Ejemplo n.º 1
0
def test_rasterize_no_defunct_processes(caplog):
    with NamedTemporaryFile('w+') as f:
        f.write(
            '<html><head><meta http-equiv=\"Content-Type\" content=\"text/html;charset=utf-8\">'
            '</head><body><br>---------- TEST FILE ----------<br></body></html>'
        )
        path = os.path.realpath(f.name)
        f.flush()
        rasterize(path=f'file://{path}',
                  width=250,
                  height=250,
                  r_type=RasterizeType.PDF,
                  offline_mode=False)
        process = subprocess.Popen(['ps', '-aux'],
                                   stdout=subprocess.PIPE,
                                   stderr=subprocess.PIPE,
                                   universal_newlines=True)
        processes_str, _ = process.communicate()
        processes = processes_str.split('\n')
        defunct_process_list = [
            process for process in processes if 'defunct' in process
        ]
        assert not defunct_process_list

        zombies, output = find_zombie_processes()
        assert not zombies
        assert 'defunct' not in output
        caplog.clear()
Ejemplo n.º 2
0
def test_rasterize_email_pdf_offline(caplog):
    with NamedTemporaryFile('w+') as f:
        f.write('<html><head><meta http-equiv=\"Content-Type\" content=\"text/html;charset=utf-8\">'
                '</head><body><br>---------- TEST FILE ----------<br></body></html>')
        path = os.path.realpath(f.name)
        f.flush()
        rasterize(path=f'file://{path}', width=250, height=250, r_type='pdf', offline_mode=True)
        caplog.clear()
Ejemplo n.º 3
0
 def _prepare_bias(self):
     if not self.bias_shp is None:
         files = []  # list of env files
         for l in glob.glob(os.path.join(self.env, '*.asc')):
             files.append(l)
         self._bias_file = tempfile.mktemp('.asc')
         # we can use any of env file as template => use file[0]
         rasterize(self.bias_shp, files[0], self.bias_buffer,
                   self._bias_file)
Ejemplo n.º 4
0
def test_rasterize_url_long_load(mocker, http_wait_server):
    return_error_mock = mocker.patch(RETURN_ERROR_TARGET)
    time.sleep(1)  # give time to the servrer to start
    rasterize('http://localhost:10888', width=250, height=250, r_type='png', max_page_load_time=5)
    assert return_error_mock.call_count == 1
    # call_args last call with a tuple of args list and kwargs
    err_msg = return_error_mock.call_args[0][0]
    assert 'Timeout exception' in err_msg
    return_error_mock.reset_mock()
    # test that with a higher value we get a response
    assert rasterize('http://localhost:10888', width=250, height=250, r_type='png', max_page_load_time=0)
    assert not return_error_mock.called
Ejemplo n.º 5
0
def test_rasterize_error(mocker):
    url = 'https://attivazione-sicurezzaweb-2019.com/dati/'  # disable-secrets-detection

    args = {'url': url}
    mocker.patch.object(demisto, 'args', return_value=args)
    mocker.patch.object(demisto, 'results')
    rasterize()
    assert demisto.results.call_count == 1
    results = demisto.results.call_args[0]
    assert len(results) == 1
    assert results[0]['Type'] == entryTypes['error']
    assert results[0]['Contents'] == "PhantomJS returned - Can't access the URL. It might be malicious, " \
                                     "or unreachable for one of several reasons."
Ejemplo n.º 6
0
    def createAlgsList(self):
        # First we populate the list of algorithms with those created
        # extending GeoAlgorithm directly (those that execute GDAL
        # using the console)
        self.preloadedAlgs = [nearblack(), information(), warp(), translate(),
                              rgb2pct(), pct2rgb(), merge(), buildvrt(), polygonize(), gdaladdo(),
                              ClipByExtent(), ClipByMask(), contour(), rasterize(), proximity(),
                              sieve(), fillnodata(), ExtractProjection(), gdal2xyz(),
                              hillshade(), slope(), aspect(), tri(), tpi(), roughness(),
                              ColorRelief(), GridInvDist(), GridAverage(), GridNearest(),
                              GridDataMetrics(), gdaltindex(), gdalcalc(), rasterize_over(),
                              # ----- OGR tools -----
                              OgrInfo(), Ogr2Ogr(), Ogr2OgrClip(), Ogr2OgrClipExtent(),
                              Ogr2OgrToPostGis(), Ogr2OgrToPostGisList(), Ogr2OgrPointsOnLines(),
                              Ogr2OgrBuffer(), Ogr2OgrDissolve(), Ogr2OgrOneSideBuffer(),
                              Ogr2OgrTableToPostGisList(), OgrSql(),
                              ]

