
                # TODO integrate with BadLayerHandler ?
                loadErrorDialog = LoadErrorDialog(filepath)
                result = loadErrorDialog.exec_()
                if result == 1:
                    # absolute
                    filepath = loadErrorDialog.lineEditImagePath.text()
                    # to relative if needed
                    self.filepath = utils.toRelativeToQGS(filepath)
                    self.setCustomProperty("filepath", self.filepath)
                    QgsProject.instance().setDirty(True)
                else:
                    self.error = True

                del loadErrorDialog

            fileInfo = QFileInfo(filepath)
            ext = fileInfo.suffix()
            if ext == "pdf":
                s = QSettings()
                oldValidation = s.value("/Projections/defaultBehavior")
                s.setValue("/Projections/defaultBehavior", "useGlobal") # for not asking about crs
                path = fileInfo.filePath()
                baseName = fileInfo.baseName()
                layer = QgsRasterLayer(path, baseName)
                self.image = layer.previewAsImage(QSize(layer.width(),layer.height()))
                s.setValue("/Projections/defaultBehavior", oldValidation)
            else:
                reader = QImageReader(filepath)
                self.image = reader.read()

            self.initialized = True
            self.initializing = False

            self.setupCrs()

            if screenExtent:
                # constructor called from AddLayer action
                # if not, layer loaded from QGS project file

                # check if image already has georef info
                # use GDAL
                dataset = gdal.Open(filepath, gdal.GA_ReadOnly)
                georef = None
                if dataset:
                    georef = dataset.GetGeoTransform()

                if georef and not self.is_default_geotransform(georef):
                    self.initializeExistingGeoreferencing(dataset, georef)
                else:
                    # init to default params
                    self.setCenter(screenExtent.center())
                    self.setRotation(0.0)

                    sw = screenExtent.width()
                    sh = screenExtent.height()

                    self.resetScale(sw, sh)

                    self.commitTransformParameters()

    def initializeExistingGeoreferencing(self, dataset, georef):
        # georef can have scaling, rotation or translation
        rotation = 180 / math.pi * -math.atan2(georef[4], georef[1])
        sx = math.sqrt(georef[1] ** 2 + georef[4] ** 2)
        sy = math.sqrt(georef[2] ** 2 + georef[5] ** 2)
        i_center_x = self.image.width() / 2
        i_center_y = self.image.height() / 2
        center = QgsPointXY(georef[0] + georef[1] * i_center_x +
                            georef[2] * i_center_y,
                            georef[3] + georef[4] * i_center_x +
                            georef[5] * i_center_y)

        qDebug(repr(rotation) + " " + repr((sx, sy)) + " " +
               repr(center))

        self.setRotation(rotation)
        self.setCenter(center)
        # keep yScale positive
        self.setScale(sx, sy)
        self.commitTransformParameters()

        crs_wkt = dataset.GetProjection()
        message_shown = False
        if crs_wkt:
            qcrs = QgsCoordinateReferenceSystem(crs_wkt)
            if qcrs != self.crs():
                # reproject
                try:
                    self.reprojectTransformParameters(qcrs, self.crs())
                    self.commitTransformParameters()
                    self.showBarMessage(
                        "Transform parameters changed",
                        "Found existing georeferencing in raster but "
                        "its CRS does not match the CRS of the map. "
                        "Reprojected the extent.",
                        Qgis.Warning,
                        5)
                    message_shown = True
                except Exception as ex:
                    QgsMessageLog.logMessage(repr(ex))
                    self.showBarMessage(
                        "CRS does not match",
                        "Found existing georeferencing in raster but "
                        "its CRS does not match the CRS of the map. "
                        "Unable to reproject.",
                        Qgis.Warning,
                        5)
                    message_shown = True
        # if no projection info, assume it is the same CRS
        # as the map and no warning
        if not message_shown:
            self.showBarMessage(
                "Georeferencing loaded",
                "Found existing georeferencing in raster",
                Qgis.Info,
                3)

        # zoom (assume the user wants to work on the image)
        self.iface.mapCanvas().setExtent(self.extent())

    def is_default_geotransform(self, georef):
        """
        Check if there is really a transform or if it is just the default
        made up by GDAL
        """
        return (georef[0] == 0 and georef[3] == 0 and georef[1] == 1 and
                georef[5] == 1)

    def resetScale(self, sw, sh):
        iw = self.image.width()
        ih = self.image.height()
        wratio = sw / iw
        hratio = sh / ih

        if wratio > hratio:
            # takes all height of current extent
            self.setScale(hratio, hratio)
        else:
            # all width
            self.setScale(wratio, wratio)

    def replaceImage(self, filepath, title):
        self.title = title
        self.filepath = filepath

         # set custom properties
        self.setCustomProperty("title", title)
        self.setCustomProperty("filepath", self.filepath)
        self.setName(title)

        fileInfo = QFileInfo(filepath)
        ext = fileInfo.suffix()
        if ext == "pdf":
            s = QSettings()
            oldValidation = s.value("/Projections/defaultBehavior")
            s.setValue("/Projections/defaultBehavior", "useGlobal")  # for not asking about crs
            path = fileInfo.filePath()
            baseName = fileInfo.baseName()
            layer = QgsRasterLayer(path, baseName)
            self.image = layer.previewAsImage(QSize(layer.width(), layer.height()))
            s.setValue("/Projections/defaultBehavior", oldValidation)
        else:
            reader = QImageReader(filepath)
            self.image = reader.read()
        self.repaint()

    def clone(self):
        layer = FreehandRasterGeoreferencerLayer(self.plugin, self.filepath, self.title, self.screenExtent)
        layer.center = self.center
        layer.rotation = self.rotation
        layer.xScale = self.xScale
        layer.yScale = self.yScale
        layer.commitTransformParameters()
        return layer

    def getAbsoluteFilepath(self):
        if not os.path.isabs(self.filepath):
            # relative to QGS file
            qgsPath = QgsProject.instance().fileName()
            qgsFolder, _ = os.path.split(qgsPath)
            filepath = os.path.join(qgsFolder, self.filepath)
        else:
            filepath = self.filepath

        return filepath

    def extent(self):
        self.initializeLayer()
        if not self.initialized:
            qDebug("Not Initialized")
            return QgsRectangle(0, 0, 1, 1)

        if self._extent:
            return self._extent

        topLeft, topRight, bottomRight, bottomLeft = self.cornerCoordinates()

        left = min(topLeft.x(), topRight.x(), bottomRight.x(), bottomLeft.x())
        right = max(topLeft.x(), topRight.x(), bottomRight.x(), bottomLeft.x())
        top = max(topLeft.y(), topRight.y(), bottomRight.y(), bottomLeft.y())
        bottom = min(topLeft.y(), topRight.y(),
                     bottomRight.y(), bottomLeft.y())

        # recenter + create rectangle
        self._extent = QgsRectangle(left, bottom, right, top)
        return self._extent

    def cornerCoordinates(self):
        return self.transformedCornerCoordinates(self.center,
                                                 self.rotation,
                                                 self.xScale,
                                                 self.yScale)

    def transformedCornerCoordinates(self, center, rotation, xScale, yScale):
        # scale
        topLeft = QgsPointXY(-self.image.width() / 2.0 * xScale,
                             self.image.height() / 2.0 * yScale)
        topRight = QgsPointXY(self.image.width() / 2.0 * xScale,
                              self.image.height() / 2.0 * yScale)
        bottomLeft = QgsPointXY(-self.image.width() / 2.0 * xScale,
                                - self.image.height() / 2.0 * yScale)
        bottomRight = QgsPointXY(self.image.width() / 2.0 * xScale,
                                 - self.image.height() / 2.0 * yScale)

        # rotate
        # minus sign because rotation is CW in this class and Qt)
        rotationRad = -rotation * math.pi / 180
        cosRot = math.cos(rotationRad)
        sinRot = math.sin(rotationRad)

        topLeft = self._rotate(topLeft, cosRot, sinRot)
        topRight = self._rotate(topRight, cosRot, sinRot)
        bottomRight = self._rotate(bottomRight, cosRot, sinRot)
        bottomLeft = self._rotate(bottomLeft, cosRot, sinRot)

        topLeft.set(topLeft.x() + center.x(), topLeft.y() + center.y())
        topRight.set(topRight.x() + center.x(), topRight.y() + center.y())
        bottomRight.set(bottomRight.x() + center.x(),
                        bottomRight.y() + center.y())
        bottomLeft.set(bottomLeft.x() + center.x(),
                       bottomLeft.y() + center.y())

        return (topLeft, topRight, bottomRight, bottomLeft)

    def transformedCornerCoordinatesFromPoint(self, startPoint, rotation,
                                              xScale, yScale):
        # startPoint is a fixed point for this new movement (rotation and
        # scale)
        # rotation is the global rotation of the image
        # xScale is the new xScale factor to be multiplied by self.xScale
        # idem for yScale
        # Calculate the coordinate of the center in a startPoint origin
        # coordinate system and apply scales
        dX = (self.center.x() - startPoint.x()) * xScale
        dY = (self.center.y() - startPoint.y()) * yScale
        # Half width and half height in the current transformation
        hW = (self.image.width() / 2.0) * self.xScale * xScale
        hH = (self.image.height() / 2.0) * self.yScale * yScale
        # Actual rectangle coordinates :
        pt1 = QgsPointXY(-hW, hH)
        pt2 = QgsPointXY(hW, hH)
        pt3 = QgsPointXY(hW, -hH)
        pt4 = QgsPointXY(-hW, -hH)
        # Actual rotation from the center
        # minus sign because rotation is CW in this class and Qt)
        rotationRad = -self.rotation * math.pi / 180
        cosRot = math.cos(rotationRad)
        sinRot = math.sin(rotationRad)
        pt1 = self._rotate(pt1, cosRot, sinRot)
        pt2 = self._rotate(pt2, cosRot, sinRot)
        pt3 = self._rotate(pt3, cosRot, sinRot)
        pt4 = self._rotate(pt4, cosRot, sinRot)
        # Second transformation
        # displacement of the origin
        pt1 = QgsPointXY(pt1.x() + dX, pt1.y() + dY)
        pt2 = QgsPointXY(pt2.x() + dX, pt2.y() + dY)
        pt3 = QgsPointXY(pt3.x() + dX, pt3.y() + dY)
        pt4 = QgsPointXY(pt4.x() + dX, pt4.y() + dY)
        # Rotation
        # minus sign because rotation is CW in this class and Qt)
        rotationRad = -rotation * math.pi / 180
        cosRot = math.cos(rotationRad)
        sinRot = math.sin(rotationRad)
        pt1 = self._rotate(pt1, cosRot, sinRot)
        pt2 = self._rotate(pt2, cosRot, sinRot)
        pt3 = self._rotate(pt3, cosRot, sinRot)
        pt4 = self._rotate(pt4, cosRot, sinRot)
        # translate to startPoint
        pt1 = QgsPointXY(pt1.x() + startPoint.x(), pt1.y() + startPoint.y())
        pt2 = QgsPointXY(pt2.x() + startPoint.x(), pt2.y() + startPoint.y())
        pt3 = QgsPointXY(pt3.x() + startPoint.x(), pt3.y() + startPoint.y())
        pt4 = QgsPointXY(pt4.x() + startPoint.x(), pt4.y() + startPoint.y())

        return (pt1, pt2, pt3, pt4)

    def moveCenterFromPointRotate(self, startPoint, rotation, xScale, yScale):
        cornerPoints = self.transformedCornerCoordinatesFromPoint(
            startPoint, rotation, xScale, yScale)
        self.center = QgsPointXY((cornerPoints[0].x(
        ) + cornerPoints[2].x()) / 2, (cornerPoints[0].y() +
                                       cornerPoints[2].y()) / 2)

    def _rotate(self, point, cosRot, sinRot):
        return QgsPointXY(point.x() * cosRot - point.y() * sinRot,
                          point.x() * sinRot + point.y() * cosRot)

    def createMapRenderer(self, rendererContext):
        return FreehandRasterGeoreferencerLayerRenderer(self, rendererContext)

    def setBlendModeByName(self, modeName):
        self.blendModeName = modeName
        blendMode = getattr(QPainter, "CompositionMode_" + modeName, 0)
        self.setBlendMode(blendMode)
        self.setCustomProperty("blendMode", modeName)

    def setTransparency(self, transparency):
        self.transparency = transparency
        self.setCustomProperty("transparency", transparency)

    def draw(self, renderContext):
        if renderContext.extent().isEmpty():
            qDebug("Drawing is skipped because map extent is empty.")
            return True

        self.initializeLayer()
        if not self.initialized:
            qDebug("Drawing is skipped because nothing to draw.")
            return True

        painter = renderContext.painter()
        painter.save()
        self.prepareStyle(painter)
        self.drawRaster(renderContext)
        painter.restore()

        return True

    def drawRaster(self, renderContext):
        painter = renderContext.painter()
        self.map2pixel = renderContext.mapToPixel()

        scaleX = self.xScale / self.map2pixel.mapUnitsPerPixel()
        scaleY = self.yScale / self.map2pixel.mapUnitsPerPixel()

        rect = QRectF(QPointF(-self.image.width() / 2.0,
                              - self.image.height() / 2.0),
                      QPointF(self.image.width() / 2.0,
                              self.image.height() / 2.0))
        mapCenter = self.map2pixel.transform(self.center)

        # draw the image on the map canvas
        painter.translate(QPoint(round(mapCenter.x()), round(mapCenter.y())))
        painter.rotate(self.rotation)
        painter.scale(scaleX, scaleY)
        painter.drawImage(rect, self.image)

        painter.setBrush(Qt.NoBrush)
        painter.setPen(QColor(0, 0, 0))
        painter.drawRect(rect)

    def prepareStyle(self, painter):
        painter.setOpacity(1.0 - self.transparency / 100.0)

    def readXml(self, node, context):
        self.readCustomProperties(node)
        self.title = self.customProperty("title", "")
        self.filepath = self.customProperty("filepath", "")
        self.xScale = float(self.customProperty("xScale", 1.0))
        self.yScale = float(self.customProperty("yScale", 1.0))
        self.rotation = float(self.customProperty("rotation", 0.0))
        xCenter = float(self.customProperty("xCenter", 0.0))
        yCenter = float(self.customProperty("yCenter", 0.0))
        self.center = QgsPointXY(xCenter, yCenter)
        self.setTransparency(int(self.customProperty(
            "transparency", LayerDefaultSettings.TRANSPARENCY)))
        self.setBlendModeByName(self.customProperty(
            "blendMode", LayerDefaultSettings.BLEND_MODE))
        return True

    def writeXml(self, node, doc, context):
        element = node.toElement()
        self.writeCustomProperties(node, doc)
        element.setAttribute("type", "plugin")
        element.setAttribute(
            "name", FreehandRasterGeoreferencerLayer.LAYER_TYPE)
        return True

    def metadata(self):
        lines = []
        fmt = "%s:\t%s"
        lines.append(fmt % (self.tr("Title"), self.title))
        filepath = self.getAbsoluteFilepath()
        filepath = os.path.normpath(filepath)
        lines.append(fmt % (self.tr("Path"), filepath))
        lines.append(fmt % (self.tr("Image Width"), str(self.image.width())))
        lines.append(fmt % (self.tr("Image Height"), str(self.image.height())))
        lines.append(fmt % (self.tr("Rotation (CW)"), str(self.rotation)))
        lines.append(fmt % (self.tr("X center"), str(self.center.x())))
        lines.append(fmt % (self.tr("Y center"), str(self.center.y())))
        lines.append(fmt % (self.tr("X scale"), str(self.xScale)))
        lines.append(fmt % (self.tr("Y scale"), str(self.yScale)))

        return "\n".join(lines)

    def log(self, msg):
        qDebug(msg)

    def dump(self, detail=False, bbox=None):
        pass

    def showStatusMessage(self, msg, timeout):
        self.iface.mainWindow().statusBar().showMessage(msg, timeout)

    def showBarMessage(self, title, text, level, duration):
        self.iface.messageBar().pushMessage(title, text, level, duration)

    def transparencyChanged(self, val):
        QgsProject.instance().setDirty(True)
        self.setTransparency(val)
        self.repaintRequested.emit()
    def processAlgorithm(self, parameters, context, feedback):
        source = self.parameterAsSource(parameters, self.PrmInputLayer, context)
        measureTotal = self.parameterAsBool(parameters, self.PrmMeasureTotalLength, context)
        units = self.parameterAsInt(parameters, self.PrmUnitsOfMeasure, context)
        autoStyle = self.parameterAsBool(parameters, self.PrmAutomaticStyline, context)

        srcCRS = source.sourceCrs()

        f = QgsFields()
        f.append(QgsField("label", QVariant.String))
        f.append(QgsField("distance", QVariant.Double))
        f.append(QgsField("units", QVariant.String))
        if not measureTotal:
            f.append(QgsField("heading_to", QVariant.Double))
            f.append(QgsField("total_distance", QVariant.Double))

        (sink, dest_id) = self.parameterAsSink(
            parameters, self.PrmOutputLayer, context, f, QgsWkbTypes.LineString, srcCRS)

        if srcCRS != epsg4326:
            geomTo4326 = QgsCoordinateTransform(srcCRS, epsg4326, QgsProject.instance())
            toSinkCrs = QgsCoordinateTransform(epsg4326, srcCRS, QgsProject.instance())

        wkbtype = source.wkbType()
        geomtype = QgsWkbTypes.geometryType(wkbtype)

        featureCount = source.featureCount()
        total = 100.0 / featureCount if featureCount else 0

        iterator = source.getFeatures()
        for cnt, feature in enumerate(iterator):
            if feedback.isCanceled():
                break

            if geomtype == QgsWkbTypes.LineGeometry:
                if feature.geometry().isMultipart():
                    ptdata = [feature.geometry().asMultiPolyline()]
                else:
                    ptdata = [[feature.geometry().asPolyline()]]
            else: #polygon
                if feature.geometry().isMultipart():
                    ptdata = feature.geometry().asMultiPolygon()
                else:
                    ptdata = [feature.geometry().asPolygon()]
            if len(ptdata) < 1:
                continue

            for seg in ptdata:
                if len(seg) < 1:
                    continue
                if measureTotal:
                    for pts in seg:
                        numpoints = len(pts)
                        if numpoints < 2:
                            continue
                        f = QgsFeature()
                        f.setGeometry(QgsGeometry.fromPolylineXY(pts))
                        ptStart = QgsPointXY(pts[0].x(), pts[0].y())
                        if srcCRS != epsg4326: # Convert to 4326
                            ptStart = geomTo4326.transform(ptStart)
                        # Calculate the total distance of this line segment
                        distance = 0.0
                        for x in range(1,numpoints):
                            ptEnd = QgsPointXY(pts[x].x(), pts[x].y())
                            if srcCRS != epsg4326: # Convert to 4326
                                ptEnd = geomTo4326.transform(ptEnd)
                            l = geod.Inverse(ptStart.y(), ptStart.x(), ptEnd.y(), ptEnd.x())
                            distance += l['s12']
                            ptStart = ptEnd

