def newforms(N, recompute=False): if N <= 10: return [] p = "%s/%s"%(PATH,N) if os.path.exists(p + ".bz2") and not recompute: return db.load(p,bzip2=True) c = conv(N) db.save(c,p, bzip2=True) return c
def newforms(N, recompute=False): if N <= 10: return [] p = "%s/%s" % (PATH, N) if os.path.exists(p + ".bz2") and not recompute: return db.load(p, bzip2=True) c = conv(N) db.save(c, p, bzip2=True) return c
def zeta_zeros(): r""" List of the imaginary parts of the first 100,000 nontrivial zeros of the Riemann zeta function. Andrew Odlyzko computed these to precision within `3\cdot 10^{-9}`. In order to use ``zeta_zeros()``, you will need to install the optional Odlyzko database package: ``sage -i database_odlyzko_zeta``. You can see a list of all available optional packages with ``sage --optional``. REFERENCES: - http://www.dtc.umn.edu/~odlyzko/zeta_tables/ EXAMPLES: The following example prints the imaginary part of the 13th nontrivial zero of the Riemann zeta function. Note that only the first 9 digits after the decimal come from the database. Subsequent digits are the result of the inherent imprecision of a binary representation of decimal numbers. :: sage: zz = zeta_zeros() # optional - database_odlyzko_zeta sage: zz[12] # optional - database_odlyzko_zeta 59.347044003... """ path = os.path.join(misc.SAGE_SHARE, 'odlyzko') file = os.path.join(path, 'zeros1') if os.path.exists(file + ".pickle"): misc.verbose("Loading Odlyzko database from " + file + ".pickle") return db.load(file + ".pickle") misc.verbose("Creating Odlyzko Database.") F = [eval(x) for x in open(file).read().split()] db.save(F, file + ".pickle") return F
def zeta_zeros(): r""" List of the imaginary parts of the first 100,000 nontrivial zeros of the Riemann zeta function. Andrew Odlyzko computed these to precision within `3\cdot 10^{-9}`. In order to use ``zeta_zeros()``, you will need to install the optional Odlyzko database package: ``sage -i database_odlyzko_zeta``. You can see a list of all available optional packages with ``sage -optional``. REFERENCES: - http://www.dtc.umn.edu/~odlyzko/zeta_tables/ EXAMPLES: The following example prints the imaginary part of the 13th nontrivial zero of the Riemann zeta function. Note that only the first 9 digits after the decimal come from the database. Subsequent digits are the result of the inherent imprecision of a binary representation of decimal numbers. :: sage: zz = zeta_zeros() # optional sage: zz[12] # optional 59.347044003000001 """ path = "%s/odlyzko" % PATH file = "%s/zeros1" % path if os.path.exists(file + ".pickle"): misc.verbose("Loading Odlyzko database from " + file + ".pickle") return db.load(file + ".pickle") misc.verbose("Creating Odlyzko Database.") F = [eval(x) for x in open(file).read().split()] db.save(F, file + ".pickle") return F