        # And then we add those that are created as python scripts
        folder = self.scriptsFolder()
        if os.path.exists(folder):
            for descriptionFile in os.listdir(folder):
                if descriptionFile.endswith('py'):
                    try:
                        fullpath = os.path.join(self.scriptsFolder(),
                                                descriptionFile)
                        alg = GdalScriptAlgorithm(fullpath)
                        self.preloadedAlgs.append(alg)
                    except WrongScriptException as e:
                        ProcessingLog.addToLog(ProcessingLog.LOG_ERROR, e.msg)
Ejemplo n.º 7
0
    def createAlgsList(self):
        # First we populate the list of algorithms with those created
        # extending GeoAlgorithm directly (those that execute GDAL
        # using the console)
        self.preloadedAlgs = [nearblack(), information(), warp(), translate(),
            rgb2pct(), pct2rgb(), merge(), polygonize(), gdaladdo(),
            ClipByExtent(), ClipByMask(), contour(), rasterize(), proximity(),
            sieve(), fillnodata(), ExtractProjection(), gdal2xyz(),
            hillshade(), slope(), aspect(), tri(), tpi(), roughness(),
            ColorRelief(), GridInvDist(), GridAverage(), GridNearest(),
            GridDataMetrics(),
            # ----- OGR tools -----
            OgrInfo(), Ogr2Ogr(), OgrSql(),
            ]

        # And then we add those that are created as python scripts
        folder = self.scriptsFolder()
        if os.path.exists(folder):
            for descriptionFile in os.listdir(folder):
                if descriptionFile.endswith('py'):
                    try:
                        fullpath = os.path.join(self.scriptsFolder(),
                                descriptionFile)
                        alg = GdalScriptAlgorithm(fullpath)
                        self.preloadedAlgs.append(alg)
                    except WrongScriptException, e:
                        ProcessingLog.addToLog(ProcessingLog.LOG_ERROR, e.msg)
Ejemplo n.º 8
0
def test_rasterize_error(mocker):
    url = 'https://attivazione-sicurezzaweb-2019.com/dati/'  # disable-secrets-detection