                        distance = self.unitDistance(units, distance) # Distance converted to the selected unit of measure
                        attr = ["{:.2f} {}".format(distance, unitsAbbr[units]), distance, unitsAbbr[units] ]
                        f.setAttributes(attr)
                        sink.addFeature(f)
                else:
                    for pts in seg:
                        numpoints = len(pts)
                        if numpoints < 2:
                            continue
                        ptStart = QgsPointXY(pts[0].x(), pts[0].y())
                        if srcCRS != epsg4326: # Convert to 4326
                            ptStart = geomTo4326.transform(ptStart)
                        # Calculate the total distance of this line segment
                        totalDistance = 0.0
                        for x in range(1,numpoints):
                            ptEnd = QgsPointXY(pts[x].x(), pts[x].y())
                            if srcCRS != epsg4326: # Convert to 4326
                                ptEnd = geomTo4326.transform(ptEnd)
                            l = geod.Inverse(ptStart.y(), ptStart.x(), ptEnd.y(), ptEnd.x())
                            totalDistance += l['s12']
                            ptStart = ptEnd

                        totalDistance = self.unitDistance(units, totalDistance) # Distance converted to the selected unit of measure

                        ptStart = QgsPointXY(pts[0].x(), pts[0].y())
                        if srcCRS != epsg4326: # Convert to 4326
                            pt1 = geomTo4326.transform(ptStart)
                        else:
                            pt1 = ptStart
                        for x in range(1,numpoints):
                            ptEnd = QgsPointXY(pts[x].x(), pts[x].y())
                            f = QgsFeature()
                            f.setGeometry(QgsGeometry.fromPolylineXY([ptStart, ptEnd]))
                            if srcCRS != epsg4326: # Convert to 4326
                                pt2 = geomTo4326.transform(ptEnd)
                            else:
                                pt2 = ptEnd
                            l = geod.Inverse(pt1.y(), pt1.x(), pt2.y(), pt2.x())
                            ptStart = ptEnd
                            pt1 = pt2
                            distance = self.unitDistance(units, l['s12'])
                            attr = ["{:.2f} {}".format(distance, unitsAbbr[units]), distance, unitsAbbr[units], l['azi1'],totalDistance ]
                            f.setAttributes(attr)
                            sink.addFeature(f)

            if cnt % 100 == 0:
                feedback.setProgress(int(cnt * total))
        if autoStyle and context.willLoadLayerOnCompletion(dest_id):
            context.layerToLoadOnCompletionDetails(dest_id).setPostProcessor(StylePostProcessor.create())

        return {self.PrmOutputLayer: dest_id}
Ejemplo n.º 13
0
    def processAlgorithm(self, parameters, context, feedback):
        source = self.parameterAsSource(parameters, self.INPUT, context)

        fields = QgsFields()
        fields.append(QgsField('POINTA', QVariant.Double, '', 24, 15))
        fields.append(QgsField('POINTB', QVariant.Double, '', 24, 15))
        fields.append(QgsField('POINTC', QVariant.Double, '', 24, 15))

        (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT,
                                               context, fields,
                                               QgsWkbTypes.Polygon,
                                               source.sourceCrs())

        pts = []
        ptDict = {}
        ptNdx = -1
        c = voronoi.Context()
        features = source.getFeatures()
        total = 100.0 / source.featureCount() if source.featureCount() else 0
        for current, inFeat in enumerate(features):
            if feedback.isCanceled():
                break

            geom = QgsGeometry(inFeat.geometry())
            if geom.isNull():
                continue
            if geom.isMultipart():
                points = geom.asMultiPoint()
            else:
                points = [geom.asPoint()]
            for n, point in enumerate(points):
                x = point.x()
                y = point.y()
                pts.append((x, y))
                ptNdx += 1
                ptDict[ptNdx] = (inFeat.id(), n)
            feedback.setProgress(int(current * total))

        if len(pts) < 3:
            raise QgsProcessingException(
                self.tr('Input file should contain at least 3 points. Choose '
                        'another file and try again.'))

        uniqueSet = set(item for item in pts)
        ids = [pts.index(item) for item in uniqueSet]
        sl = voronoi.SiteList([voronoi.Site(*i) for i in uniqueSet])
        c.triangulate = True
        voronoi.voronoi(sl, c)
        triangles = c.triangles
        feat = QgsFeature()

        total = 100.0 / len(triangles) if triangles else 1
        for current, triangle in enumerate(triangles):
            if feedback.isCanceled():
                break

            indices = list(triangle)
            indices.append(indices[0])
            polygon = []
            attrs = []
            step = 0
            for index in indices:
                fid, n = ptDict[ids[index]]
                request = QgsFeatureRequest().setFilterFid(fid)
                inFeat = next(source.getFeatures(request))
                geom = QgsGeometry(inFeat.geometry())
                if geom.isMultipart():
                    point = QgsPointXY(geom.asMultiPoint()[n])
                else:
                    point = QgsPointXY(geom.asPoint())
                polygon.append(point)
                if step <= 3:
                    attrs.append(ids[index])
                step += 1
            feat.setAttributes(attrs)
            geometry = QgsGeometry().fromPolygonXY([polygon])
            feat.setGeometry(geometry)
            sink.addFeature(feat, QgsFeatureSink.FastInsert)
            feedback.setProgress(int(current * total))

        return {self.OUTPUT: dest_id}
Ejemplo n.º 14
0
    def processAlgorithm(self, parameters, context, feedback):
        layer = QgsProcessingUtils.mapLayerFromString(self.getParameterValue(self.INPUT_VECTOR), context)
        startPoint = self.getParameterValue(self.START_POINT)
        strategy = self.getParameterValue(self.STRATEGY)
        travelCost = self.getParameterValue(self.TRAVEL_COST)

        directionFieldName = self.getParameterValue(self.DIRECTION_FIELD)
        forwardValue = self.getParameterValue(self.VALUE_FORWARD)
        backwardValue = self.getParameterValue(self.VALUE_BACKWARD)
        bothValue = self.getParameterValue(self.VALUE_BOTH)
        defaultDirection = self.getParameterValue(self.DEFAULT_DIRECTION)
        bothValue = self.getParameterValue(self.VALUE_BOTH)
        defaultDirection = self.getParameterValue(self.DEFAULT_DIRECTION)
        speedFieldName = self.getParameterValue(self.SPEED_FIELD)
        defaultSpeed = self.getParameterValue(self.DEFAULT_SPEED)
        tolerance = self.getParameterValue(self.TOLERANCE)

        tmp = startPoint.split(',')
        startPoint = QgsPointXY(float(tmp[0]), float(tmp[1]))

        directionField = -1
        if directionFieldName is not None:
            directionField = layer.fields().lookupField(directionFieldName)
        speedField = -1
        if speedFieldName is not None:
            speedField = layer.fields().lookupField(speedFieldName)

        director = QgsVectorLayerDirector(layer,
                                          directionField,
                                          forwardValue,
                                          backwardValue,
                                          bothValue,
                                          defaultDirection)

        distUnit = iface.mapCanvas().mapSettings().destinationCrs().mapUnits()
        multiplier = QgsUnitTypes.fromUnitToUnitFactor(distUnit, QgsUnitTypes.DistanceMeters)
        if strategy == 0:
            strategy = QgsNetworkDistanceStrategy()
        else:
            strategy = QgsNetworkSpeedStrategy(speedField,
                                               defaultSpeed,
                                               multiplier * 1000.0 / 3600.0)

        director.addStrategy(strategy)
        builder = QgsGraphBuilder(iface.mapCanvas().mapSettings().destinationCrs(),
                                  True,
                                  tolerance)
        feedback.pushInfo(self.tr('Building graph...'))
        snappedPoints = director.makeGraph(builder, [startPoint])

        feedback.pushInfo(self.tr('Calculating service area...'))
        graph = builder.graph()
        idxStart = graph.findVertex(snappedPoints[0])

        tree, cost = QgsGraphAnalyzer.dijkstra(graph, idxStart, 0)
        vertices = []
        for i, v in enumerate(cost):
            if v > travelCost and tree[i] != -1:
                vertexId = graph.edge(tree[i]).outVertex()
                if cost[vertexId] <= travelCost:
                    vertices.append(i)

        upperBoundary = []
        lowerBoundary = []
        for i in vertices:
            upperBoundary.append(graph.vertex(graph.edge(tree[i]).inVertex()).point())
            lowerBoundary.append(graph.vertex(graph.edge(tree[i]).outVertex()).point())

        feedback.pushInfo(self.tr('Writing results...'))

        fields = QgsFields()
        fields.append(QgsField('type', QVariant.String, '', 254, 0))
        fields.append(QgsField('start', QVariant.String, '', 254, 0))

        feat = QgsFeature()
        feat.setFields(fields)

        geomUpper = QgsGeometry.fromMultiPoint(upperBoundary)
        geomLower = QgsGeometry.fromMultiPoint(lowerBoundary)

        writer = self.getOutputFromName(
            self.OUTPUT_POINTS).getVectorWriter(fields, QgsWkbTypes.MultiPoint, layer.crs(), context)

        feat.setGeometry(geomUpper)
        feat['type'] = 'upper'
        feat['start'] = startPoint.toString()
        writer.addFeature(feat)

        feat.setGeometry(geomLower)
        feat['type'] = 'lower'
        feat['start'] = startPoint.toString()
        writer.addFeature(feat)

        del writer

        upperBoundary.append(startPoint)
        lowerBoundary.append(startPoint)
        geomUpper = QgsGeometry.fromMultiPoint(upperBoundary)
        geomLower = QgsGeometry.fromMultiPoint(lowerBoundary)

        writer = self.getOutputFromName(
            self.OUTPUT_POLYGON).getVectorWriter(fields, QgsWkbTypes.Polygon, layer.crs(), context)

        geom = geomUpper.convexHull()
        feat.setGeometry(geom)
        feat['type'] = 'upper'
        feat['start'] = startPoint.toString()
        writer.addFeature(feat)

        geom = geomLower.convexHull()
        feat.setGeometry(geom)
        feat['type'] = 'lower'
        feat['start'] = startPoint.toString()
        writer.addFeature(feat)
        del writer
Ejemplo n.º 15
0
    def testChangeGeometry(self):
        # test changing geometries values from an edit buffer

        # make a layer with two features
        layer = createEmptyLayer()
        self.assertTrue(layer.startEditing())

        # add two features
        f1 = QgsFeature(layer.fields(), 1)
        f1.setGeometry(QgsGeometry.fromPointXY(QgsPointXY(1, 2)))
        f1.setAttributes(["test", 123])
        self.assertTrue(layer.addFeature(f1))

        f2 = QgsFeature(layer.fields(), 2)
        f2.setGeometry(QgsGeometry.fromPointXY(QgsPointXY(2, 4)))
        f2.setAttributes(["test2", 246])
        self.assertTrue(layer.addFeature(f2))

        layer.commitChanges()
        layer.startEditing()

        self.assertEqual(layer.editBuffer().changedGeometries(), {})
        self.assertFalse(layer.editBuffer().isFeatureGeometryChanged(1))
        self.assertFalse(layer.editBuffer().isFeatureGeometryChanged(2))

        # change geometry
        layer.changeGeometry(1, QgsGeometry.fromPointXY(QgsPointXY(10, 20)))

        # test contents of buffer
        self.assertEqual(list(layer.editBuffer().changedGeometries().keys()),
                         [1])
        self.assertEqual(
            layer.editBuffer().changedGeometries()[1].constGet().x(), 10)
        self.assertTrue(layer.editBuffer().isFeatureGeometryChanged(1))
        self.assertFalse(layer.editBuffer().isFeatureGeometryChanged(2))
        self.assertEqual(layer.undoStack().count(), 1)

        self.assertEqual(layer.getFeature(1).geometry().constGet().x(), 10)
        self.assertEqual(layer.getFeature(2).geometry().constGet().x(), 2)

        # apply second change to same feature
        layer.beginEditCommand(
            'second change'
        )  # need to use an edit command to avoid the two geometry changes being merged
        layer.changeGeometry(1, QgsGeometry.fromPointXY(QgsPointXY(100, 200)))
        layer.endEditCommand()

        # test contents of buffer
        self.assertEqual(list(layer.editBuffer().changedGeometries().keys()),
                         [1])
        self.assertEqual(
            layer.editBuffer().changedGeometries()[1].constGet().x(), 100)
        self.assertTrue(layer.editBuffer().isFeatureGeometryChanged(1))
        self.assertFalse(layer.editBuffer().isFeatureGeometryChanged(2))
        self.assertEqual(layer.undoStack().count(), 2)

        self.assertEqual(layer.getFeature(1).geometry().constGet().x(), 100)
        self.assertEqual(layer.getFeature(2).geometry().constGet().x(), 2)

        layer.changeGeometry(2, QgsGeometry.fromPointXY(QgsPointXY(20, 40)))

        # test contents of buffer
        self.assertEqual(set(layer.editBuffer().changedGeometries().keys()),
                         set([1, 2]))
        self.assertEqual(
            layer.editBuffer().changedGeometries()[1].constGet().x(), 100)
        self.assertEqual(
            layer.editBuffer().changedGeometries()[2].constGet().x(), 20)
        self.assertTrue(layer.editBuffer().isFeatureGeometryChanged(1))
        self.assertTrue(layer.editBuffer().isFeatureGeometryChanged(2))
        self.assertEqual(layer.undoStack().count(), 3)

        self.assertEqual(layer.getFeature(1).geometry().constGet().x(), 100)
        self.assertEqual(layer.getFeature(2).geometry().constGet().x(), 20)

        layer.undoStack().undo()

        self.assertEqual(list(layer.editBuffer().changedGeometries().keys()),
                         [1])
        self.assertEqual(
            layer.editBuffer().changedGeometries()[1].constGet().x(), 100)
        self.assertTrue(layer.editBuffer().isFeatureGeometryChanged(1))
        self.assertFalse(layer.editBuffer().isFeatureGeometryChanged(2))

        self.assertEqual(layer.getFeature(1).geometry().constGet().x(), 100)
        self.assertEqual(layer.getFeature(2).geometry().constGet().x(), 2)

        layer.undoStack().undo()
        self.assertEqual(list(layer.editBuffer().changedGeometries().keys()),
                         [1])
        self.assertTrue(layer.editBuffer().isFeatureGeometryChanged(1))
        self.assertFalse(layer.editBuffer().isFeatureGeometryChanged(2))

        self.assertEqual(layer.getFeature(1).geometry().constGet().x(), 10)
        self.assertEqual(layer.getFeature(2).geometry().constGet().x(), 2)

        layer.undoStack().undo()
        self.assertEqual(list(layer.editBuffer().changedGeometries().keys()),
                         [])
        self.assertFalse(layer.editBuffer().isFeatureGeometryChanged(1))
        self.assertFalse(layer.editBuffer().isFeatureGeometryChanged(2))

        self.assertEqual(layer.getFeature(1).geometry().constGet().x(), 1)
        self.assertEqual(layer.getFeature(2).geometry().constGet().x(), 2)
Ejemplo n.º 16
0
    def mousePressEvent(self, event):
        """
        :type event: QMouseEvent
        :param event:
        :return:
        """
        if GetImageHeight() == 0:
            return

        if event.button() == Qt.LeftButton:
            self.snapped = True
            self.pressPos = self.dragPos = event.pos()
            self.tapTimer.stop()
            self.tapTimer.start(100, self)

            if (not vut.IsPointOnScreen(event.x(), event.y(), self.surface)):
                self.UpdateSurface()
                return

            # point drawer
            if self.gt is not None and self._interaction.pointDrawer:
                Longitude, Latitude, Altitude = vut.GetPointCommonCoords(
                    event, self.surface)

                pointIndex = len(self.drawPtPos) + 1
                AddDrawPointOnMap(pointIndex, Longitude, Latitude, Altitude)

                self.drawPtPos.append([Longitude, Latitude, Altitude])

            # polygon drawer
            if self.gt is not None and self._interaction.polygonDrawer:
                Longitude, Latitude, Altitude = vut.GetPointCommonCoords(
                    event, self.surface)
                self.poly_RubberBand.addPoint(QgsPointXY(Longitude, Latitude))
                self.poly_coordinates.extend(QgsPointXY(Longitude, Latitude))
                self.drawPolygon.append([Longitude, Latitude, Altitude])

            # line drawer
            if self.gt is not None and self._interaction.lineDrawer:
                Longitude, Latitude, Altitude = vut.GetPointCommonCoords(
                    event, self.surface)

                self.drawLines.append([Longitude, Latitude, Altitude])

                AddDrawLineOnMap(self.drawLines)

            if self._interaction.objectTracking:
                self.origin = event.pos()
                self.Tracking_RubberBand.setGeometry(
                    QRect(self.origin, QSize()))
                self.Tracking_RubberBand.show()

            if self._interaction.censure:
                self.origin = event.pos()
                self.Censure_RubberBand.setGeometry(QRect(
                    self.origin, QSize()))
                self.Censure_RubberBand.show()

            # Ruler drawer
            if self.gt is not None and self._interaction.ruler:
                Longitude, Latitude, Altitude = vut.GetPointCommonCoords(
                    event, self.surface)
                self.drawRuler.append([Longitude, Latitude, Altitude])

        # if not called, the paint event is not triggered.
        self.UpdateSurface()
    def import_gpx_file(self,
                        file_path,
                        output_directory,
                        attribute_select="Last",
                        use_wgs84=True,
                        calculate_motion_attributes=False,
                        overwrite=False):
        """ Imports the data from the GPX file and create the vector layer """

        if len(self.attribute_definitions) == 0:
            self.get_table_data(file_path)

        self.error_message = ''

        if calculate_motion_attributes:
            self.attribute_definitions.append(
                DataTypeDefinition('_distance', DataTypes.Double, True, ''))
            self.attribute_definitions.append(
                DataTypeDefinition('_duration', DataTypes.Double, True, ''))
            self.attribute_definitions.append(
                DataTypeDefinition('_speed', DataTypes.Double, True, ''))

        tree = ElementTree.parse(file_path)
        root = tree.getroot()

        crs = QgsCoordinateReferenceSystem('EPSG:4326') if use_wgs84 else None

        vector_layer_builder = GpxFeatureBuilder(os.path.basename(file_path),
                                                 self.attribute_definitions,
                                                 attribute_select, crs)

        prev_track_point = None
        self.equal_coordintes = 0

        for track in root.findall('gpx:trk', self.namespace):
            track_segment = track.find('gpx:trkseg', self.namespace)

            for track_point in track_segment.findall('gpx:trkpt',
                                                     self.namespace):
                if prev_track_point is not None:
                    previous_point = QgsPointXY(
                        float(prev_track_point.get('lon')),
                        float(prev_track_point.get('lat')))
                    new_point = QgsPointXY(float(track_point.get('lon')),
                                           float(track_point.get('lat')))

                    if GeomTools.is_equal_coordinate(previous_point,
                                                     new_point):
                        self.equal_coordintes += 1
                        continue

                    # add a feature with first/last/both attributes
                    attributes = dict()
                    if attribute_select == 'First':
                        self.add_attributes(attributes, prev_track_point, '')
                    elif attribute_select == 'Last':
                        self.add_attributes(attributes, track_point, '')
                    elif attribute_select == 'Both':
                        self.add_attributes(attributes, prev_track_point, 'a_')
                        self.add_attributes(attributes, track_point, 'b_')

                    if calculate_motion_attributes:
                        time_a = DataTypes.create_date(
                            prev_track_point.find('gpx:time',
                                                  self.namespace).text)
                        time_b = DataTypes.create_date(
                            track_point.find('gpx:time', self.namespace).text)

                        attributes['_distance'] = GeomTools.distance(
                            previous_point, new_point, crs)

                        if time_a is not None or time_b is not None:
                            attributes[
                                '_duration'] = GeomTools.calculate_duration(
                                    time_a, time_b)
                            attributes['_speed'] = GeomTools.calculate_speed(
                                time_a, time_b, previous_point, new_point, crs)

                    vector_layer_builder.add_feature(
                        [previous_point, new_point], attributes)

                prev_track_point = track_point

        vector_layer = vector_layer_builder.save_layer(output_directory,
                                                       overwrite)
        if vector_layer_builder.error_message != '':
            self.error_message = vector_layer_builder.error_message
            print(self.error_message)

        return vector_layer
Ejemplo n.º 18
0
 def create_point(self, centroid, radian, radius):
     dx = math.cos(radian) * radius
     dy = math.sin(radian) * radius
     
     return QgsPointXY(centroid.x() + dx, centroid.y() + dy)
Ejemplo n.º 19
0
    def ovals(self, sink, source, width, height, rotation, segments, feedback):
        features = source.getFeatures()
        ft = QgsFeature()

        total = 100.0 / source.featureCount() if source.featureCount() else 0
        if rotation >= 0:
            for current, feat in enumerate(features):
                if feedback.isCanceled():
                    break

                if not feat.hasGeometry():
                    continue

                w = feat[width]
                h = feat[height]
                angle = feat[rotation]
                # block 0/NULL width or height, but allow 0 as angle value
                if not w or not h:
                    feedback.pushInfo(
                        QCoreApplication.translate(
                            'RectanglesOvalsDiamondsVariable',
                            'Feature {} has empty '
                            'width or height. '
                            'Skipping…').format(feat.id()))
                    continue
                if angle == NULL:
                    feedback.pushInfo(
                        QCoreApplication.translate(
                            'RectanglesOvalsDiamondsVariable',
                            'Feature {} has empty '
                            'angle. '
                            'Skipping…').format(feat.id()))
                    continue

                xOffset = w / 2.0
                yOffset = h / 2.0
                phi = angle * math.pi / 180

                point = feat.geometry().asPoint()
                x = point.x()
                y = point.y()
                points = []
                for t in [(2 * math.pi) / segments * i
                          for i in range(segments)]:
                    points.append(
                        (xOffset * math.cos(t), yOffset * math.sin(t)))
                polygon = [[
                    QgsPointXY(
                        i[0] * math.cos(phi) + i[1] * math.sin(phi) + x,
                        -i[0] * math.sin(phi) + i[1] * math.cos(phi) + y)
                    for i in points
                ]]

                ft.setGeometry(QgsGeometry.fromPolygonXY(polygon))
                ft.setAttributes(feat.attributes())
                sink.addFeature(ft, QgsFeatureSink.FastInsert)
                feedback.setProgress(int(current * total))
        else:
            for current, feat in enumerate(features):
                if feedback.isCanceled():
                    break

                if not feat.hasGeometry():
                    continue

                w = feat[width]
                h = feat[height]
                if not w or not h:
                    feedback.pushInfo(
                        QCoreApplication.translate(
                            'RectanglesOvalsDiamondsVariable',
                            'Feature {} has empty '
                            'width or height. '
                            'Skipping…').format(feat.id()))
                    continue

                xOffset = w / 2.0
                yOffset = h / 2.0

                point = feat.geometry().asPoint()
                x = point.x()
                y = point.y()
                points = []
                for t in [(2 * math.pi) / segments * i
                          for i in range(segments)]:
                    points.append(
                        (xOffset * math.cos(t), yOffset * math.sin(t)))
                polygon = [[QgsPointXY(i[0] + x, i[1] + y) for i in points]]

                ft.setGeometry(QgsGeometry.fromPolygonXY(polygon))
                ft.setAttributes(feat.attributes())
                sink.addFeature(ft, QgsFeatureSink.FastInsert)
                feedback.setProgress(int(current * total))
Ejemplo n.º 20
0
    def processAlgorithm(self, parameters, context, feedback):
        layer = QgsProcessingUtils.mapLayerFromString(self.getParameterValue(self.INPUT_VECTOR), context)
        startPoint = self.getParameterValue(self.START_POINT)
        endPoint = self.getParameterValue(self.END_POINT)
        strategy = self.getParameterValue(self.STRATEGY)

        directionFieldName = self.getParameterValue(self.DIRECTION_FIELD)
        forwardValue = self.getParameterValue(self.VALUE_FORWARD)
        backwardValue = self.getParameterValue(self.VALUE_BACKWARD)
        bothValue = self.getParameterValue(self.VALUE_BOTH)
        defaultDirection = self.getParameterValue(self.DEFAULT_DIRECTION)
        bothValue = self.getParameterValue(self.VALUE_BOTH)
        defaultDirection = self.getParameterValue(self.DEFAULT_DIRECTION)
        speedFieldName = self.getParameterValue(self.SPEED_FIELD)
        defaultSpeed = self.getParameterValue(self.DEFAULT_SPEED)
        tolerance = self.getParameterValue(self.TOLERANCE)

        fields = QgsFields()
        fields.append(QgsField('start', QVariant.String, '', 254, 0))
        fields.append(QgsField('end', QVariant.String, '', 254, 0))
        fields.append(QgsField('cost', QVariant.Double, '', 20, 7))

        writer = self.getOutputFromName(
            self.OUTPUT_LAYER).getVectorWriter(fields, QgsWkbTypes.LineString, layer.crs(), context)

        tmp = startPoint.split(',')
        startPoint = QgsPointXY(float(tmp[0]), float(tmp[1]))
        tmp = endPoint.split(',')
        endPoint = QgsPointXY(float(tmp[0]), float(tmp[1]))

        directionField = -1
        if directionFieldName is not None:
            directionField = layer.fields().lookupField(directionFieldName)
        speedField = -1
        if speedFieldName is not None:
            speedField = layer.fields().lookupField(speedFieldName)

        director = QgsVectorLayerDirector(layer,
                                          directionField,
                                          forwardValue,
                                          backwardValue,
                                          bothValue,
                                          defaultDirection)

        distUnit = iface.mapCanvas().mapSettings().destinationCrs().mapUnits()
        multiplier = QgsUnitTypes.fromUnitToUnitFactor(distUnit, QgsUnitTypes.DistanceMeters)
        if strategy == 0:
            strategy = QgsNetworkDistanceStrategy()
        else:
            strategy = QgsNetworkSpeedStrategy(speedField,
                                               defaultSpeed,
                                               multiplier * 1000.0 / 3600.0)
            multiplier = 3600

        director.addStrategy(strategy)
        builder = QgsGraphBuilder(iface.mapCanvas().mapSettings().destinationCrs(),
                                  True,
                                  tolerance)
        feedback.pushInfo(self.tr('Building graph...'))
        snappedPoints = director.makeGraph(builder, [startPoint, endPoint])

        feedback.pushInfo(self.tr('Calculating shortest path...'))
        graph = builder.graph()
        idxStart = graph.findVertex(snappedPoints[0])
        idxEnd = graph.findVertex(snappedPoints[1])

        tree, cost = QgsGraphAnalyzer.dijkstra(graph, idxStart, 0)
        if tree[idxEnd] == -1:
            raise GeoAlgorithmExecutionException(
                self.tr('There is no route from start point to end point.'))

        route = []
        cost = 0.0
        current = idxEnd
        while current != idxStart:
            cost += graph.edge(tree[current]).cost(0)
            route.append(graph.vertex(graph.edge(tree[current]).inVertex()).point())
            current = graph.edge(tree[current]).outVertex()

        route.append(snappedPoints[0])
        route.reverse()

        self.setOutputValue(self.TRAVEL_COST, cost / multiplier)

        feedback.pushInfo(self.tr('Writing results...'))
        geom = QgsGeometry.fromPolyline(route)
        feat = QgsFeature()
        feat.setFields(fields)
        feat['start'] = startPoint.toString()
        feat['end'] = endPoint.toString()
        feat['cost'] = cost / multiplier
        feat.setGeometry(geom)
        writer.addFeature(feat)
        del writer
Ejemplo n.º 21
0
 def TestQgsPointXYRepr(self):
     p = QgsPointXY(123.456, 987.654)
     self.assertTrue(p.__repr__().startswith('<QgsPointXY: POINT(123.456'))
Ejemplo n.º 22
0
 def TestQgsGeometryRepr(self):
     p = QgsPointXY(123.456, 987.654)
     g = QgsGeometry.fromPointXY(p)
     self.assertTrue(
         g.__repr__().startswith('<QgsGeometry: Point (123.456)'))
 def moveCenterFromPointRotate(self, startPoint, rotation, xScale, yScale):
     cornerPoints = self.transformedCornerCoordinatesFromPoint(
         startPoint, rotation, xScale, yScale)
     self.center = QgsPointXY((cornerPoints[0].x(
     ) + cornerPoints[2].x()) / 2, (cornerPoints[0].y() +
                                    cornerPoints[2].y()) / 2)
Ejemplo n.º 24
0
    def processAlgorithm(self, parameters, context, feedback):
        source = self.parameterAsSource(parameters, self.INPUT, context)
        if source is None:
            raise QgsProcessingException(
                self.invalidSourceError(parameters, self.INPUT))

        pointCount = self.parameterAsDouble(parameters, self.POINTS_NUMBER,
                                            context)
        minDistance = self.parameterAsDouble(parameters, self.MIN_DISTANCE,
                                             context)

        bbox = source.sourceExtent()
        sourceIndex = QgsSpatialIndex(source, feedback)

        fields = QgsFields()
        fields.append(QgsField('id', QVariant.Int, '', 10, 0))

        (sink,
         dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context,
                                         fields, QgsWkbTypes.Point,
                                         source.sourceCrs(),
                                         QgsFeatureSink.RegeneratePrimaryKey)
        if sink is None:
            raise QgsProcessingException(
                self.invalidSinkError(parameters, self.OUTPUT))

        nPoints = 0
        nIterations = 0
        maxIterations = pointCount * 200
        total = 100.0 / pointCount if pointCount else 1

        index = QgsSpatialIndex()
        points = dict()

        random.seed()

        while nIterations < maxIterations and nPoints < pointCount:
            if feedback.isCanceled():
                break

            rx = bbox.xMinimum() + bbox.width() * random.random()
            ry = bbox.yMinimum() + bbox.height() * random.random()

            p = QgsPointXY(rx, ry)
            geom = QgsGeometry.fromPointXY(p)
            ids = sourceIndex.intersects(geom.buffer(5, 5).boundingBox())
            if len(ids) > 0 and \
                    vector.checkMinDistance(p, index, minDistance, points):
                request = QgsFeatureRequest().setFilterFids(
                    ids).setSubsetOfAttributes([])
                for f in source.getFeatures(request):
                    if feedback.isCanceled():
                        break

                    tmpGeom = f.geometry()
                    if geom.within(tmpGeom):
                        f = QgsFeature(nPoints)
                        f.initAttributes(1)
                        f.setFields(fields)
                        f.setAttribute('id', nPoints)
                        f.setGeometry(geom)
                        sink.addFeature(f, QgsFeatureSink.FastInsert)
                        index.addFeature(f)
                        points[nPoints] = p
                        nPoints += 1
                        feedback.setProgress(int(nPoints * total))
            nIterations += 1

        if nPoints < pointCount:
            feedback.pushInfo(
                self.tr(
                    'Could not generate requested number of random points. '
                    'Maximum number of attempts exceeded.'))

        return {self.OUTPUT: dest_id}
Ejemplo n.º 25
0
    def testDateTimeWriteShapefile(self):
        """Check writing date and time fields to an ESRI shapefile."""
        ml = QgsVectorLayer(
            ('Point?crs=epsg:4326&field=id:int&'
             'field=date_f:date&field=time_f:time&field=dt_f:datetime'),
            'test', 'memory')

        self.assertTrue(ml.isValid())
        provider = ml.dataProvider()
        self.assertIsNotNone(provider)

        ft = QgsFeature()
        ft.setGeometry(QgsGeometry.fromPointXY(QgsPointXY(10, 10)))
        ft.setAttributes([
            1,
            QDate(2014, 3, 5),
            QTime(13, 45, 22),
            QDateTime(QDate(2014, 3, 5), QTime(13, 45, 22))
        ])
        res, features = provider.addFeatures([ft])
        self.assertTrue(res)
        self.assertTrue(features)

        dest_file_name = os.path.join(str(QDir.tempPath()), 'datetime.shp')
        crs = QgsCoordinateReferenceSystem()
        crs.createFromId(4326, QgsCoordinateReferenceSystem.EpsgCrsId)
        write_result, error_message = QgsVectorFileWriter.writeAsVectorFormat(
            ml, dest_file_name, 'utf-8', crs, 'ESRI Shapefile')
        self.assertEqual(write_result, QgsVectorFileWriter.NoError,
                         error_message)

        # Open result and check
        created_layer = QgsVectorLayer('{}|layerid=0'.format(dest_file_name),
                                       'test', 'ogr')

        fields = created_layer.dataProvider().fields()
        self.assertEqual(
            fields.at(fields.indexFromName('date_f')).type(), QVariant.Date)
        # shapefiles do not support time types, result should be string
        self.assertEqual(
            fields.at(fields.indexFromName('time_f')).type(), QVariant.String)
        # shapefiles do not support datetime types, result should be string
        self.assertEqual(
            fields.at(fields.indexFromName('dt_f')).type(), QVariant.String)

        f = next(created_layer.getFeatures(QgsFeatureRequest()))

        date_idx = created_layer.fields().lookupField('date_f')
        self.assertIsInstance(f.attributes()[date_idx], QDate)
        self.assertEqual(f.attributes()[date_idx], QDate(2014, 3, 5))
        time_idx = created_layer.fields().lookupField('time_f')
        # shapefiles do not support time types
        self.assertIsInstance(f.attributes()[time_idx], str)
        self.assertEqual(f.attributes()[time_idx], '13:45:22')
        # shapefiles do not support datetime types
        datetime_idx = created_layer.fields().lookupField('dt_f')
        self.assertIsInstance(f.attributes()[datetime_idx], str)
        self.assertEqual(
            f.attributes()[datetime_idx],
            QDateTime(QDate(2014, 3, 5),
                      QTime(13, 45, 22)).toString("yyyy/MM/dd hh:mm:ss.zzz"))
Ejemplo n.º 26
0
    def legend_test(self):
        self.atlas_map.setAtlasDriven(True)
        self.atlas_map.setAtlasScalingMode(QgsLayoutItemMap.Auto)
        self.atlas_map.setAtlasMargin(0.10)

        # add a point layer
        ptLayer = QgsVectorLayer(
            "Point?crs=epsg:4326&field=attr:int(1)&field=label:string(20)",
            "points", "memory")

        pr = ptLayer.dataProvider()
        f1 = QgsFeature(1)
        f1.initAttributes(2)
        f1.setAttribute(0, 1)
        f1.setAttribute(1, "Test label 1")
        f1.setGeometry(QgsGeometry.fromPointXY(QgsPointXY(-0.638, 48.954)))
        f2 = QgsFeature(2)
        f2.initAttributes(2)
        f2.setAttribute(0, 2)
        f2.setAttribute(1, "Test label 2")
        f2.setGeometry(QgsGeometry.fromPointXY(QgsPointXY(-1.682, 48.550)))
        pr.addFeatures([f1, f2])

        # categorized symbology
        r = QgsCategorizedSymbolRenderer("attr", [
            QgsRendererCategory(
                1,
                QgsMarkerSymbol.createSimple({
                    "color": "255,0,0",
                    'outline_color': 'black'
                }), "red"),
            QgsRendererCategory(
                2,
                QgsMarkerSymbol.createSimple({
                    "color": "0,0,255",
                    'outline_color': 'black'
                }), "blue")
        ])
        ptLayer.setRenderer(r)

        QgsProject.instance().addMapLayer(ptLayer)

        # add the point layer to the map settings
        layers = self.layers
        layers = [ptLayer] + layers
        self.atlas_map.setLayers(layers)
        self.overview.setLayers(layers)

        # add a legend
        legend = QgsLayoutItemLegend(self.layout)
        legend.setTitle("Legend")
        legend.attemptMove(QgsLayoutPoint(200, 100))
        # sets the legend filter parameter
        legend.setLinkedMap(self.atlas_map)
        legend.setLegendFilterOutAtlas(True)
        self.layout.addLayoutItem(legend)

        self.atlas.beginRender()

        self.atlas.seekTo(0)
        self.mLabel1.adjustSizeToText()

        checker = QgsLayoutChecker('atlas_legend', self.layout)
        myTestResult, myMessage = checker.testLayout()
        self.report += checker.report()
        self.assertTrue(myTestResult, myMessage)

        self.atlas.endRender()

        # restore state
        self.atlas_map.setLayers([layers[1]])
        self.layout.removeLayoutItem(legend)
        QgsProject.instance().removeMapLayer(ptLayer.id())
Ejemplo n.º 27
0
    def _hexagonGrid(self, sink, width, height, originX, originY,
                     hSpacing, vSpacing, hOverlay, vOverlay, feedback):
        ft = QgsFeature()

        # To preserve symmetry, hspacing is fixed relative to vspacing
        xVertexLo = 0.288675134594813 * vSpacing
        xVertexHi = 0.577350269189626 * vSpacing
        hSpacing = xVertexLo + xVertexHi

        hOverlay = hSpacing - hOverlay
        if hOverlay < 0:
            raise QgsProcessingException(
                self.tr('To preserve symmetry, hspacing is fixed relative to vspacing\n \
                        hspacing is fixed at: {0} and hoverlay is fixed at: {1}\n \
                        hoverlay cannot be negative. Increase hoverlay.').format(hSpacing, hOverlay)
            )

        halfVSpacing = vSpacing / 2.0

        columns = int(math.ceil(float(width) / hOverlay))
        rows = int(math.ceil(float(height) / (vSpacing - vOverlay)))

        cells = rows * columns
        count_update = cells * 0.05

        id = 1
        count = 0

        for col in range(columns):
            if feedback.isCanceled():
                break