    args = {
        'url': url
    }
    mocker.patch.object(demisto, 'args',
                        return_value=args)
    mocker.patch.object(demisto, 'results')
    rasterize()
    assert demisto.results.call_count == 1
    results = demisto.results.call_args[0]
    assert len(results) == 1
    assert results[0]['Type'] == entryTypes['error']
    assert results[0]['Contents'] == "PhantomJS returned - Can't access the URL. It might be malicious, " \
                                     "or unreachable for one of several reasons."
Ejemplo n.º 9
0
 def __init__(self, glyph, scale_factor):
   self.glyph = glyph
   self.glyph_img = rasterize(glyph, scale=scale_factor) > 128
   h, w = self.glyph_img.shape
   self.scale_factor = scale_factor
   # Labled by connectivity
   self.labeled, n_labels = label(self.glyph_img, return_num=True)
   axis, dist = medial_axis(self.glyph_img, return_distance=True)
   # Estimated stroke width
   self.stroke_width = np.average(dist[axis]) * 2
   # Smoothed image
   smooth = gaussian(self.glyph_img, 8*scale_factor) > 0.6
   # Skeleton image
   skel = np.logical_and(
     skeletonize(smooth), dist >= self.stroke_width * 0.3)
   # Skeleton segments
   skel_segments = get_skeleton_segments(skel, 
     prune_length=self.stroke_width * 0.25)
   # Reference skeleton points
   self.skel_pts = (np.array(
     [ pt[::-1] for segment in skel_segments for pt in segment ])
     /scale_factor).astype(int)
   # Skeleton points by their belonging region labels
   self.skel_pts_by_label = [ [] for _ in range(n_labels) ]
   for pt in self.skel_pts:
     ptx = int(pt[0] * scale_factor + 0.5)
     pty = int(pt[1] * scale_factor + 0.5)
     ptx = w-1 if ptx >= w else 0 if ptx < 0 else ptx
     pty = h-1 if pty >= h else 0 if pty < 0 else pty
     pt_label = self.labeled[pty, ptx]
     self.skel_pts_by_label[pt_label-1].append(pt)
Ejemplo n.º 10
0
def test_rasterize_large_html(r_mode):
    path = os.path.realpath('test_data/large.html')
    res = rasterize(path=f'file://{path}',
                    width=250,
                    height=250,
                    r_type=RasterizeType.PNG,
                    r_mode=r_mode)
    assert res
Ejemplo n.º 11
0
 def createAlgsList(self):
     # First we populate the list of algorithms with those created
     # extending GeoAlgorithm directly (those that execute GDAL
     # using the console)
     self.preloadedAlgs = [
         nearblack(),
         information(),
         warp(),
         translate(),
         rgb2pct(),
         pct2rgb(),
         merge(),
         buildvrt(),
         polygonize(),
         gdaladdo(),
         ClipByExtent(),
         ClipByMask(),
         contour(),
         rasterize(),
         proximity(),
         sieve(),
         fillnodata(),
         ExtractProjection(),
         gdal2xyz(),
         hillshade(),
         slope(),
         aspect(),
         tri(),
         tpi(),
         roughness(),
         ColorRelief(),
         GridInvDist(),
         GridAverage(),
         GridNearest(),
         GridDataMetrics(),
         gdaltindex(),
         gdalcalc(),
         rasterize_over(),
         retile(),
         gdal2tiles(),
         # ----- OGR tools -----
         OgrInfo(),
         Ogr2Ogr(),
         Ogr2OgrClip(),
         Ogr2OgrClipExtent(),
         Ogr2OgrToPostGis(),
         Ogr2OgrToPostGisList(),
         Ogr2OgrPointsOnLines(),
         Ogr2OgrBuffer(),
         Ogr2OgrDissolve(),
         Ogr2OgrOneSideBuffer(),
         Ogr2OgrTableToPostGisList(),
         OgrSql(),
     ]
Ejemplo n.º 12
0
 def createAlgsList(self):
     # First we populate the list of algorithms with those created
     # extending GeoAlgorithm directly (those that execute GDAL
     # using the console)
     self.preloadedAlgs = [
         nearblack(),
         information(),
         warp(),
         translate(),
         rgb2pct(),
         pct2rgb(),
         merge(),
         buildvrt(),
         polygonize(),
         gdaladdo(),
         ClipByExtent(),
         ClipByMask(),
         contour(),
         rasterize(),
         proximity(),
         sieve(),
         fillnodata(),
         ExtractProjection(),
         gdal2xyz(),
         hillshade(),
         slope(),
         aspect(),
         tri(),
         tpi(),
         roughness(),
         ColorRelief(),
         GridInvDist(),
         GridAverage(),
         GridNearest(),
         GridDataMetrics(),
         gdaltindex(),
         gdalcalc(),
         rasterize_over(),
         retile(),
         gdal2tiles(),
         # ----- OGR tools -----
         OgrInfo(),
         Ogr2Ogr(),
         Ogr2OgrClip(),
         Ogr2OgrClipExtent(),
         Ogr2OgrToPostGis(),
         Ogr2OgrToPostGisList(),
         Ogr2OgrPointsOnLines(),
         Ogr2OgrBuffer(),
         Ogr2OgrDissolve(),
         Ogr2OgrOneSideBuffer(),
         Ogr2OgrTableToPostGisList(),
         OgrSql(),
     ]
Ejemplo n.º 13
0
def test_rasterize_large_html():
    path = os.path.realpath('test_data/large.html')
    res = rasterize(path=f'file://{path}', width=250, height=250, r_type='png')
    assert res
Ejemplo n.º 14
0
def main_process():

    start_time = time.time()

    if linux:
        prj_path = "/home/simulant/ag_lukas/personen/Mostafa/HeatDensityMap - Copy"
        prj_path_output = "output"
    else:
        prj_path = "Z:/personen/Mostafa/HeatDensityMap - Copy"

    org_data_path = prj_path + os.sep + "Original Data"
    proc_data_path = prj_path + os.sep + "Processed Data"
    temp_path = prj_path + os.sep + "Temp"

    # inputs
    strd_vector_path = org_data_path + os.sep + "NUTS3.shp"
    strd_raster_path_full = org_data_path + os.sep + "Population.tif"
    strd_raster_path = "%s_small.tif" % strd_raster_path_full[:-4]
    #strd_raster_path = strd_raster_path_full
    # outputs
    #r1                = prj_path_output + os.sep + "ss_pop_cut.tif"
    r1 = proc_data_path + os.sep + "ss_pop_cut.tif"
    r2 = proc_data_path + os.sep + "Pop_1km_100m.tif"
    r3 = proc_data_path + os.sep + "sum_ss_1km.tif"
    #r4                = proc_data_path + os.sep + "Dem_in_Nuts.tif"
    r4 = temp_path + os.sep + "temp4.tif"
    r5 = proc_data_path + os.sep + "Pop_in_Nuts.tif"
    r6 = proc_data_path + os.sep + "CorineLU.tif"
    r7 = proc_data_path + os.sep + "CorineLU_cut.tif"

    output = proc_data_path + os.sep + "demand_v2.tif"

    # array2raster output datatype
    datatype = 'int32'

    del_temp_path = False
    process1 = True
    process2 = True
    process3 = True
    process4 = True
    process5 = True

    if del_temp_path:
        if os.path.exists(temp_path):
            shutil.rmtree(temp_path)
        if not os.path.exists(temp_path):
            os.makedirs(temp_path)
    """if os.path.exists(r1):
        process1 = False
    if os.path.exists(r2):
        process2 = False
    if os.path.exists(r3):
        process3 = False
    if os.path.exists(r4):
        process4 = False
    if os.path.exists(r5):
        process5 = False
    """

    # common parameters
    noDataValue = -17.3
    #Standard population raster layer
    # cut standard population raster
    """
    """
    if strd_raster_path_full != strd_raster_path and process1 == True:
        key_field = "NUTS_ID"
        feat_id_LIST = [14, 15, 13]  # 14refers to the feature ID of Vienna
        #feat_id_LIST = [14]  # 14refers to the feature ID of Vienna
        feat_id_LIST = range(1290,
                             1300)  # 14refers to the feature ID of Vienna
        # Load NUTS3 Layer select specific feature (certain Nuts3 region)
        inDriver = ogr.GetDriverByName("ESRI Shapefile")
        inDataSource = inDriver.Open(strd_vector_path, 0)
        inLayer = inDataSource.GetLayer()
        fminx = fminy = 10**10
        fmaxx = fmaxy = 0
        for feat_id in feat_id_LIST:
            inFeature = inLayer.GetFeature(feat_id)
            print(inFeature.GetField(key_field))
            geom = inFeature.GetGeometryRef()
            #Get boundaries
            fminx_, fmaxx_, fminy_, fmaxy_ = geom.GetEnvelope()
            fminx = min(fminx_, fminx)
            fminy = min(fminy_, fminy)
            fmaxx = max(fmaxx_, fmaxx)
            fmaxy = max(fmaxy_, fmaxy)

        ########################################
        # Load population layer
        # Cut with boundaries defined by Shape of NUSTS 3 Layer
        # Save smaller population layer image
        ######################################
        cutRastDatasource = gdal.Open(strd_raster_path_full)
        transform = cutRastDatasource.GetGeoTransform()
        minx = transform[0]
        maxy = transform[3]
        maxx = minx + transform[1] * cutRastDatasource.RasterXSize
        miny = maxy + transform[5] * cutRastDatasource.RasterYSize
        rasterOrigin = (minx, maxy)

        # define exact index that encompasses the feature.
        lowIndexY = int((fminx - minx) / 1000.0)
        lowIndexX = int((maxy - fmaxy) / 1000.0)
        upIndexY = lowIndexY + int((fmaxx - fminx) / 1000.0)
        upIndexX = lowIndexX + int((fmaxy - fminy) / 1000.0)
        while minx + upIndexY * 1000 < fmaxx:
            upIndexY = upIndexY + 1
        while maxy - upIndexX * 1000 > fminy:
            upIndexX = upIndexX + 1

        # considering the 1km resolution of strd raster, the raster origin should be a factor of 1000. this will be done in the following code.
        rasterOrigin2 = (minx + lowIndexY * 1000, maxy - lowIndexX * 1000)
        b11 = cutRastDatasource.GetRasterBand(1)
        arr1 = b11.ReadAsArray()
        arr_out = arr1[lowIndexX:upIndexX, lowIndexY:upIndexY]
        array2raster(strd_raster_path, rasterOrigin2, 1000, -1000, datatype,
                     arr_out, 0)
        cutRastDatasource = None
        arr1 = None
        arr_out = None
        ########################################
        # END
        #
        ######################################

    #Load (smaller) population layer
    cutRastDatasource = gdal.Open(strd_raster_path)

    transform = cutRastDatasource.GetGeoTransform()
    minx = transform[0]
    maxy = transform[3]
    maxx = minx + transform[1] * cutRastDatasource.RasterXSize
    miny = maxy + transform[5] * cutRastDatasource.RasterYSize
    extent = (minx, maxx, miny, maxy)
    rasterOrigin = (minx, maxy)