            # (column + 1) and (row + 1) calculation is used to maintain
            # topology between adjacent shapes and avoid overlaps/holes
            # due to rounding errors
            x1 = originX + (col * hOverlay)                # far left
            x2 = x1 + (xVertexHi - xVertexLo)              # left
            x3 = originX + (col * hOverlay) + hSpacing     # right
            x4 = x3 + (xVertexHi - xVertexLo)              # far right

            for row in range(rows):
                if (col % 2) == 0:
                    y1 = originY + (row * vOverlay) - (((row * 2) + 0) * halfVSpacing)  # hi
                    y2 = originY + (row * vOverlay) - (((row * 2) + 1) * halfVSpacing)  # mid
                    y3 = originY + (row * vOverlay) - (((row * 2) + 2) * halfVSpacing)  # lo
                else:
                    y1 = originY + (row * vOverlay) - (((row * 2) + 1) * halfVSpacing)  # hi
                    y2 = originY + (row * vOverlay) - (((row * 2) + 2) * halfVSpacing)  # mid
                    y3 = originY + (row * vOverlay) - (((row * 2) + 3) * halfVSpacing)  # lo

                polyline = []
                polyline.append(QgsPointXY(x1, y2))
                polyline.append(QgsPointXY(x2, y1))
                polyline.append(QgsPointXY(x3, y1))
                polyline.append(QgsPointXY(x4, y2))
                polyline.append(QgsPointXY(x3, y3))
                polyline.append(QgsPointXY(x2, y3))
                polyline.append(QgsPointXY(x1, y2))

                ft.setGeometry(QgsGeometry.fromPolygonXY([polyline]))
                ft.setAttributes([x1, y1, x4, y3, id])
                sink.addFeature(ft, QgsFeatureSink.FastInsert)
                id += 1
                count += 1
                if int(math.fmod(count, count_update)) == 0:
                    feedback.setProgress(int(count / cells * 100))
Ejemplo n.º 28
0
    def processAlgorithm(self, parameters, context, feedback):
        source = self.parameterAsSource(parameters, self.INPUT, context)

        weight_field = self.parameterAsString(parameters, self.WEIGHT, context)
        unique_field = self.parameterAsString(parameters, self.UID, context)

        attributes = []
        if not weight_field:
            weight_index = -1
        else:
            weight_index = source.fields().lookupField(weight_field)
        if weight_index >= 0:
            attributes.append(weight_index)

        if not unique_field:
            unique_index = -1
        else:
            unique_index = source.fields().lookupField(unique_field)
        if unique_index >= 0:
            attributes.append(unique_index)

        field_list = QgsFields()
        field_list.append(QgsField('MEAN_X', QVariant.Double, '', 24, 15))
        field_list.append(QgsField('MEAN_Y', QVariant.Double, '', 24, 15))
        if unique_index >= 0:
            field_list.append(QgsField('UID', QVariant.String, '', 255))

        (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT,
                                               context, field_list,
                                               QgsWkbTypes.Point,
                                               source.sourceCrs())

        features = source.getFeatures(
            QgsFeatureRequest().setSubsetOfAttributes(attributes))
        total = 100.0 / source.featureCount() if source.featureCount() else 0
        means = {}
        for current, feat in enumerate(features):
            if feedback.isCanceled():
                break

            feedback.setProgress(int(current * total))
            if unique_index == -1:
                clazz = "Single class"
            else:
                clazz = str(feat.attributes()[unique_index]).strip()
            if weight_index == -1:
                weight = 1.00
            else:
                try:
                    weight = float(feat.attributes()[weight_index])
                except:
                    weight = 1.00

            if weight < 0:
                raise QgsProcessingException(
                    self.
                    tr('Negative weight value found. Please fix your data and try again.'
                       ))

            if clazz not in means:
                means[clazz] = (0, 0, 0)

            (cx, cy, totalweight) = means[clazz]
            geom = QgsGeometry(feat.geometry())
            geom = vector.extractPoints(geom)
            for i in geom:
                cx += i.x() * weight
                cy += i.y() * weight
                totalweight += weight
            means[clazz] = (cx, cy, totalweight)

        current = 0
        total = 100.0 / len(means) if means else 1
        for (clazz, values) in list(means.items()):
            if feedback.isCanceled():
                break

            outFeat = QgsFeature()
            cx = values[0] / values[2]
            cy = values[1] / values[2]
            meanPoint = QgsPointXY(cx, cy)

            outFeat.setGeometry(QgsGeometry.fromPoint(meanPoint))
            attributes = [cx, cy]
            if unique_index >= 0:
                attributes.append(clazz)
            outFeat.setAttributes(attributes)
            sink.addFeature(outFeat, QgsFeatureSink.FastInsert)
            current += 1
            feedback.setProgress(int(current * total))

        return {self.OUTPUT: dest_id}
Ejemplo n.º 29
0
    def balanced(features, graph, feedback, balance=0, min_colors=4):
        feature_colors = {}
        # start with minimum number of colors in pool
        color_pool = set(range(1, min_colors + 1))

        # calculate count of neighbours
        neighbour_count = defaultdict(int)
        for feature_id, neighbours in graph.node_edge.items():
            neighbour_count[feature_id] += len(neighbours)

        # sort features by neighbour count - we want to handle those with more neighbours first
        sorted_by_count = [feature_id for feature_id in sorted(neighbour_count.items(),
                                                               key=operator.itemgetter(1),
                                                               reverse=True)]
        # counts for each color already assigned
        color_counts = defaultdict(int)
        color_areas = defaultdict(float)
        for c in color_pool:
            color_counts[c] = 0
            color_areas[c] = 0

        total = 10.0 / len(sorted_by_count)
        i = 0

        for (feature_id, n) in sorted_by_count:
            # first work out which already assigned colors are adjacent to this feature
            adjacent_colors = set()
            for neighbour in graph.node_edge[feature_id]:
                if neighbour in feature_colors:
                    adjacent_colors.add(feature_colors[neighbour])

            # from the existing colors, work out which are available (ie non-adjacent)
            available_colors = color_pool.difference(adjacent_colors)

            feature_color = -1
            if len(available_colors) == 0:
                # no existing colors available for this feature, so add new color to pool and repeat
                min_colors += 1
                return ColoringAlgorithm.balanced(features, graph, feedback, balance, min_colors)
            else:
                if balance == 0:
                    # choose least used available color
                    counts = [(c, v) for c, v in color_counts.items() if c in available_colors]
                    feature_color = sorted(counts, key=operator.itemgetter(1))[0][0]
                    color_counts[feature_color] += 1
                elif balance == 1:
                    areas = [(c, v) for c, v in color_areas.items() if c in available_colors]
                    feature_color = sorted(areas, key=operator.itemgetter(1))[0][0]
                    color_areas[feature_color] += features[feature_id].geometry().area()
                elif balance == 2:
                    min_distances = {c: sys.float_info.max for c in available_colors}
                    this_feature_centroid = QgsPointXY(features[feature_id].geometry().centroid().geometry())

                    # find features for all available colors
                    other_features = {f_id: c for (f_id, c) in feature_colors.items() if c in available_colors}

                    # loop through these, and calculate the minimum distance from this feature to the nearest
                    # feature with each assigned color
                    for other_feature_id, c in other_features.items():
                        other_geometry = features[other_feature_id].geometry()
                        other_centroid = QgsPointXY(other_geometry.centroid().geometry())

                        distance = this_feature_centroid.distanceSquared(other_centroid)
                        if distance < min_distances[c]:
                            min_distances[c] = distance

                    # choose color such that minimum distance is maximised! ie we want MAXIMAL separation between
                    # features with the same color
                    feature_color = sorted(min_distances, key=min_distances.__getitem__, reverse=True)[0]

            feature_colors[feature_id] = feature_color

            i += 1
            feedback.setProgress(70 + int(i * total))

        return feature_colors
Ejemplo n.º 30
0
    def processAlgorithm(self, parameters, context, feedback):
        network = self.parameterAsSource(parameters, self.INPUT, context)
        startPoints = self.parameterAsSource(parameters, self.START_POINTS,
                                             context)
        endPoint = self.parameterAsPoint(parameters, self.END_POINT, context,
                                         network.sourceCrs())
        strategy = self.parameterAsEnum(parameters, self.STRATEGY, context)

        directionFieldName = self.parameterAsString(parameters,
                                                    self.DIRECTION_FIELD,
                                                    context)
        forwardValue = self.parameterAsString(parameters, self.VALUE_FORWARD,
                                              context)
        backwardValue = self.parameterAsString(parameters, self.VALUE_BACKWARD,
                                               context)
        bothValue = self.parameterAsString(parameters, self.VALUE_BOTH,
                                           context)
        defaultDirection = self.parameterAsEnum(parameters,
                                                self.DEFAULT_DIRECTION,
                                                context)
        speedFieldName = self.parameterAsString(parameters, self.SPEED_FIELD,
                                                context)
        defaultSpeed = self.parameterAsDouble(parameters, self.DEFAULT_SPEED,
                                              context)
        tolerance = self.parameterAsDouble(parameters, self.TOLERANCE, context)

        fields = startPoints.fields()
        fields.append(QgsField('start', QVariant.String, '', 254, 0))
        fields.append(QgsField('end', QVariant.String, '', 254, 0))
        fields.append(QgsField('cost', QVariant.Double, '', 20, 7))

        feat = QgsFeature()
        feat.setFields(fields)

        (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT,
                                               context, fields,
                                               QgsWkbTypes.LineString,
                                               network.sourceCrs())

        directionField = -1
        if directionFieldName:
            directionField = network.fields().lookupField(directionFieldName)
        speedField = -1
        if speedFieldName:
            speedField = network.fields().lookupField(speedFieldName)

        director = QgsVectorLayerDirector(network, directionField,
                                          forwardValue, backwardValue,
                                          bothValue, defaultDirection)

        distUnit = context.project().crs().mapUnits()
        multiplier = QgsUnitTypes.fromUnitToUnitFactor(
            distUnit, QgsUnitTypes.DistanceMeters)
        if strategy == 0:
            strategy = QgsNetworkDistanceStrategy()
        else:
            strategy = QgsNetworkSpeedStrategy(speedField, defaultSpeed,
                                               multiplier * 1000.0 / 3600.0)
            multiplier = 3600

        director.addStrategy(strategy)
        builder = QgsGraphBuilder(network.sourceCrs(), True, tolerance)

        feedback.pushInfo(
            QCoreApplication.translate('ShortestPathLayerToPoint',
                                       'Loading start points…'))
        request = QgsFeatureRequest()
        request.setDestinationCrs(network.sourceCrs(),
                                  context.transformContext())
        features = startPoints.getFeatures(request)
        total = 100.0 / startPoints.featureCount() if startPoints.featureCount(
        ) else 0

        points = [endPoint]
        source_attributes = {}
        i = 1
        for current, f in enumerate(features):
            if feedback.isCanceled():
                break

            if not f.hasGeometry():
                continue

            for p in f.geometry().vertices():
                points.append(QgsPointXY(p))
                source_attributes[i] = f.attributes()
                i += 1

            feedback.setProgress(int(current * total))

        feedback.pushInfo(
            QCoreApplication.translate('ShortestPathLayerToPoint',
                                       'Building graph…'))
        snappedPoints = director.makeGraph(builder, points, feedback)

        feedback.pushInfo(
            QCoreApplication.translate('ShortestPathLayerToPoint',
                                       'Calculating shortest paths…'))
        graph = builder.graph()

        idxEnd = graph.findVertex(snappedPoints[0])

        nPoints = len(snappedPoints)
        total = 100.0 / nPoints if nPoints else 1
        for i in range(1, nPoints):
            if feedback.isCanceled():
                break

            idxStart = graph.findVertex(snappedPoints[i])

            tree, costs = QgsGraphAnalyzer.dijkstra(graph, idxStart, 0)

            if tree[idxEnd] == -1:
                msg = self.tr(
                    'There is no route from start point ({}) to end point ({}).'
                    .format(points[i].toString(), endPoint.toString()))
                feedback.reportError(msg)
                # add feature with no geometry
                feat.clearGeometry()
                attrs = source_attributes[i]
                attrs.append(points[i].toString())
                feat.setAttributes(attrs)
                sink.addFeature(feat, QgsFeatureSink.FastInsert)
                continue

            route = [graph.vertex(idxEnd).point()]
            cost = costs[idxEnd]
            current = idxEnd
            while current != idxStart:
                current = graph.edge(tree[current]).fromVertex()
                route.append(graph.vertex(current).point())

            route.reverse()

            geom = QgsGeometry.fromPolylineXY(route)
            feat.setGeometry(geom)
            attrs = source_attributes[i]
            attrs.extend(
                [points[i].toString(),
                 endPoint.toString(), cost / multiplier])
            feat.setAttributes(attrs)
            sink.addFeature(feat, QgsFeatureSink.FastInsert)

            feedback.setProgress(int(i * total))

        return {self.OUTPUT: dest_id}
Ejemplo n.º 31
0
    def processAlgorithm(self, parameters, context, feedback):
        self.parameters = parameters
        self.context = context
        self.feedback = feedback
        load_geotiffs = self.parameterAsInt(parameters, self.PrmLoadGeoTiffs,
                                            context)
        out_folder = self.parameterAsFile(parameters,
                                          self.PrmGroundOverlayFolder, context)
        input_file = self.parameterAsFile(parameters, self.PrmInput, context)
        f, extension = os.path.splitext(input_file)
        dirname = os.path.dirname(input_file)
        extension = extension.lower()
        try:
            if extension == '.kmz':
                kmz = ZipFile(input_file, 'r')
                kml = kmz.open('doc.kml', 'r')
            elif extension == '.kml':
                kml = open(input_file,
                           encoding="utf-8",
                           errors="backslashreplace")
            else:
                msg = "Invalid extension: Should be kml or kmz"
                raise QgsProcessingException(msg)
        except Exception:
            msg = "Failed to open file"
            raise QgsProcessingException(msg)

        parser = xml.sax.make_parser()

        self.overlays = []
        # Set up the handler for doing the main processing
        handler = GroundOverlayHandler(feedback)
        handler.groundoverlay.connect(self.groundoverlay)
        parser.setContentHandler(handler)
        try:
            input_source = xml.sax.xmlreader.InputSource()
            input_source.setByteStream(kml)
            input_source.setEncoding('utf-8')
            parser.parse(input_source)
        except Exception:
            '''s = traceback.format_exc()
            feedback.pushInfo(s)'''
            feedback.reportError(
                tr('Failure in kml extraction - May return partial results.'))
            handler.endDocument()

        # Iterate through each found overlay images
        for overlay in self.overlays:
            north = overlay[0]
            south = overlay[1]
            east = overlay[2]
            west = overlay[3]
            rotation = overlay[4]
            href = overlay[5]
            if href.startswith('http:') or href.startswith('https:'):
                feedback.reportError(
                    'Cannot process network images: {}'.format(href))
                continue
            if extension == '.kmz':
                try:
                    image = kmz.read(href)
                    output_file = os.path.basename(href)
                    file_name, ext = os.path.splitext(output_file)
                    # Write out a temporary image
                    temp_file_name = os.path.join(
                        out_folder, '{}_temp{}'.format(file_name, ext))
                    fp = open(temp_file_name, "wb")
                    fp.write(image)
                    fp.close()
                    raster = QgsRasterLayer(temp_file_name, "temp")
                except Exception:
                    feedback.reportError(
                        'Image does not exist: {}'.format(href))
                    continue
            else:
                # Check to see if it is a valid file name
                in_path = os.path.join(dirname, href)
                if not os.path.isfile(in_path):
                    # The path was not valid
                    feedback.reportError(
                        'Image file does not exist: {}'.format(in_path))
                    continue
                raster = QgsRasterLayer(in_path, "temp")
                output_file = os.path.basename(in_path)
                file_name, ext = os.path.splitext(output_file)
            if not raster.isValid():
                feedback.reportError('Invalid raster image: {}'.format(href))
                continue
            out_path = os.path.join(out_folder, file_name + ".tif")
            if rotation == 0:
                status = processing.run(
                    "gdal:translate", {
                        'INPUT':
                        raster,
                        'EXTRA':
                        '-a_srs EPSG:4326 -a_ullr {} {} {} {}'.format(
                            west, north, east, south),
                        'DATA_TYPE':
                        0,
                        'OUTPUT':
                        out_path
                    })
            else:
                rwidth = raster.width()
                rheight = raster.height()
                center_x = (east + west) / 2.0
                center_y = (north + south) / 2.0
                center_pt = QgsPointXY(center_x, center_y)
                ul_pt = QgsPointXY(west, north)
                ur_pt = QgsPointXY(east, north)
                lr_pt = QgsPointXY(east, south)
                ll_pt = QgsPointXY(west, south)
                distance = center_pt.distance(ul_pt)
                az = center_pt.azimuth(ul_pt) - rotation
                pt1 = center_pt.project(distance, az)
                az = center_pt.azimuth(ur_pt) - rotation
                pt2 = center_pt.project(distance, az)
                az = center_pt.azimuth(lr_pt) - rotation
                pt3 = center_pt.project(distance, az)
                az = center_pt.azimuth(ll_pt) - rotation
                pt4 = center_pt.project(distance, az)
                gcp1 = '-gcp {} {} {} {}'.format(0, 0, pt1.x(), pt1.y())
                gcp2 = '-gcp {} {} {} {}'.format(rwidth, 0, pt2.x(), pt2.y())
                gcp3 = '-gcp {} {} {} {}'.format(rwidth, rheight, pt3.x(),
                                                 pt3.y())
                gcp4 = '-gcp {} {} {} {}'.format(0, rheight, pt4.x(), pt4.y())

                status = processing.run(
                    "gdal:translate", {
                        'INPUT':
                        raster,
                        'EXTRA':
                        '-a_srs EPSG:4326 -a_nodata 0,0,0 {} {} {} {}'.format(
                            gcp1, gcp2, gcp3, gcp4),
                        'DATA_TYPE':
                        0,
                        'OUTPUT':
                        out_path
                    })
            if load_geotiffs:
                context.addLayerToLoadOnCompletion(
                    out_path,
                    context.LayerDetails(file_name, project=context.project()))

            del raster
            if extension == '.kmz':
                try:
                    os.remove(temp_file_name)
                    os.remove(temp_file_name + '.aux.xml')
                except Exception:
                    pass

        if extension == '.kmz':
            kmz.close()
        else:
            kml.close()

        # self.feedback.pushInfo('Number of overlays: {}'.format(len(self.overlays)))

        return ({})
Ejemplo n.º 32
0
 def setUp(self):
     self.mPoint = QgsPointXY(10.0, 10.0)
Ejemplo n.º 33
0
    def testCreateFeature(self):
        """ test creating a feature respecting defaults and constraints """
        layer = QgsVectorLayer(
            "Point?field=fldtxt:string&field=fldint:integer&field=flddbl:double",
            "addfeat", "memory")
        # add a bunch of features
        f = QgsFeature()
        f.setAttributes(["test", 123, 1.0])
        f1 = QgsFeature(2)
        f1.setAttributes(["test_1", 124, 1.1])
        f2 = QgsFeature(3)
        f2.setAttributes(["test_2", 125, 2.4])
        f3 = QgsFeature(4)
        f3.setAttributes(["test_3", 126, 1.7])
        f4 = QgsFeature(5)
        f4.setAttributes(["superpig", 127, 0.8])
        self.assertTrue(layer.dataProvider().addFeatures([f, f1, f2, f3, f4]))

        # no layer
        self.assertFalse(QgsVectorLayerUtils.createFeature(None).isValid())

        # basic tests
        f = QgsVectorLayerUtils.createFeature(layer)
        self.assertTrue(f.isValid())
        self.assertEqual(f.fields(), layer.fields())
        self.assertFalse(f.hasGeometry())
        self.assertEqual(f.attributes(), [NULL, NULL, NULL])

        # set geometry
        g = QgsGeometry.fromPointXY(QgsPointXY(100, 200))
        f = QgsVectorLayerUtils.createFeature(layer, g)
        self.assertTrue(f.hasGeometry())
        self.assertEqual(f.geometry().asWkt(), g.asWkt())

        # using attribute map
        f = QgsVectorLayerUtils.createFeature(layer,
                                              attributes={
                                                  0: 'a',
                                                  2: 6.0
                                              })
        self.assertEqual(f.attributes(), ['a', NULL, 6.0])

        # layer with default value expression
        layer.setDefaultValueDefinition(2, QgsDefaultValue('3*4'))
        f = QgsVectorLayerUtils.createFeature(layer)
        self.assertEqual(f.attributes(), [NULL, NULL, 12])
        # we do not expect the default value expression to take precedence over the attribute map
        f = QgsVectorLayerUtils.createFeature(layer,
                                              attributes={
                                                  0: 'a',
                                                  2: 6.0
                                              })
        self.assertEqual(f.attributes(), ['a', NULL, 6.0])
        # layer with default value expression based on geometry
        layer.setDefaultValueDefinition(2, QgsDefaultValue('3*$x'))
        f = QgsVectorLayerUtils.createFeature(layer, g)
        #adjusted so that input value and output feature are the same
        self.assertEqual(f.attributes(), [NULL, NULL, 300.0])
        layer.setDefaultValueDefinition(2, QgsDefaultValue(None))

        # test with violated unique constraints
        layer.setFieldConstraint(1, QgsFieldConstraints.ConstraintUnique)
        f = QgsVectorLayerUtils.createFeature(layer,
                                              attributes={
                                                  0: 'test_1',
                                                  1: 123
                                              })
        # since field 1 has Unique Constraint, it ignores value 123 that already has been set and sets to 128
        self.assertEqual(f.attributes(), ['test_1', 128, NULL])
        layer.setFieldConstraint(0, QgsFieldConstraints.ConstraintUnique)
        # since field 0 and 1 already have values test_1 and 123, the output must be a new unique value
        f = QgsVectorLayerUtils.createFeature(layer,
                                              attributes={
                                                  0: 'test_1',
                                                  1: 123
                                              })
        self.assertEqual(f.attributes(), ['test_4', 128, NULL])

        # test with violated unique constraints and default value expression providing unique value
        layer.setDefaultValueDefinition(1, QgsDefaultValue('130'))
        f = QgsVectorLayerUtils.createFeature(layer,
                                              attributes={
                                                  0: 'test_1',
                                                  1: 123
                                              })
        # since field 1 has Unique Constraint, it ignores value 123 that already has been set and adds the default value
        self.assertEqual(f.attributes(), ['test_4', 130, NULL])
        # fallback: test with violated unique constraints and default value expression providing already existing value
        # add the feature with the default value:
        self.assertTrue(layer.dataProvider().addFeatures([f]))
        f = QgsVectorLayerUtils.createFeature(layer,
                                              attributes={
                                                  0: 'test_1',
                                                  1: 123
                                              })
        # since field 1 has Unique Constraint, it ignores value 123 that already has been set and adds the default value
        # and since the default value providing an already existing value (130) it generates a unique value (next int: 131)
        self.assertEqual(f.attributes(), ['test_5', 131, NULL])
        layer.setDefaultValueDefinition(1, QgsDefaultValue(None))

        # test with manually correct unique constraint
        f = QgsVectorLayerUtils.createFeature(layer,
                                              attributes={
                                                  0: 'test_1',
                                                  1: 132
                                              })
        self.assertEqual(f.attributes(), ['test_5', 132, NULL])
        """ test creating a feature respecting unique values of postgres provider """
        layer = QgsVectorLayer(
            "Point?field=fldtxt:string&field=fldint:integer&field=flddbl:double",
            "addfeat", "memory")

        # init connection string
        dbconn = 'dbname=\'qgis_test\''
        if 'QGIS_PGTEST_DB' in os.environ:
            dbconn = os.environ['QGIS_PGTEST_DB']

        # create a vector layer
        pg_layer = QgsVectorLayer(
            '{} table="qgis_test"."authors" sql='.format(dbconn), "authors",
            "postgres")
        self.assertTrue(pg_layer.isValid())
        # check the default clause
        default_clause = 'nextval(\'qgis_test.authors_pk_seq\'::regclass)'
        self.assertEqual(pg_layer.dataProvider().defaultValueClause(0),
                         default_clause)

        # though default_clause is after the first create not unique (until save), it should fill up all the features with it
        pg_layer.startEditing()
        f = QgsVectorLayerUtils.createFeature(pg_layer)
        self.assertEqual(f.attributes(), [default_clause, NULL])
        self.assertTrue(pg_layer.addFeatures([f]))
        self.assertTrue(
            QgsVectorLayerUtils.valueExists(pg_layer, 0, default_clause))
        f = QgsVectorLayerUtils.createFeature(pg_layer)
        self.assertEqual(f.attributes(), [default_clause, NULL])
        self.assertTrue(pg_layer.addFeatures([f]))
        f = QgsVectorLayerUtils.createFeature(pg_layer)
        self.assertEqual(f.attributes(), [default_clause, NULL])
        self.assertTrue(pg_layer.addFeatures([f]))
        # if a unique value is passed, use it
        f = QgsVectorLayerUtils.createFeature(pg_layer,
                                              attributes={
                                                  0: 40,
                                                  1: NULL
                                              })
        self.assertEqual(f.attributes(), [40, NULL])
        # and if a default value is configured use it as well
        pg_layer.setDefaultValueDefinition(0, QgsDefaultValue('11*4'))
        f = QgsVectorLayerUtils.createFeature(pg_layer)
        self.assertEqual(f.attributes(), [44, NULL])
        pg_layer.rollBack()
Ejemplo n.º 34
0
    def testMeasureLineProjectedWorldPoints(self):
        #   +-+
        #   | |
        # +-+ +
        # checking returned length_mapunits/projected_points of diffferent world points with results from SpatiaLite ST_Project
        da_3068 = QgsDistanceArea()
        da_3068.setSourceCrs(QgsCoordinateReferenceSystem.fromOgcWmsCrs('EPSG:3068'), QgsProject.instance().transformContext())
        if (da_3068.sourceCrs().isGeographic()):
            da_3068.setEllipsoid(da_3068.sourceCrs().ellipsoidAcronym())
        self.assertEqual(da_3068.sourceCrs().authid(), 'EPSG:3068')
        print(("setting [{}] srid [{}] description [{}] isGeographic[{}] lengthUnits[{}] projectionAcronym[{}] ellipsoidAcronym[{}]".format(u'EPSG:3068', da_3068.sourceCrs().authid(), da_3068.sourceCrs().description(), da_3068.sourceCrs().isGeographic(), QgsUnitTypes.toString(da_3068.lengthUnits()), da_3068.sourceCrs().projectionAcronym(), da_3068.sourceCrs().ellipsoidAcronym())))
        da_wsg84 = QgsDistanceArea()
        da_wsg84.setSourceCrs(QgsCoordinateReferenceSystem.fromOgcWmsCrs('EPSG:4326'), QgsProject.instance().transformContext())
        if (da_wsg84.sourceCrs().isGeographic()):
            da_wsg84.setEllipsoid(da_wsg84.sourceCrs().ellipsoidAcronym())
        self.assertEqual(da_wsg84.sourceCrs().authid(), 'EPSG:4326')
        print(("setting [{}] srid [{}] description [{}] isGeographic[{}] lengthUnits[{}] projectionAcronym[{}] ellipsoidAcronym[{}] ellipsoid[{}]".format(u'EPSG:4326', da_wsg84.sourceCrs().authid(), da_wsg84.sourceCrs().description(), da_wsg84.sourceCrs().isGeographic(), QgsUnitTypes.toString(da_wsg84.lengthUnits()), da_wsg84.sourceCrs().projectionAcronym(), da_wsg84.sourceCrs().ellipsoidAcronym(), da_wsg84.ellipsoid())))
        da_4314 = QgsDistanceArea()
        da_4314.setSourceCrs(QgsCoordinateReferenceSystem.fromOgcWmsCrs('EPSG:4314'), QgsProject.instance().transformContext())
        if (da_4314.sourceCrs().isGeographic()):
            da_4314.setEllipsoid(da_4314.sourceCrs().ellipsoidAcronym())
        self.assertEqual(da_4314.sourceCrs().authid(), 'EPSG:4314')
        print(("setting [{}] srid [{}] description [{}] isGeographic[{}] lengthUnits[{}] projectionAcronym[{}] ellipsoidAcronym[{}]".format(u'EPSG:4314', da_4314.sourceCrs().authid(), da_4314.sourceCrs().description(), da_4314.sourceCrs().isGeographic(), QgsUnitTypes.toString(da_4314.lengthUnits()), da_4314.sourceCrs().projectionAcronym(), da_4314.sourceCrs().ellipsoidAcronym())))
        da_4805 = QgsDistanceArea()
        da_4805.setSourceCrs(QgsCoordinateReferenceSystem.fromOgcWmsCrs('EPSG:4805'), QgsProject.instance().transformContext())
        if (da_4805.sourceCrs().isGeographic()):
            da_4805.setEllipsoid(da_4805.sourceCrs().ellipsoidAcronym())
        self.assertEqual(da_4805.sourceCrs().authid(), 'EPSG:4805')
        print(("setting [{}] srid [{}] description [{}] isGeographic[{}] lengthUnits[{}] projectionAcronym[{}] ellipsoidAcronym[{}]".format(u'EPSG:4805', da_4805.sourceCrs().authid(), da_4805.sourceCrs().description(), da_4805.sourceCrs().isGeographic(), QgsUnitTypes.toString(da_4805.lengthUnits()), da_4805.sourceCrs().projectionAcronym(), da_4805.sourceCrs().ellipsoidAcronym())))
        # EPSG:5665 unknown, why?
        da_5665 = QgsDistanceArea()
        da_5665.setSourceCrs(QgsCoordinateReferenceSystem.fromOgcWmsCrs('EPSG:5665'), QgsProject.instance().transformContext())
        if (da_5665.sourceCrs().isGeographic()):
            da_5665.setEllipsoid(da_5665.sourceCrs().ellipsoidAcronym())
        print(("setting [{}] srid [{}] description [{}] isGeographic[{}] lengthUnits[{}] projectionAcronym[{}] ellipsoidAcronym[{}]".format(u'EPSG:5665', da_5665.sourceCrs().authid(), da_5665.sourceCrs().description(), da_5665.sourceCrs().isGeographic(), QgsUnitTypes.toString(da_5665.lengthUnits()), da_5665.sourceCrs().projectionAcronym(), da_5665.sourceCrs().ellipsoidAcronym())))
        #self.assertEqual(da_5665.sourceCrs().authid(), 'EPSG:5665')
        da_25833 = QgsDistanceArea()
        da_25833.setSourceCrs(QgsCoordinateReferenceSystem.fromOgcWmsCrs('EPSG:25833'), QgsProject.instance().transformContext())
        if (da_25833.sourceCrs().isGeographic()):
            da_25833.setEllipsoid(da_25833.sourceCrs().ellipsoidAcronym())
        print(("setting [{}] srid [{}] description [{}] isGeographic[{}] lengthUnits[{}] projectionAcronym[{}] ellipsoidAcronym[{}]".format(u'EPSG:25833', da_25833.sourceCrs().authid(), da_25833.sourceCrs().description(), da_25833.sourceCrs().isGeographic(), QgsUnitTypes.toString(da_25833.lengthUnits()), da_25833.sourceCrs().projectionAcronym(), da_25833.sourceCrs().ellipsoidAcronym())))
        self.assertEqual(da_25833.sourceCrs().authid(), 'EPSG:25833')

        # Berlin - Brandenburg Gate - Quadriga
        point_berlin_3068 = QgsPointXY(23183.38449999984, 21047.3225000017)
        point_berlin_3068_project = point_berlin_3068.project(1, (math.pi / 2))
        point_meter_result = QgsPointXY(0, 0)
        length_meter_mapunits, point_meter_result = da_3068.measureLineProjected(point_berlin_3068, 1.0, (math.pi / 2))
        pprint(point_meter_result)
        print('-I-> Berlin 3068 length_meter_mapunits[{}] point_meter_result[{}]'.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_3068.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 1, da_3068.lengthUnits(), True), '1.0 m')
        self.assertEqual(point_meter_result.toString(7), point_berlin_3068_project.toString(7))
        point_berlin_wsg84 = QgsPointXY(13.37770458660236, 52.51627178856762)
        point_berlin_wsg84_project = QgsPointXY(13.37771931736259, 52.51627178856669)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_berlin_wsg84, 1.0, (math.pi / 2))
        print('-I-> Berlin Wsg84 length_meter_mapunits[{}] point_meter_result[{}] ellipsoid[{}]'.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 20, da_wsg84.lengthUnits(), True), point_meter_result.asWkt(), da_wsg84.ellipsoid()))
        # for unknown reasons, this is returning '0.00001473026 m' instead of '0.00001473026 deg' when using da_wsg84.lengthUnits()
        # self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits,11,da_wsg84.lengthUnits(),True), '0.00001473026 deg')
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 11, QgsUnitTypes.DistanceDegrees, True), '0.00001473026 deg')
        self.assertEqual(point_meter_result.toString(7), point_berlin_wsg84_project.toString(7))
        point_berlin_4314 = QgsPointXY(13.37944343021465, 52.51767872437083)
        point_berlin_4314_project = QgsPointXY(13.37945816324759, 52.5176787243699)
        length_meter_mapunits, point_meter_result = da_4314.measureLineProjected(point_berlin_4314, 1.0, (math.pi / 2))
        print('-I-> Berlin 4314 length_meter_mapunits[{}] point_meter_result[{}]'.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_4314.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 9, QgsUnitTypes.DistanceDegrees, True), '0.000014733 deg')
        self.assertEqual(point_meter_result.toString(7), point_berlin_4314_project.toString(7))
        point_berlin_4805 = QgsPointXY(31.04960570069176, 52.5174657497405)
        point_berlin_4805_project = QgsPointXY(31.04962043365347, 52.51746574973957)
        length_meter_mapunits, point_meter_result = da_4805.measureLineProjected(point_berlin_4805, 1.0, (math.pi / 2))
        print('-I-> Berlin 4805 length_meter_mapunits[{}] point_meter_result[{}]'.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_4805.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 9, QgsUnitTypes.DistanceDegrees, True), '0.000014733 deg')
        self.assertEqual(point_meter_result.toString(7), point_berlin_4805_project.toString(7))
        point_berlin_25833 = QgsPointXY(389918.0748318382, 5819698.772194743)
        point_berlin_25833_project = point_berlin_25833.project(1, (math.pi / 2))
        length_meter_mapunits, point_meter_result = da_25833.measureLineProjected(point_berlin_25833, 1.0, (math.pi / 2))
        print('-I-> Berlin 25833 length_meter_mapunits[{}] point_meter_result[{}]'.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_25833.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_25833.lengthUnits(), True), '1.0000000 m')
        self.assertEqual(point_meter_result.toString(7), point_berlin_25833_project.toString(7))
        if da_5665.sourceCrs().authid() != "":
            point_berlin_5665 = QgsPointXY(3389996.871728864, 5822169.719727578)
            point_berlin_5665_project = point_berlin_5665.project(1, (math.pi / 2))
            length_meter_mapunits, point_meter_result = da_5665.measureLineProjected(point_berlin_5665, 1.0, (math.pi / 2))
            print('-I-> Berlin 5665 length_meter_mapunits[{}] point_meter_result[{}]'.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_5665.lengthUnits(), True), point_meter_result.asWkt()))
            self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 1.0, da_5665.lengthUnits(), True), '1.0 m')
            self.assertEqual(point_meter_result.toString(7), point_berlin_5665_project.toString(7))
        print('\n12 points ''above over'' and on the Equator')
        point_wsg84 = QgsPointXY(25.7844, 71.1725)
        point_wsg84_project = QgsPointXY(25.78442775215388, 71.17249999999795)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Nordkap, Norway - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, QgsUnitTypes.DistanceDegrees, True), '0.0000278 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(24.95995, 60.16841)
        point_wsg84_project = QgsPointXY(24.95996801277454, 60.16840999999877)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Helsinki, Finnland - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00001801 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(12.599278, 55.692861)
        point_wsg84_project = QgsPointXY(12.59929390161872, 55.69286099999897)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Copenhagen, Denmark - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00001590 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))