    #print(extent)
    #raise

    cutRastDatasource = None

    if process1:
        # cuts SOIL Sealing cuts to same size as population layer, smaller data processing (Values above 100%...)
        # Save as raster layer
        st = time.time()
        print("Process 1")
        in_rast_path = org_data_path + os.sep + "SS2012.tif"
        datatype = 'int16'
        out_raster_path = temp_path + os.sep + "temp1.tif"
        pixelWidth = 100
        pixelHeight = -100
        RastExtMod(in_rast_path, strd_raster_path, datatype, out_raster_path,
                   noDataValue)

        ds1 = gdal.Open(out_raster_path)
        b11 = ds1.GetRasterBand(1)
        arr1 = b11.ReadAsArray()
        data = np.zeros_like(arr1)
        idxM = arr1 > 0
        data[idxM] = arr1[idxM]
        data = np.minimum(100, data)
        #data = (arr1<101)*arr1
        array2raster(r1, rasterOrigin, pixelWidth, pixelHeight, datatype, data,
                     noDataValue)
        data = None
        ds1 = None
        elapsed_time = time.time() - st
        print(r1)
        print("Process 1 took: %s seconds" % elapsed_time)

    if process1:
        # cuts Corine cuts to same size as population layer, smaller data processing (Values above 100%...)
        # Save as raster layer
        st = time.time()
        print("Process 1a Corine Landcover data")
        in_rast_path = org_data_path + os.sep + "g100_clc12_V18_5.tif"
        datatype = 'int16'
        out_raster_path = r7
        pixelWidth = 100
        pixelHeight = -100
        RastExtMod(in_rast_path, strd_raster_path, datatype, out_raster_path,
                   noDataValue)

        ds1 = gdal.Open(out_raster_path)
        b11 = ds1.GetRasterBand(1)
        arr1 = b11.ReadAsArray()

        data_CLC = (CORINE_LANDCOVER_TRANSFORM_MATRIX[arr1] *
                    100).astype(datatype)

        array2raster(r7, rasterOrigin, pixelWidth, pixelHeight, datatype,
                     data_CLC, noDataValue)

        ds1 = None
        elapsed_time = time.time() - st
        print(r7)
        print("Process 1a took: %s seconds" % elapsed_time)

    if process2:
        # transforms population layer from 1x1 km to 100x100m
        # saves as raster layer
        st = time.time()
        print("Process 2")
        in_raster_path = strd_raster_path
        pixelWidth = 100
        pixelHeight = -100
        datatype = 'float32'
        HighRes(in_raster_path, pixelWidth, pixelHeight, datatype, r2,
                noDataValue)
        elapsed_time = time.time() - st
        print(r1)
        print("Process 2 took: %s seconds" % elapsed_time)

    if process3:
        # Calculate sum of soilsailing (100x100 m) for 1x1 km and write that sum on the 100x100 m layer
        # save new raster layer
        st = time.time()
        print("Process 3")
        input_value_raster = r1
        dataType = 'float32'
        outRasterPath = temp_path + os.sep + "temp2.tif"
        pixelWidth = 100
        pixelHeight = -100
        ds1 = gdal.Open(input_value_raster)
        b11 = ds1.GetRasterBand(1)
        arr1 = b11.ReadAsArray()
        #Consider Corine Landcover Data
        array2raster(r3 + "dummy_before", rasterOrigin, pixelWidth,
                     pixelHeight, dataType, arr1, noDataValue)
        arr1 *= data_CLC / 100.0
        array2raster(r3 + "dummy_after", rasterOrigin, pixelWidth, pixelHeight,
                     dataType, arr1, noDataValue)
        row = arr1.shape[0]
        col = arr1.shape[1]
        row1 = int(row / 10)
        col1 = int(col / 10)
        temp = 0
        arr_out = np.zeros((row, col), dtype=dataType)
        arr_out2 = np.zeros((row, col), dtype=dataType)
        arr_1_km = np.zeros((row1, col1), dtype="uint16")
        arr_1100 = np.zeros((row1, col), dtype="uint16")

        idx_m_base = np.arange(row1) * 10
        idx_n_base = np.arange(col1) * 10
        """
        for m in range(10):
            idx_m = idx_m_base + m
            