        point_wsg84 = QgsPointXY(-0.001389, 51.477778)
        point_wsg84_project = QgsPointXY(-0.001374606184398, 51.4777779999991)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Royal Greenwich Observatory, United Kingdom - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00001439 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(7.58769, 47.55814)
        point_wsg84_project = QgsPointXY(7.587703287209086, 47.55813999999922)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Basel, Switzerland - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00001329 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(11.255278, 43.775278)
        point_wsg84_project = QgsPointXY(11.25529042107924, 43.77527799999933)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Florenz, Italy - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00001242 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(14.514722, 35.899722)
        point_wsg84_project = QgsPointXY(14.51473307693308, 35.89972199999949)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Valletta, Malta - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00001108 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(-79.933333, 32.783333)
        point_wsg84_project = QgsPointXY(-79.93332232547254, 32.78333299999955)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Charlston, South Carolina - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00001067 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(-17.6666666, 27.733333)
        point_wsg84_project = QgsPointXY(-17.66665645831515, 27.73333299999962)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Ferro, Spain - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00001014 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(-99.133333, 19.433333)
        point_wsg84_project = QgsPointXY(-99.1333234776827, 19.43333299999975)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Mexico City, Mexico - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00000952 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(-79.894444, 9.341667)
        point_wsg84_project = QgsPointXY(-79.89443489691369, 9.341666999999882)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Colón, Panama - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00000910 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(-74.075833, 4.598056)
        point_wsg84_project = QgsPointXY(-74.07582398803629, 4.598055999999943)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Bogotá, Colombia - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00000901 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(0, 0)
        point_wsg84_project = QgsPointXY(0.000008983152841, 0)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Equator, Atlantic Ocean - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00000898 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        print('\n12 points ''down under'' and 1 point that should be considered invalid')
        point_wsg84 = QgsPointXY(-78.509722, -0.218611)
        point_wsg84_project = QgsPointXY(-78.50971301678221, -0.218610999999997)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Quito, Ecuador - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00000898 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(106.816667, -6.2)
        point_wsg84_project = QgsPointXY(106.8166760356519, -6.199999999999922)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Jakarta, Indonesia - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00000904 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(-77.018611, -12.035)
        point_wsg84_project = QgsPointXY(-77.01860181630058, -12.03499999999985)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Lima, Peru - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00000918 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(25.466667, -10.716667)
        point_wsg84_project = QgsPointXY(25.46667614155322, -10.71666699999986)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Kolwezi, Congo - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00000914 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(-70.333333, -18.483333)
        point_wsg84_project = QgsPointXY(-70.3333235314429, -18.48333299999976)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Arica, Chile - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00000947 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(-70.666667, -33.45)
        point_wsg84_project = QgsPointXY(-70.66665624452817, -33.44999999999953)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Santiago, Chile - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00001076 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(144.9604, -37.8191)
        point_wsg84_project = QgsPointXY(144.96041135746983741, -37.81909999999945171)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Melbourne, Australia - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00001136 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(147.29, -42.88)
        point_wsg84_project = QgsPointXY(147.2900122399815, -42.87999999999934)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Hobart City,Tasmania, Australia - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00001224 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(168.101667, -46.899722)
        point_wsg84_project = QgsPointXY(168.101680123673, -46.89972199999923)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Ryan''s Creek Aerodrome, New Zealand - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00001312 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(-69.216667, -51.633333)
        point_wsg84_project = QgsPointXY(-69.21665255700216, -51.6333329999991)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Río Gallegos, Argentina - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00001444 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(-68.3, -54.8)
        point_wsg84_project = QgsPointXY(-68.29998445081456, -54.79999999999899)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Ushuaia, Tierra del Fuego, Argentina - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00001555 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(-63.494444, -64.825278)
        point_wsg84_project = QgsPointXY(-63.49442294002932, -64.82527799999851)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Port Lockroy, Antarctica - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00002106 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(-180, -84.863272250)
        point_wsg84_project = QgsPointXY(-179.9999000000025, -84.8632722499922)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-I-> Someware, Antarctica - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00010000 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
        point_wsg84 = QgsPointXY(-180, -85.0511300)
        point_wsg84_project = QgsPointXY(-179.9998962142197, -85.05112999999191)
        length_meter_mapunits, point_meter_result = da_wsg84.measureLineProjected(point_wsg84, 1.0, (math.pi / 2))
        print('-W-> Mercator''s Last Stop, Antarctica - Wsg84 - length_meter_mapunits[{}] point_meter_result[{}] '.format(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, da_wsg84.lengthUnits(), True), point_meter_result.asWkt()))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 8, QgsUnitTypes.DistanceDegrees, True), '0.00010379 deg')
        self.assertEqual(point_meter_result.toString(7), point_wsg84_project.toString(7))
Ejemplo n.º 35
0
    def processAlgorithm(self, parameters, context, feedback):
        layer = QgsProcessingUtils.mapLayerFromString(self.getParameterValue(self.INPUT_VECTOR), context)

        rasterPath = str(self.getParameterValue(self.INPUT_RASTER))

        rasterDS = gdal.Open(rasterPath, gdal.GA_ReadOnly)
        geoTransform = rasterDS.GetGeoTransform()
        rasterDS = None

        fields = QgsFields()
        fields.append(QgsField('id', QVariant.Int, '', 10, 0))
        fields.append(QgsField('poly_id', QVariant.Int, '', 10, 0))
        fields.append(QgsField('point_id', QVariant.Int, '', 10, 0))

        writer = self.getOutputFromName(self.OUTPUT_LAYER).getVectorWriter(fields, QgsWkbTypes.Point,
                                                                           layer.crs(), context)

        outFeature = QgsFeature()
        outFeature.setFields(fields)

        fid = 0
        polyId = 0
        pointId = 0

        features = QgsProcessingUtils.getFeatures(layer, context)
        total = 100.0 / layer.featureCount() if layer.featureCount() else 0
        for current, f in enumerate(features):
            geom = f.geometry()
            bbox = geom.boundingBox()

            xMin = bbox.xMinimum()
            xMax = bbox.xMaximum()
            yMin = bbox.yMinimum()
            yMax = bbox.yMaximum()

            (startRow, startColumn) = raster.mapToPixel(xMin, yMax, geoTransform)
            (endRow, endColumn) = raster.mapToPixel(xMax, yMin, geoTransform)

            # use prepared geometries for faster intersection tests
            engine = QgsGeometry.createGeometryEngine(geom.geometry())
            engine.prepareGeometry()

            for row in range(startRow, endRow + 1):
                for col in range(startColumn, endColumn + 1):
                    (x, y) = raster.pixelToMap(row, col, geoTransform)
                    point = QgsPointXY()
                    point.setX(x)
                    point.setY(y)

                    if engine.contains(point):
                        outFeature.setGeometry(QgsGeometry(point))
                        outFeature['id'] = fid
                        outFeature['poly_id'] = polyId
                        outFeature['point_id'] = pointId

                        fid += 1
                        pointId += 1

                        writer.addFeature(outFeature, QgsFeatureSink.FastInsert)

            pointId = 0
            polyId += 1

            feedback.setProgress(int(current * total))

        del writer
Ejemplo n.º 36
0
    def processAlgorithm(self, parameters, context, feedback):
        layer = QgsProcessingUtils.mapLayerFromString(self.getParameterValue(self.INPUT_VECTOR), context)

        rasterPath = str(self.getParameterValue(self.INPUT_RASTER))

        rasterDS = gdal.Open(rasterPath, gdal.GA_ReadOnly)
        geoTransform = rasterDS.GetGeoTransform()
        rasterDS = None

        fields = QgsFields()
        fields.append(QgsField('id', QVariant.Int, '', 10, 0))
        fields.append(QgsField('poly_id', QVariant.Int, '', 10, 0))
        fields.append(QgsField('point_id', QVariant.Int, '', 10, 0))

        writer = self.getOutputFromName(self.OUTPUT_LAYER).getVectorWriter(fields, QgsWkbTypes.Point,
                                                                           layer.crs(), context)

        outFeature = QgsFeature()
        outFeature.setFields(fields)

        fid = 0
        polyId = 0
        pointId = 0

        features = QgsProcessingUtils.getFeatures(layer, context)
        total = 100.0 / layer.featureCount() if layer.featureCount() else 0
        for current, f in enumerate(features):
            geom = f.geometry()
            bbox = geom.boundingBox()

            xMin = bbox.xMinimum()
            xMax = bbox.xMaximum()
            yMin = bbox.yMinimum()
            yMax = bbox.yMaximum()

            (startRow, startColumn) = raster.mapToPixel(xMin, yMax, geoTransform)
            (endRow, endColumn) = raster.mapToPixel(xMax, yMin, geoTransform)

            # use prepared geometries for faster intersection tests
            engine = QgsGeometry.createGeometryEngine(geom.geometry())
            engine.prepareGeometry()

            for row in range(startRow, endRow + 1):
                for col in range(startColumn, endColumn + 1):
                    (x, y) = raster.pixelToMap(row, col, geoTransform)
                    point = QgsPointXY()
                    point.setX(x)
                    point.setY(y)

                    if engine.contains(point):
                        outFeature.setGeometry(QgsGeometry(point))
                        outFeature['id'] = fid
                        outFeature['poly_id'] = polyId
                        outFeature['point_id'] = pointId

                        fid += 1
                        pointId += 1

                        writer.addFeature(outFeature, QgsFeatureSink.FastInsert)

            pointId = 0
            polyId += 1

            feedback.setProgress(int(current * total))

        del writer
    def transformedCornerCoordinates(self, center, rotation, xScale, yScale):
        # scale
        topLeft = QgsPointXY(-self.image.width() / 2.0 * xScale,
                             self.image.height() / 2.0 * yScale)
        topRight = QgsPointXY(self.image.width() / 2.0 * xScale,
                              self.image.height() / 2.0 * yScale)
        bottomLeft = QgsPointXY(-self.image.width() / 2.0 * xScale,
                                - self.image.height() / 2.0 * yScale)
        bottomRight = QgsPointXY(self.image.width() / 2.0 * xScale,
                                 - self.image.height() / 2.0 * yScale)

        # rotate
        # minus sign because rotation is CW in this class and Qt)
        rotationRad = -rotation * math.pi / 180
        cosRot = math.cos(rotationRad)
        sinRot = math.sin(rotationRad)

        topLeft = self._rotate(topLeft, cosRot, sinRot)
        topRight = self._rotate(topRight, cosRot, sinRot)
        bottomRight = self._rotate(bottomRight, cosRot, sinRot)
        bottomLeft = self._rotate(bottomLeft, cosRot, sinRot)

        topLeft.set(topLeft.x() + center.x(), topLeft.y() + center.y())
        topRight.set(topRight.x() + center.x(), topRight.y() + center.y())
        bottomRight.set(bottomRight.x() + center.x(),
                        bottomRight.y() + center.y())
        bottomLeft.set(bottomLeft.x() + center.x(),
                       bottomLeft.y() + center.y())

        return (topLeft, topRight, bottomRight, bottomLeft)
Ejemplo n.º 38
0
    def processAlgorithm(self, parameters, context, feedback):
        source = self.parameterAsSource(parameters, self.INPUT, context)
        if source is None:
            raise QgsProcessingException(
                self.invalidSourceError(parameters, self.INPUT))

        group_field_name = self.parameterAsString(parameters, self.GROUP_FIELD,
                                                  context)
        order_field_name = self.parameterAsString(parameters, self.ORDER_FIELD,
                                                  context)
        date_format = self.parameterAsString(parameters, self.DATE_FORMAT,
                                             context)
        text_dir = self.parameterAsString(parameters, self.OUTPUT_TEXT_DIR,
                                          context)

        group_field_index = source.fields().lookupField(group_field_name)
        order_field_index = source.fields().lookupField(order_field_name)

        if group_field_index >= 0:
            group_field_def = source.fields().at(group_field_index)
        else:
            group_field_def = None
        order_field_def = source.fields().at(order_field_index)

        fields = QgsFields()
        if group_field_def is not None:
            fields.append(group_field_def)
        begin_field = QgsField(order_field_def)
        begin_field.setName('begin')
        fields.append(begin_field)
        end_field = QgsField(order_field_def)
        end_field.setName('end')
        fields.append(end_field)

        output_wkb = QgsWkbTypes.LineString
        if QgsWkbTypes.hasM(source.wkbType()):
            output_wkb = QgsWkbTypes.addM(output_wkb)
        if QgsWkbTypes.hasZ(source.wkbType()):
            output_wkb = QgsWkbTypes.addZ(output_wkb)

        (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT,
                                               context, fields, output_wkb,
                                               source.sourceCrs())
        if sink is None:
            raise QgsProcessingException(
                self.invalidSinkError(parameters, self.OUTPUT))

        points = dict()
        features = source.getFeatures(
            QgsFeatureRequest().setSubsetOfAttributes(
                [group_field_index, order_field_index]),
            QgsProcessingFeatureSource.FlagSkipGeometryValidityChecks)
        total = 100.0 / source.featureCount() if source.featureCount() else 0
        for current, f in enumerate(features):
            if feedback.isCanceled():
                break

            if not f.hasGeometry():
                continue

            point = f.geometry().constGet().clone()
            if group_field_index >= 0:
                group = f[group_field_index]
            else:
                group = 1
            order = f[order_field_index]
            if date_format != '':
                order = datetime.strptime(str(order), date_format)
            if group in points:
                points[group].append((order, point))
            else:
                points[group] = [(order, point)]

            feedback.setProgress(int(current * total))

        feedback.setProgress(0)

        da = QgsDistanceArea()
        da.setSourceCrs(source.sourceCrs(), context.transformContext())
        da.setEllipsoid(context.project().ellipsoid())

        current = 0
        total = 100.0 / len(points) if points else 1
        for group, vertices in points.items():
            if feedback.isCanceled():
                break

            vertices.sort(key=lambda x: (x[0] is None, x[0]))
            f = QgsFeature()
            attributes = []
            if group_field_index >= 0:
                attributes.append(group)
            attributes.extend([vertices[0][0], vertices[-1][0]])
            f.setAttributes(attributes)
            line = [node[1] for node in vertices]

            if text_dir:
                fileName = os.path.join(text_dir, '%s.txt' % group)

                with open(fileName, 'w') as fl:
                    fl.write('angle=Azimuth\n')
                    fl.write('heading=Coordinate_System\n')
                    fl.write('dist_units=Default\n')

                    for i in range(len(line)):
                        if i == 0:
                            fl.write('startAt=%f;%f;90\n' %
                                     (line[i].x(), line[i].y()))
                            fl.write('survey=Polygonal\n')
                            fl.write('[data]\n')
                        else:
                            angle = line[i - 1].azimuth(line[i])
                            distance = da.measureLine(QgsPointXY(line[i - 1]),
                                                      QgsPointXY(line[i]))
                            fl.write('%f;%f;90\n' % (angle, distance))

            f.setGeometry(QgsGeometry(QgsLineString(line)))
            sink.addFeature(f, QgsFeatureSink.FastInsert)
            current += 1
            feedback.setProgress(int(current * total))

        return {self.OUTPUT: dest_id}
    def transformedCornerCoordinatesFromPoint(self, startPoint, rotation,
                                              xScale, yScale):
        # startPoint is a fixed point for this new movement (rotation and
        # scale)
        # rotation is the global rotation of the image
        # xScale is the new xScale factor to be multiplied by self.xScale
        # idem for yScale
        # Calculate the coordinate of the center in a startPoint origin
        # coordinate system and apply scales
        dX = (self.center.x() - startPoint.x()) * xScale
        dY = (self.center.y() - startPoint.y()) * yScale
        # Half width and half height in the current transformation
        hW = (self.image.width() / 2.0) * self.xScale * xScale
        hH = (self.image.height() / 2.0) * self.yScale * yScale
        # Actual rectangle coordinates :
        pt1 = QgsPointXY(-hW, hH)
        pt2 = QgsPointXY(hW, hH)
        pt3 = QgsPointXY(hW, -hH)
        pt4 = QgsPointXY(-hW, -hH)
        # Actual rotation from the center
        # minus sign because rotation is CW in this class and Qt)
        rotationRad = -self.rotation * math.pi / 180
        cosRot = math.cos(rotationRad)
        sinRot = math.sin(rotationRad)
        pt1 = self._rotate(pt1, cosRot, sinRot)
        pt2 = self._rotate(pt2, cosRot, sinRot)
        pt3 = self._rotate(pt3, cosRot, sinRot)
        pt4 = self._rotate(pt4, cosRot, sinRot)
        # Second transformation
        # displacement of the origin
        pt1 = QgsPointXY(pt1.x() + dX, pt1.y() + dY)
        pt2 = QgsPointXY(pt2.x() + dX, pt2.y() + dY)
        pt3 = QgsPointXY(pt3.x() + dX, pt3.y() + dY)
        pt4 = QgsPointXY(pt4.x() + dX, pt4.y() + dY)
        # Rotation
        # minus sign because rotation is CW in this class and Qt)
        rotationRad = -rotation * math.pi / 180
        cosRot = math.cos(rotationRad)
        sinRot = math.sin(rotationRad)
        pt1 = self._rotate(pt1, cosRot, sinRot)
        pt2 = self._rotate(pt2, cosRot, sinRot)
        pt3 = self._rotate(pt3, cosRot, sinRot)
        pt4 = self._rotate(pt4, cosRot, sinRot)
        # translate to startPoint
        pt1 = QgsPointXY(pt1.x() + startPoint.x(), pt1.y() + startPoint.y())
        pt2 = QgsPointXY(pt2.x() + startPoint.x(), pt2.y() + startPoint.y())
        pt3 = QgsPointXY(pt3.x() + startPoint.x(), pt3.y() + startPoint.y())
        pt4 = QgsPointXY(pt4.x() + startPoint.x(), pt4.y() + startPoint.y())

        return (pt1, pt2, pt3, pt4)
Ejemplo n.º 40
0
 def canvasPointXY(self, lat, lon):
     canvasCrs = self.canvas.mapSettings().destinationCrs()
     transform = QgsCoordinateTransform(self.settings.epsg4326, canvasCrs)
     x, y = transform.transform(float(lon), float(lat))
     pt = QgsPointXY(x, y)
     return pt
Ejemplo n.º 41
0
    def clip_voronoi(self, edges, c, width, height, extent, exX, exY):
        """Clip voronoi function based on code written for Inkscape.
        Copyright (C) 2010 Alvin Penner, [email protected]
        """
        def clip_line(x1, y1, x2, y2, w, h, x, y):
            if x1 < 0 - x and x2 < 0 - x:
                return [0, 0, 0, 0]
            if x1 > w + x and x2 > w + x:
                return [0, 0, 0, 0]
            if x1 < 0 - x:
                y1 = (y1 * x2 - y2 * x1) / (x2 - x1)
                x1 = 0 - x
            if x2 < 0 - x:
                y2 = (y1 * x2 - y2 * x1) / (x2 - x1)
                x2 = 0 - x
            if x1 > w + x:
                y1 = y1 + (w + x - x1) * (y2 - y1) / (x2 - x1)
                x1 = w + x
            if x2 > w + x:
                y2 = y1 + (w + x - x1) * (y2 - y1) / (x2 - x1)
                x2 = w + x
            if y1 < 0 - y and y2 < 0 - y:
                return [0, 0, 0, 0]
            if y1 > h + y and y2 > h + y:
                return [0, 0, 0, 0]
            if x1 == x2 and y1 == y2:
                return [0, 0, 0, 0]
            if y1 < 0 - y:
                x1 = (x1 * y2 - x2 * y1) / (y2 - y1)
                y1 = 0 - y
            if y2 < 0 - y:
                x2 = (x1 * y2 - x2 * y1) / (y2 - y1)
                y2 = 0 - y
            if y1 > h + y:
                x1 = x1 + (h + y - y1) * (x2 - x1) / (y2 - y1)
                y1 = h + y
            if y2 > h + y:
                x2 = x1 + (h + y - y1) * (x2 - x1) / (y2 - y1)
                y2 = h + y
            return [x1, y1, x2, y2]

        lines = []
        hasXMin = False
        hasYMin = False
        hasXMax = False
        hasYMax = False
        for edge in edges:
            if edge[1] >= 0 and edge[2] >= 0:
                # Two vertices
                [x1, y1, x2, y2] = clip_line(
                    c.vertices[edge[1]][0],
                    c.vertices[edge[1]][1],
                    c.vertices[edge[2]][0],
                    c.vertices[edge[2]][1],
                    width,
                    height,
                    exX,
                    exY,
                )
            elif edge[1] >= 0:
                # Only one vertex
                if c.lines[edge[0]][1] == 0:
                    # Vertical line
                    xtemp = c.lines[edge[0]][2] / c.lines[edge[0]][0]
                    if c.vertices[edge[1]][1] > (height + exY) / 2:
                        ytemp = height + exY
                    else:
                        ytemp = 0 - exX
                else:
                    xtemp = width + exX
                    ytemp = (c.lines[edge[0]][2] - (width + exX) *
                             c.lines[edge[0]][0]) / c.lines[edge[0]][1]
                [x1, y1, x2, y2] = clip_line(
                    c.vertices[edge[1]][0],
                    c.vertices[edge[1]][1],
                    xtemp,
                    ytemp,
                    width,
                    height,
                    exX,
                    exY,
                )
            elif edge[2] >= 0:
                # Only one vertex
                if c.lines[edge[0]][1] == 0:
                    # Vertical line
                    xtemp = c.lines[edge[0]][2] / c.lines[edge[0]][0]
                    if c.vertices[edge[2]][1] > (height + exY) / 2:
                        ytemp = height + exY
                    else:
                        ytemp = 0.0 - exY
                else:
                    xtemp = 0.0 - exX
                    ytemp = c.lines[edge[0]][2] / c.lines[edge[0]][1]
                [x1, y1, x2, y2] = clip_line(
                    xtemp,
                    ytemp,
                    c.vertices[edge[2]][0],
                    c.vertices[edge[2]][1],
                    width,
                    height,
                    exX,
                    exY,
                )
            if x1 or x2 or y1 or y2:
                lines.append(
                    QgsPointXY(x1 + extent.xMinimum(), y1 + extent.yMinimum()))
                lines.append(
                    QgsPointXY(x2 + extent.xMinimum(), y2 + extent.yMinimum()))
                if 0 - exX in (x1, x2):
                    hasXMin = True
                if 0 - exY in (y1, y2):
                    hasYMin = True
                if height + exY in (y1, y2):
                    hasYMax = True
                if width + exX in (x1, x2):
                    hasXMax = True
        if hasXMin:
            if hasYMax:
                lines.append(
                    QgsPointXY(extent.xMinimum() - exX,
                               height + extent.yMinimum() + exY))
            if hasYMin:
                lines.append(
                    QgsPointXY(extent.xMinimum() - exX,
                               extent.yMinimum() - exY))
        if hasXMax:
            if hasYMax:
                lines.append(
                    QgsPointXY(width + extent.xMinimum() + exX,
                               height + extent.yMinimum() + exY))
            if hasYMin:
                lines.append(
                    QgsPointXY(width + extent.xMinimum() + exX,
                               extent.yMinimum() - exY))
        return lines
Ejemplo n.º 42
0
    def test_hash(self):
        a = QgsPointXY(2.0, 1.0)
        b = QgsPointXY(2.0, 2.0)
        c = QgsPointXY(1.0, 2.0)
        d = QgsPointXY(1.0, 1.0)
        e = QgsPointXY(2.0, 1.0)
        assert a.__hash__() != b.__hash__()
        assert e.__hash__() == a.__hash__()

        mySet = set([a, b, c, d, e])
        assert len(mySet) == 4
Ejemplo n.º 43
0
 def testQgsPointXYRepr(self):
     p = QgsPointXY(123.456, 987.654)
     self.assertTrue(p.__repr__().startswith('<QgsPointXY: POINT(123.456'))
Ejemplo n.º 44
0
    def test_resetSnappingIndex(self):
        self.pointsLayer.setDependencies([])
        self.linesLayer.setDependencies([])
        self.pointsLayer2.setDependencies([])

        ms = QgsMapSettings()
        ms.setOutputSize(QSize(100, 100))
        ms.setExtent(QgsRectangle(0, 0, 1, 1))
        self.assertTrue(ms.hasValidSettings())

        u = QgsSnappingUtils()
        u.setMapSettings(ms)
        cfg = u.config()
        cfg.setEnabled(True)
        cfg.setMode(QgsSnappingConfig.AdvancedConfiguration)
        cfg.setIndividualLayerSettings(
            self.pointsLayer,
            QgsSnappingConfig.IndividualLayerSettings(True,
                                                      QgsSnappingConfig.Vertex,
                                                      20, QgsTolerance.Pixels))
        u.setConfig(cfg)

        m = u.snapToMap(QPoint(95, 100))
        self.assertTrue(m.isValid())
        self.assertTrue(m.hasVertex())
        self.assertEqual(m.point(), QgsPointXY(1, 0))

        f = QgsFeature(self.linesLayer.fields())
        f.setId(1)
        geom = QgsGeometry.fromWkt("LINESTRING(0 0,1 1)")
        f.setGeometry(geom)
        self.linesLayer.startEditing()
        self.linesLayer.addFeatures([f])
        self.linesLayer.commitChanges()

        l1 = len([f for f in self.pointsLayer.getFeatures()])
        self.assertEqual(l1, 4)
        m = u.snapToMap(QPoint(95, 0))
        # snapping not updated
        self.pointsLayer.setDependencies([])
        self.assertEqual(m.isValid(), False)

        # set layer dependencies
        self.pointsLayer.setDependencies(
            [QgsMapLayerDependency(self.linesLayer.id())])
        # add another line
        f = QgsFeature(self.linesLayer.fields())
        f.setId(2)
        geom = QgsGeometry.fromWkt("LINESTRING(0 0,0.5 0.5)")
        f.setGeometry(geom)
        self.linesLayer.startEditing()
        self.linesLayer.addFeatures([f])
        self.linesLayer.commitChanges()
        # check the snapped point is OK
        m = u.snapToMap(QPoint(45, 50))
        self.assertTrue(m.isValid())
        self.assertTrue(m.hasVertex())
        self.assertEqual(m.point(), QgsPointXY(0.5, 0.5))
        self.pointsLayer.setDependencies([])

        # test chained layer dependencies A -> B -> C
        cfg.setIndividualLayerSettings(
            self.pointsLayer2,
            QgsSnappingConfig.IndividualLayerSettings(True,
                                                      QgsSnappingConfig.Vertex,
                                                      20, QgsTolerance.Pixels))
        u.setConfig(cfg)
        self.pointsLayer.setDependencies(
            [QgsMapLayerDependency(self.linesLayer.id())])
        self.pointsLayer2.setDependencies(
            [QgsMapLayerDependency(self.pointsLayer.id())])
        # add another line
        f = QgsFeature(self.linesLayer.fields())
        f.setId(3)
        geom = QgsGeometry.fromWkt("LINESTRING(0 0.2,0.5 0.8)")
        f.setGeometry(geom)
        self.linesLayer.startEditing()
        self.linesLayer.addFeatures([f])
        self.linesLayer.commitChanges()
        # check the second snapped point is OK
        m = u.snapToMap(QPoint(75, 100 - 80))
        self.assertTrue(m.isValid())
        self.assertTrue(m.hasVertex())
        self.assertEqual(m.point(), QgsPointXY(0.7, 0.8))
        self.pointsLayer.setDependencies([])
        self.pointsLayer2.setDependencies([])
Ejemplo n.º 45
0
    def testMeasureLineProjected(self):
        #   +-+
        #   | |
        # +-+ +
        # test setting/getting the source CRS
        da_3068 = QgsDistanceArea()
        da_wsg84 = QgsDistanceArea()

        da_3068.setSourceCrs(QgsCoordinateReferenceSystem.fromOgcWmsCrs('EPSG:3068'), QgsProject.instance().transformContext())
        if (da_3068.sourceCrs().isGeographic()):
            da_3068.setEllipsoid(da_3068.sourceCrs().ellipsoidAcronym())
        print(("setting [{}] srid [{}] description [{}]".format(u'Soldner Berlin', da_3068.sourceCrs().authid(), da_3068.sourceCrs().description())))
        self.assertEqual(da_3068.sourceCrs().authid(), 'EPSG:3068')
        da_wsg84.setSourceCrs(QgsCoordinateReferenceSystem.fromOgcWmsCrs('EPSG:4326'), QgsProject.instance().transformContext())
        if (da_wsg84.sourceCrs().isGeographic()):
            da_wsg84.setEllipsoid(da_wsg84.sourceCrs().ellipsoidAcronym())
        self.assertEqual(da_wsg84.sourceCrs().authid(), 'EPSG:4326')
        print(("setting [{}] srid [{}] description [{}] isGeographic[{}]".format(u'Wsg84', da_wsg84.sourceCrs().authid(), da_wsg84.sourceCrs().description(), da_wsg84.sourceCrs().isGeographic())))
        # print(("-- projectionAcronym[{}] ellipsoidAcronym[{}] toWkt[{}] mapUnits[{}] toProj4[{}]".format(da_wsg84.sourceCrs().projectionAcronym(),da_wsg84.sourceCrs().ellipsoidAcronym(), da_wsg84.sourceCrs().toWkt(),da_wsg84.sourceCrs().mapUnits(),da_wsg84.sourceCrs().toProj4())))
        print(("Testing Position change for[{}] years[{}]".format(u'Ampelanlage - Potsdamer Platz, Verkehrsinsel', u'1924 and 1998')))

        # 1924-10-24 SRID=3068;POINT(23099.49 20296.69)
        # 1924-10-24 SRID=4326;POINT(13.37650707988041 52.50952361017194)
        # 1998-10-02 SRID=3068;POINT(23082.30 20267.80)
        # 1998-10-02 SRID=4326;POINT(13.37625537334001 52.50926345498337)
        # values returned by SpatiaLite
        point_soldner_1924 = QgsPointXY(23099.49, 20296.69)
        point_soldner_1998 = QgsPointXY(23082.30, 20267.80)
        distance_soldner_meters = 33.617379
        azimuth_soldner_1924 = 3.678339
        # ST_Transform(point_soldner_1924,point_soldner_1998,4326)
        point_wsg84_1924 = QgsPointXY(13.37650707988041, 52.50952361017194)
        point_wsg84_1998 = QgsPointXY(13.37625537334001, 52.50926345498337)
        # ST_Distance(point_wsg84_1924,point_wsg84_1998,1)
        distance_wsg84_meters = 33.617302
        # ST_Distance(point_wsg84_1924,point_wsg84_1998)
        # distance_wsg84_mapunits=0.000362
        distance_wsg84_mapunits_format = QgsDistanceArea.formatDistance(0.000362, 7, QgsUnitTypes.DistanceDegrees, True)
        # ST_Azimuth(point_wsg84_1924,point_wsg84_1998)
        azimuth_wsg84_1924 = 3.674878
        # ST_Azimuth(point_wsg84_1998,point_wsg84_1998)
        azimuth_wsg84_1998 = 0.533282
        # ST_Project(point_wsg84_1924,33.617302,3.674878)
        # SRID=4326;POINT(13.37625537318728 52.50926345503591)
        point_soldner_1998_project = QgsPointXY(13.37625537318728, 52.50926345503591)
        # ST_Project(point_wsg84_1998,33.617302,0.533282)
        # SRID=4326;POINT(13.37650708009255 52.50952361009799)
        point_soldner_1924_project = QgsPointXY(13.37650708009255, 52.50952361009799)

        distance_qpoint = point_soldner_1924.distance(point_soldner_1998)
        azimuth_qpoint = point_soldner_1924.azimuth(point_soldner_1998)
        point_soldner_1998_result = point_soldner_1924.project(distance_qpoint, azimuth_qpoint)

        point_soldner_1924_result = QgsPointXY(0, 0)
        point_soldner_1998_result = QgsPointXY(0, 0)
        # Test meter based projected point from point_1924 to point_1998
        length_1998_mapunits, point_soldner_1998_result = da_3068.measureLineProjected(point_soldner_1924, distance_soldner_meters, azimuth_qpoint)
        self.assertEqual(point_soldner_1998_result.toString(6), point_soldner_1998.toString(6))
        # Test degree based projected point from point_1924 1 meter due East
        point_wsg84_meter_result = QgsPointXY(0, 0)
        point_wsg84_1927_meter = QgsPointXY(13.37652180838435, 52.50952361017102)
        length_meter_mapunits, point_wsg84_meter_result = da_wsg84.measureLineProjected(point_wsg84_1924, 1.0, (math.pi / 2))
        self.assertEqual(QgsDistanceArea.formatDistance(length_meter_mapunits, 7, QgsUnitTypes.DistanceDegrees, True), '0.0000147 deg')
        self.assertEqual(point_wsg84_meter_result.toString(7), point_wsg84_1927_meter.toString(7))

        point_wsg84_1998_result = QgsPointXY(0, 0)
        length_1928_mapunits, point_wsg84_1998_result = da_wsg84.measureLineProjected(point_wsg84_1924, distance_wsg84_meters, azimuth_wsg84_1924)
        self.assertEqual(QgsDistanceArea.formatDistance(length_1928_mapunits, 7, QgsUnitTypes.DistanceDegrees, True), distance_wsg84_mapunits_format)
        self.assertEqual(point_wsg84_1998_result.toString(7), point_wsg84_1998.toString(7))
Ejemplo n.º 46
0
    def test_signalConnection(self):
        # remove all layers
        QgsProject.instance().removeAllMapLayers()
        # set dependencies and add back layers
        self.pointsLayer = QgsVectorLayer(
            "dbname='%s' table=\"node\" (geom) sql=" % self.fn, "points",
            "spatialite")
        assert (self.pointsLayer.isValid())
        self.linesLayer = QgsVectorLayer(
            "dbname='%s' table=\"section\" (geom) sql=" % self.fn, "lines",
            "spatialite")
        assert (self.linesLayer.isValid())
        self.pointsLayer2 = QgsVectorLayer(
            "dbname='%s' table=\"node2\" (geom) sql=" % self.fn, "_points2",
            "spatialite")
        assert (self.pointsLayer2.isValid())
        self.pointsLayer.setDependencies(
            [QgsMapLayerDependency(self.linesLayer.id())])
        self.pointsLayer2.setDependencies(
            [QgsMapLayerDependency(self.pointsLayer.id())])
        # this should update connections between layers
        QgsProject.instance().addMapLayers([self.pointsLayer])
        QgsProject.instance().addMapLayers([self.linesLayer])
        QgsProject.instance().addMapLayers([self.pointsLayer2])

        ms = QgsMapSettings()
        ms.setOutputSize(QSize(100, 100))
        ms.setExtent(QgsRectangle(0, 0, 1, 1))
        self.assertTrue(ms.hasValidSettings())

        u = QgsSnappingUtils()
        u.setMapSettings(ms)
        cfg = u.config()
        cfg.setEnabled(True)
        cfg.setMode(QgsSnappingConfig.AdvancedConfiguration)
        cfg.setIndividualLayerSettings(
            self.pointsLayer,
            QgsSnappingConfig.IndividualLayerSettings(True,
                                                      QgsSnappingConfig.Vertex,
                                                      20, QgsTolerance.Pixels))
        cfg.setIndividualLayerSettings(
            self.pointsLayer2,
            QgsSnappingConfig.IndividualLayerSettings(True,
                                                      QgsSnappingConfig.Vertex,
                                                      20, QgsTolerance.Pixels))
        u.setConfig(cfg)
        # add another line
        f = QgsFeature(self.linesLayer.fields())
        f.setId(4)
        geom = QgsGeometry.fromWkt("LINESTRING(0.5 0.2,0.6 0)")
        f.setGeometry(geom)
        self.linesLayer.startEditing()
        self.linesLayer.addFeatures([f])
        self.linesLayer.commitChanges()
        # check the second snapped point is OK
        m = u.snapToMap(QPoint(75, 100 - 0))
        self.assertTrue(m.isValid())
        self.assertTrue(m.hasVertex())
        self.assertEqual(m.point(), QgsPointXY(0.8, 0.0))

        self.pointsLayer.setDependencies([])
        self.pointsLayer2.setDependencies([])
Ejemplo n.º 47
0
    def balanced(features, graph, feedback, balance=0, min_colors=4):
        feature_colors = {}
        # start with minimum number of colors in pool
        color_pool = set(range(1, min_colors + 1))

        # calculate count of neighbours
        neighbour_count = defaultdict(int)
        for feature_id, neighbours in graph.node_edge.items():
            neighbour_count[feature_id] += len(neighbours)

        # sort features by neighbour count - we want to handle those with more neighbours first
        sorted_by_count = [feature_id for feature_id in sorted(neighbour_count.items(),
                                                               key=operator.itemgetter(1),
                                                               reverse=True)]
        # counts for each color already assigned
        color_counts = defaultdict(int)
        color_areas = defaultdict(float)
        for c in color_pool:
            color_counts[c] = 0
            color_areas[c] = 0

        total = 10.0 / len(sorted_by_count)
        i = 0

        for (feature_id, n) in sorted_by_count:
            if feedback.isCanceled():
                break

            # first work out which already assigned colors are adjacent to this feature
            adjacent_colors = set()
            for neighbour in graph.node_edge[feature_id]:
                if neighbour in feature_colors:
                    adjacent_colors.add(feature_colors[neighbour])

            # from the existing colors, work out which are available (ie non-adjacent)
            available_colors = color_pool.difference(adjacent_colors)

            feature_color = -1
            if len(available_colors) == 0:
                # no existing colors available for this feature, so add new color to pool and repeat
                min_colors += 1
                return ColoringAlgorithm.balanced(features, graph, feedback, balance, min_colors)
            else:
                if balance == 0:
                    # choose least used available color
                    counts = [(c, v) for c, v in color_counts.items() if c in available_colors]
                    feature_color = sorted(counts, key=operator.itemgetter(1))[0][0]
                    color_counts[feature_color] += 1
                elif balance == 1:
                    areas = [(c, v) for c, v in color_areas.items() if c in available_colors]
                    feature_color = sorted(areas, key=operator.itemgetter(1))[0][0]
                    color_areas[feature_color] += features[feature_id].geometry().area()
                elif balance == 2:
                    min_distances = {c: sys.float_info.max for c in available_colors}
                    this_feature_centroid = QgsPointXY(features[feature_id].geometry().centroid().geometry())

                    # find features for all available colors
                    other_features = {f_id: c for (f_id, c) in feature_colors.items() if c in available_colors}

                    # loop through these, and calculate the minimum distance from this feature to the nearest
                    # feature with each assigned color
                    for other_feature_id, c in other_features.items():
                        if feedback.isCanceled():
                            break

                        other_geometry = features[other_feature_id].geometry()
                        other_centroid = QgsPointXY(other_geometry.centroid().geometry())