            for n in range(10):
                idx_n = idx_n_base + n
                arr_1_km += arr1[idx_m,:][:, idx_n]
                #temp = temp + arr1[10*i+m,10*j+n]
        print( "------")
        print (arr_1_km);print( "------")
        print (np.sum(arr_1_km))
        arr_1_km = np.zeros((row1, col1), dtype="uint16")    
        """
        for m in range(10):
            idx_m = idx_m_base + m
            arr_1100[:, :] += arr1[idx_m, :]
        for n in range(10):
            idx_n = idx_n_base + n
            arr_1_km += arr_1100[:, idx_n]
        #print (arr_1_km);print( "------")
        #print (np.sum(arr_1_km));print( "------")
        #temp = temp + arr1[10*i+m,10
        idx_m_100 = np.reshape(
            np.ones((10, 1), dtype="uint16") * idx_m_base / 10,
            idx_m_base.shape[0] * 10, 1)
        idx_n_100 = np.reshape(
            np.ones((10, 1), dtype="uint16") * idx_n_base / 10,
            idx_n_base.shape[0] * 10, 1)
        arr_out[:, :] = arr_1_km[idx_m_100, :][:, idx_n_100]
        '''
        for i in range(row1):
            for j in range(col1):
                
                for m in range(10):
                    for n in range(10):
                        temp = temp + arr1[10*i+m,10*j+n]
                for m in range(10):
                    for n in range(10):
                        arr_out2[10*i+m,10*j+n] = temp
                temp = 0
        print (time.time() -st)
        '''

        ds1 = None
        arr1 = None
        array2raster(r3, rasterOrigin, pixelWidth, pixelHeight, dataType,
                     arr_out, noDataValue)
        elapsed_time3 = time.time() - st
        print(r3)
        print("Process 3 took: %s seconds" % elapsed_time3)

    if process4:
        # takes vector layer (vectors are squares (1x1km - same size as population raster layer))
        # Information stored in Pop_Nuts.shape: NUmber of population per 1km and corresponding NUTS3 region
        # and Energy Demand per Nuts region (vector layer)
        # Store Energy Demand of corresponding NUTS REGION to each 1x1km feature
        st = time.time()
        print("Process 4")
        input_vec_path = proc_data_path + os.sep + "Pop_Nuts.shp"
        dict_lyr_path = proc_data_path + os.sep + "NUTS_Demand.shp"
        key_field = "NUTS_ID"
        value_field = "ESPON_TOTA"
        out_field_name = "NutsDem"
        output_lyr_path = temp_path + os.sep + "temp3.shp"
        inVectorPath = output_lyr_path
        fieldName = "NutsDem"
        dataType = 'float32'
        st1 = time.time()
        query(input_vec_path, extent, dict_lyr_path, key_field, value_field,
              out_field_name, output_lyr_path)
        rasterize(strd_raster_path, inVectorPath, fieldName, dataType, r4,
                  noDataValue)
        elapsed_time = time.time() - st
        print("Process 4 took: %s seconds" % elapsed_time)

    if process5:
        # takes vector layer (vectors are squares (1x1km - same size as population raster layer))
        # Information stored in Pop_Nuts.shape: NUmber of population per 1km and corresponding NUTS3 region
        # and Population per Nuts region (vector layer), same as the one two lines above
        # Population of corresponding NUTS 3 REGION to each 1x1km feature
        st = time.time()
        print("Process 5")
        input_vec_path = proc_data_path + os.sep + "Pop_Nuts.shp"
        dict_lyr_path = proc_data_path + os.sep + "Pop_Nuts.shp"
        key_field = "NUTS_ID"
        value_field = "GEOSTAT_gr"
        out_field_name = "NutsPop"
        output_lyr_path = temp_path + os.sep + "temp5.shp"
        inVectorPath = output_lyr_path
        fieldName = "NutsPop"
        dataType = 'uint32'
        query(input_vec_path, extent, dict_lyr_path, key_field, value_field,
              out_field_name, output_lyr_path)
        rasterize(strd_raster_path, inVectorPath, fieldName, dataType, r5,
                  noDataValue)
        elapsed_time = time.time() - st
        print("Process 5 took: %s seconds" % elapsed_time)

    print("Outputfile: %s" % output)
    HeatDensity(r1, r2, r3, r4, r5, r7, rasterOrigin, output)

    elapsed_time = time.time() - start_time
    print("The whole process took: %s seconds" % elapsed_time)

    # XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    # XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX Close XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    if del_temp_path:
        if os.path.exists(temp_path):
            shutil.rmtree(temp_path)
    sys.exit("Done!")