                        distance = this_feature_centroid.distanceSquared(other_centroid)
                        if distance < min_distances[c]:
                            min_distances[c] = distance

                    # choose color such that minimum distance is maximised! ie we want MAXIMAL separation between
                    # features with the same color
                    feature_color = sorted(min_distances, key=min_distances.__getitem__, reverse=True)[0]

            feature_colors[feature_id] = feature_color

            i += 1
            feedback.setProgress(70 + int(i * total))

        return feature_colors
Ejemplo n.º 48
0
from time import sleep

from qgis.core import (
    QgsFeature,
    QgsGeometry,
    QgsPointXY,
    QgsFeatureRequest,
    QgsExpression,
    QgsProject,
    QgsOfflineEditing,
)

# Tet features, fields: [id, name, geometry]
# "id" is used as a pk to retriev features by attribute
TEST_FEATURES = [
    (1, 'name 1', QgsPointXY(9, 45)),
    (2, 'name 2', QgsPointXY(9.5, 45.5)),
    (3, 'name 3', QgsPointXY(9.5, 46)),
    (4, 'name 4', QgsPointXY(10, 46.5)),
]

# Additional features for insert test
TEST_FEATURES_INSERT = [
    (5, 'name 5', QgsPointXY(9.7, 45.7)),
    (6, 'name 6', QgsPointXY(10.6, 46.6)),
]


class OfflineTestBase(object):
    """Generic test methods for all online providers"""
    def _setUp(self):
Ejemplo n.º 49
0
 def setUp(self):
     self.mPoint = QgsPointXY(10.0, 10.0)
Ejemplo n.º 50
0
    def test_updateFeatures(self):
        ol, offline_layer = self._testInit()
        # Edit feature 2
        feat2 = self._getFeatureByAttribute(offline_layer, 'name', "'name 2'")
        self.assertTrue(offline_layer.startEditing())
        self.assertTrue(
            offline_layer.changeAttributeValue(
                feat2.id(),
                offline_layer.fields().lookupField('name'), 'name 2 edited'))
        self.assertTrue(
            offline_layer.changeGeometry(
                feat2.id(), QgsGeometry.fromPointXY(QgsPointXY(33.0, 60.0))))
        self.assertTrue(offline_layer.commitChanges())
        feat2 = self._getFeatureByAttribute(offline_layer, 'name',
                                            "'name 2 edited'")
        self.assertTrue(ol.isOfflineProject())
        # Sync
        ol.synchronize()
        sleep(2)
        # Does anybody know why the sleep is needed? Is that a threaded WFS consequence?
        online_layer = list(self.registry.mapLayers().values())[0]
        self.assertTrue(online_layer.isValid())
        self.assertFalse(online_layer.name().find('(offline)') > -1)
        self.assertEqual(len([f for f in online_layer.getFeatures()]),
                         len(TEST_FEATURES))
        # Check that data have changed in the backend (raise exception if not found)
        feat2 = self._getFeatureByAttribute(self._getLayer('test_point'),
                                            'name', "'name 2 edited'")
        feat2 = self._getFeatureByAttribute(online_layer, 'name',
                                            "'name 2 edited'")
        self.assertEqual(feat2.geometry().asPoint().toString(),
                         QgsPointXY(33.0, 60.0).toString())
        # Check that all other features have not changed
        layer = self._getLayer('test_point')
        self.assertTrue(self._compareFeature(layer, TEST_FEATURES[1 - 1]))
        self.assertTrue(self._compareFeature(layer, TEST_FEATURES[3 - 1]))
        self.assertTrue(self._compareFeature(layer, TEST_FEATURES[4 - 1]))

        # Test for regression on double sync (it was a SEGFAULT)
        # goes offline
        ol = QgsOfflineEditing()
        offline_layer = list(self.registry.mapLayers().values())[0]
        # Edit feature 2
        feat2 = self._getFeatureByAttribute(offline_layer, 'name',
                                            "'name 2 edited'")
        self.assertTrue(offline_layer.startEditing())
        self.assertTrue(
            offline_layer.changeAttributeValue(
                feat2.id(),
                offline_layer.fields().lookupField('name'), 'name 2'))
        self.assertTrue(
            offline_layer.changeGeometry(
                feat2.id(), QgsGeometry.fromPointXY(TEST_FEATURES[1][2])))
        # Edit feat 4
        feat4 = self._getFeatureByAttribute(offline_layer, 'name', "'name 4'")
        self.assertTrue(
            offline_layer.changeAttributeValue(
                feat4.id(),
                offline_layer.fields().lookupField('name'), 'name 4 edited'))
        self.assertTrue(offline_layer.commitChanges())
        # Sync
        ol.synchronize()
        # Does anybody knows why the sleep is needed? Is that a threaded WFS consequence?
        sleep(1)
        online_layer = list(self.registry.mapLayers().values())[0]
        layer = self._getLayer('test_point')
        # Check that data have changed in the backend (raise exception if not found)
        feat4 = self._getFeatureByAttribute(layer, 'name', "'name 4 edited'")
        feat4 = self._getFeatureByAttribute(online_layer, 'name',
                                            "'name 4 edited'")
        feat2 = self._getFeatureByAttribute(layer, 'name', "'name 2'")
        feat2 = self._getFeatureByAttribute(online_layer, 'name', "'name 2'")
        # Check that all other features have not changed
        layer = self._getLayer('test_point')
        self.assertTrue(self._compareFeature(layer, TEST_FEATURES[1 - 1]))
        self.assertTrue(self._compareFeature(layer, TEST_FEATURES[2 - 1]))
        self.assertTrue(self._compareFeature(layer, TEST_FEATURES[3 - 1]))
Ejemplo n.º 51
0
    def processAlgorithm(self, parameters, context, feedback):
        network = self.parameterAsSource(parameters, self.INPUT, context)
        if network is None:
            raise QgsProcessingException(
                self.invalidSourceError(parameters, self.INPUT))

        startPoints = self.parameterAsSource(parameters, self.START_POINTS,
                                             context)
        if startPoints is None:
            raise QgsProcessingException(
                self.invalidSourceError(parameters, self.START_POINTS))

        strategy = self.parameterAsEnum(parameters, self.STRATEGY, context)
        travelCost = self.parameterAsDouble(parameters, self.TRAVEL_COST,
                                            context)

        directionFieldName = self.parameterAsString(parameters,
                                                    self.DIRECTION_FIELD,
                                                    context)
        forwardValue = self.parameterAsString(parameters, self.VALUE_FORWARD,
                                              context)
        backwardValue = self.parameterAsString(parameters, self.VALUE_BACKWARD,
                                               context)
        bothValue = self.parameterAsString(parameters, self.VALUE_BOTH,
                                           context)
        defaultDirection = self.parameterAsEnum(parameters,
                                                self.DEFAULT_DIRECTION,
                                                context)
        speedFieldName = self.parameterAsString(parameters, self.SPEED_FIELD,
                                                context)
        defaultSpeed = self.parameterAsDouble(parameters, self.DEFAULT_SPEED,
                                              context)
        tolerance = self.parameterAsDouble(parameters, self.TOLERANCE, context)

        include_bounds = True  # default to true to maintain 3.0 API
        if self.INCLUDE_BOUNDS in parameters:
            include_bounds = self.parameterAsBool(parameters,
                                                  self.INCLUDE_BOUNDS, context)

        fields = startPoints.fields()
        fields.append(QgsField('type', QVariant.String, '', 254, 0))
        fields.append(QgsField('start', QVariant.String, '', 254, 0))

        feat = QgsFeature()
        feat.setFields(fields)

        directionField = -1
        if directionFieldName:
            directionField = network.fields().lookupField(directionFieldName)
        speedField = -1
        if speedFieldName:
            speedField = network.fields().lookupField(speedFieldName)

        director = QgsVectorLayerDirector(network, directionField,
                                          forwardValue, backwardValue,
                                          bothValue, defaultDirection)

        distUnit = context.project().crs().mapUnits()
        multiplier = QgsUnitTypes.fromUnitToUnitFactor(
            distUnit, QgsUnitTypes.DistanceMeters)
        if strategy == 0:
            strategy = QgsNetworkDistanceStrategy()
        else:
            strategy = QgsNetworkSpeedStrategy(speedField, defaultSpeed,
                                               multiplier * 1000.0 / 3600.0)

        director.addStrategy(strategy)
        builder = QgsGraphBuilder(network.sourceCrs(), True, tolerance)

        feedback.pushInfo(
            QCoreApplication.translate('ServiceAreaFromLayer',
                                       'Loading start points…'))
        request = QgsFeatureRequest()
        request.setDestinationCrs(network.sourceCrs(),
                                  context.transformContext())
        features = startPoints.getFeatures(request)
        total = 100.0 / startPoints.featureCount() if startPoints.featureCount(
        ) else 0

        points = []
        source_attributes = {}
        i = 0
        for current, f in enumerate(features):
            if feedback.isCanceled():
                break

            if not f.hasGeometry():
                continue

            for p in f.geometry().vertices():
                points.append(QgsPointXY(p))
                source_attributes[i] = f.attributes()
                i += 1

            feedback.setProgress(int(current * total))

        feedback.pushInfo(
            QCoreApplication.translate('ServiceAreaFromLayer',
                                       'Building graph…'))
        snappedPoints = director.makeGraph(builder, points, feedback)

        feedback.pushInfo(
            QCoreApplication.translate('ServiceAreaFromLayer',
                                       'Calculating service areas…'))
        graph = builder.graph()

        (point_sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT,
                                                     context, fields,
                                                     QgsWkbTypes.MultiPoint,
                                                     network.sourceCrs())
        (line_sink,
         line_dest_id) = self.parameterAsSink(parameters, self.OUTPUT_LINES,
                                              context, fields,
                                              QgsWkbTypes.MultiLineString,
                                              network.sourceCrs())

        total = 100.0 / len(snappedPoints) if snappedPoints else 1
        for i, p in enumerate(snappedPoints):
            if feedback.isCanceled():
                break

            idxStart = graph.findVertex(snappedPoints[i])
            origPoint = points[i].toString()

            tree, cost = QgsGraphAnalyzer.dijkstra(graph, idxStart, 0)

            vertices = set()
            area_points = []
            lines = []
            for vertex, start_vertex_cost in enumerate(cost):
                inbound_edge_index = tree[vertex]
                if inbound_edge_index == -1 and vertex != idxStart:
                    # unreachable vertex
                    continue

                if start_vertex_cost > travelCost:
                    # vertex is too expensive, discard
                    continue

                vertices.add(vertex)
                start_point = graph.vertex(vertex).point()

                # find all edges coming from this vertex
                for edge_id in graph.vertex(vertex).outgoingEdges():
                    edge = graph.edge(edge_id)
                    end_vertex_cost = start_vertex_cost + edge.cost(0)
                    end_point = graph.vertex(edge.toVertex()).point()
                    if end_vertex_cost <= travelCost:
                        # end vertex is cheap enough to include
                        vertices.add(edge.toVertex())
                        lines.append([start_point, end_point])
                    else:
                        # travelCost sits somewhere on this edge, interpolate position
                        interpolated_end_point = QgsGeometryUtils.interpolatePointOnLineByValue(
                            start_point.x(),
                            start_point.y(), start_vertex_cost, end_point.x(),
                            end_point.y(), end_vertex_cost, travelCost)
                        area_points.append(interpolated_end_point)
                        lines.append([start_point, interpolated_end_point])

            for v in vertices:
                area_points.append(graph.vertex(v).point())

            feat = QgsFeature()
            if point_sink is not None:
                geomPoints = QgsGeometry.fromMultiPointXY(area_points)
                feat.setGeometry(geomPoints)
                attrs = source_attributes[i]
                attrs.extend(['within', origPoint])
                feat.setAttributes(attrs)
                point_sink.addFeature(feat, QgsFeatureSink.FastInsert)

                if include_bounds:
                    upperBoundary = []
                    lowerBoundary = []

                    vertices = []
                    for vertex, c in enumerate(cost):
                        if c > travelCost and tree[vertex] != -1:
                            vertexId = graph.edge(tree[vertex]).fromVertex()
                            if cost[vertexId] <= travelCost:
                                vertices.append(vertex)

                    for v in vertices:
                        upperBoundary.append(
                            graph.vertex(graph.edge(
                                tree[v]).toVertex()).point())
                        lowerBoundary.append(
                            graph.vertex(graph.edge(
                                tree[v]).fromVertex()).point())

                    geomUpper = QgsGeometry.fromMultiPointXY(upperBoundary)
                    geomLower = QgsGeometry.fromMultiPointXY(lowerBoundary)

                    feat.setGeometry(geomUpper)
                    attrs[-2] = 'upper'
                    feat.setAttributes(attrs)
                    point_sink.addFeature(feat, QgsFeatureSink.FastInsert)

                    feat.setGeometry(geomLower)
                    attrs[-2] = 'lower'
                    feat.setAttributes(attrs)
                    point_sink.addFeature(feat, QgsFeatureSink.FastInsert)

            if line_sink is not None:
                geom_lines = QgsGeometry.fromMultiPolylineXY(lines)
                feat.setGeometry(geom_lines)
                attrs = source_attributes[i]
                attrs.extend(['lines', origPoint])
                feat.setAttributes(attrs)
                line_sink.addFeature(feat, QgsFeatureSink.FastInsert)

            feedback.setProgress(int(i * total))

        results = {}
        if point_sink is not None:
            results[self.OUTPUT] = dest_id
        if line_sink is not None:
            results[self.OUTPUT_LINES] = line_dest_id
        return results
def run(sources_layer_path, receivers_layer_path, emission_pts_layer_path, research_ray):
    sources_layer = QgsVectorLayer(sources_layer_path, "input layer", "ogr")
    receivers_layer = QgsVectorLayer(receivers_layer_path, "output layer", "ogr")

    sources_feat_all = sources_layer.dataProvider().getFeatures()

    receivers_feat_all_dict = {}
    receivers_feat_all = receivers_layer.dataProvider().getFeatures()
    receivers_spIndex = QgsSpatialIndex()
    for receivers_feat in receivers_feat_all:
        receivers_spIndex.insertFeature(receivers_feat)
        receivers_feat_all_dict[receivers_feat.id()] = receivers_feat

    emission_pts_fields = QgsFields()
    emission_pts_fields.append(QgsField("id_emi", QVariant.Int))
    emission_pts_fields.append(QgsField("id_emi_source", QVariant.Int))
    emission_pts_fields.append(QgsField("id_source", QVariant.Int))
    emission_pts_fields.append(QgsField("d_rTOe", QVariant.Double, len=10, prec=2))
    # update for QGIS 3 converting VectorWriter to QgsVectorFileWriter
    # emission_pts_writer = VectorWriter(emission_pts_layer_path, None, emission_pts_fields, 0, sources_layer.crs())

    emission_pts_writer = QgsVectorFileWriter(emission_pts_layer_path, "System",
                                              emission_pts_fields, QgsWkbTypes.Point, sources_layer.crs(),
                                              "ESRI Shapefile")

    # initializes ray and emission point id
    emission_pt_id = 0

    for sources_feat in sources_feat_all:

        # researches the receiver points in a rectangle created by the research_ray
        # creates the search rectangle
        rect = QgsRectangle()
        rect.setXMinimum(sources_feat.geometry().boundingBox().xMinimum() - research_ray)
        rect.setXMaximum(sources_feat.geometry().boundingBox().xMaximum() + research_ray)
        rect.setYMinimum(sources_feat.geometry().boundingBox().yMinimum() - research_ray)
        rect.setYMaximum(sources_feat.geometry().boundingBox().yMaximum() + research_ray)

        receiver_pts_request = receivers_spIndex.intersects(rect)

        distance_min = []
        for receiver_pts_id in receiver_pts_request:
            receiver_pts_feat = receivers_feat_all_dict[receiver_pts_id]
            result = sources_feat.geometry().closestSegmentWithContext(receiver_pts_feat.geometry().asPoint())
            distance_min_tmp = sqrt(result[0])

            if distance_min_tmp <= research_ray:
                distance_min.append(distance_min_tmp)

        # defines segment max length
        if len(distance_min) >= 1:
            segment_max = min(distance_min) / 2
            if segment_max < 2:
                segment_max = 2
        else:
            continue

        # splits the sources line in emission points at a fix distance (minimum distance/2) and create the emission point layer
        # gets vertex
        sources_geom = sources_feat.geometry()
        if sources_geom.isMultipart():
            sources_geom.convertToSingleType()
        sources_feat_vertex_pt_all = sources_geom.asPolyline()

        emission_pt_id_road = 0

        for i in range(0, len(sources_feat_vertex_pt_all)):

            pt1 = QgsPointXY(sources_feat_vertex_pt_all[i])

            add_point_to_layer(emission_pts_writer, pt1,
                               [emission_pt_id, emission_pt_id_road, sources_feat.id(), segment_max])

            emission_pt_id = emission_pt_id + 1
            emission_pt_id_road = emission_pt_id_road + 1

            if i < len(sources_feat_vertex_pt_all) - 1:

                pt2 = QgsPoint(sources_feat_vertex_pt_all[i + 1])

                x1 = pt1.x()
                y1 = pt1.y()
                x2 = pt2.x()
                y2 = pt2.y()

                if y2 == y1:
                    dx = segment_max
                    dy = 0
                    m = 0
                elif x2 == x1:
                    dx = 0
                    dy = segment_max
                else:
                    m = (y2 - y1) / (x2 - x1)
                    dx = sqrt((segment_max ** 2) / (1 + m ** 2))
                    dy = sqrt(((segment_max ** 2) * (m ** 2)) / (1 + m ** 2))

                pt = pt1

                while compute_distance(pt, pt2) > segment_max:
                    x_temp = pt.x()
                    y_temp = pt.y()
                    if x_temp < x2:
                        if m > 0:
                            pt = QgsPointXY(x_temp + dx, y_temp + dy)
                        elif m < 0:
                            pt = QgsPointXY(x_temp + dx, y_temp - dy)
                        elif m == 0:
                            pt = QgsPointXY(x_temp + dx, y_temp)
                    elif x_temp > x2:
                        if m > 0:
                            pt = QgsPointXY(x_temp - dx, y_temp - dy)
                        elif m < 0:
                            pt = QgsPointXY(x_temp - dx, y_temp + dy)
                        elif m == 0:
                            pt = QgsPointXY(x_temp - dx, y_temp)
                    elif x_temp == x2:
                        if y2 > y_temp:
                            pt = QgsPointXY(x_temp, y_temp + dy)
                        else:
                            pt = QgsPointXY(x_temp, y_temp - dy)

                    add_point_to_layer(emission_pts_writer, pt,
                                       [emission_pt_id, emission_pt_id_road, sources_feat.id(), segment_max])

                    emission_pt_id = emission_pt_id + 1
                    emission_pt_id_road = emission_pt_id_road + 1

    del emission_pts_writer