Ejemplo n.º 1
0
def nc_of_expon():
    E1 = lambda x : x*0.5*np.exp(-x/2)
    E2 = lambda x : x**2*0.5*np.exp(-x/2)
    print integrate.quad(E1, 0, np.inf)
    print integrate.quad(E2, 0, np.inf)
    print expon(scale=2).moment(1)
    print expon(scale=2).var()
Ejemplo n.º 2
0
def metro_exp_poison(chute=[1], N=1000):
    valores = chute
    taxa = []

    priori = expon(1)

    for i in range(N):
        expo_aux = expon(1)
        valor = expo_aux.rvs()

        U = random.rand()

        x_dado_y = poisson(valores[-1])
        y_dado_x = poisson(valor)

        teste = ( priori.pdf(valor) * x_dado_y.pmf(int(valores[-1])) ) / ( priori.pdf(valores[-1]) * y_dado_x.pmf(int(valor)) )

        if min([teste,1]) > U:
            valores.append(valor)
            taxa.append(1)
        else:
            valores.append(valores[-1])
            taxa.append(0)

    return {"valores":valores , "taxa":sum(taxa)/len(taxa)}
Ejemplo n.º 3
0
  def testExponentialSampleMultiDimensional(self):
    with self.test_session():
      batch_size = 2
      lam_v = [3.0, 22.0]
      lam = constant_op.constant([lam_v] * batch_size)

      exponential = exponential_lib.Exponential(rate=lam)

      n = 100000
      samples = exponential.sample(n, seed=138)
      self.assertEqual(samples.get_shape(), (n, batch_size, 2))

      sample_values = samples.eval()

      self.assertFalse(np.any(sample_values < 0.0))
      for i in range(2):
        self.assertLess(
            stats.kstest(
                sample_values[:, 0, i],
                stats.expon(scale=1.0 / lam_v[i]).cdf)[0],
            0.01)
        self.assertLess(
            stats.kstest(
                sample_values[:, 1, i],
                stats.expon(scale=1.0 / lam_v[i]).cdf)[0],
            0.01)
Ejemplo n.º 4
0
def do_train_rand(train, valid, params=None, max_models=32):
    """Do randomized hyper-parameter search
    Args:
        train (SFrame): training set
        valid (SFrame): validataion set
        params (dict): parameters for random search
        max_models (int): maximum number of models to run
    Returns:
        res (SFrame): table of choices of parameters sorted by valid RMSE
    """
    if not params:
        params = {'user_id': ['username'], 'item_id': ['course_id'],
                  'target': ['label'], 'binary_target': [True],
                  'num_factors': stats.randint(4, 128),
                  'regularization': stats.expon(scale=1e-4),
                  'linear_regularization': stats.expon(scale=1e-7)}
    try:
        job = gl.toolkits.model_parameter_search \
                         .random_search.create((train, valid),
                                               gl.recommender.
                                               factorization_recommender.create,
                                               params, max_models=max_models)
        res = job.get_results()
        res = res.sort('validation_rmse')
        print 'Best params for random search are: {}'.format(res[0])
        res.save('rand_search.csv', format='csv')
    except:
        print job.get_metrics()
        res = None
    return res
Ejemplo n.º 5
0
 def get_param_grid(cur_model, points, rand):
     print('\nRetrieving parameter grid...')
     try:
         c_range = 10.0 ** np.arange(-2, 3)
         # print 'Getting Parameter grid...'
         # out_txt.write('Getting Parameter grid...')
         gamma_range = [0, .01, .1, .3]
         # neighbor_range = np.arange(2, points, step=5)
         # leaf_range = np.arange(10, points, step=5)
         neighbor_range = np.arange(2, 17, step=5)
         leaf_range = np.arange(10, 60, step=5)
         if not rand:
             grid_params = {'SVC()': [{'C': c_range,
                                       'kernel': ['poly'],
                                       'degree': [3, 5, 8],
                                       'gamma': gamma_range,
                                       'probability': [True],
                                       'class_weight': ['auto', None]},
                                      {'C': c_range,
                                       'kernel': ['rbf', 'sigmoid'],
                                       'gamma': gamma_range,
                                       'probability': [True],
                                       'class_weight': ['auto', None]},
                                      {'C': c_range,
                                       'kernel': ['linear'],
                                       'random_state': [10],
                                       'probability': [True],
                                       'class_weight': ['auto', None]}],
                            'KNeighborsClassifier()': [{'n_neighbors': neighbor_range,
                                                        'weights': ['uniform'],
                                                        'algorithm': ['brute'],
                                                        'metric': ['euclidean', 'manhattan']},
                                                       {'n_neighbors': neighbor_range,
                                                        'weights': ['uniform'],
                                                        'algorithm': ['ball_tree', 'kd_tree'],
                                                        'metric': ['euclidean', 'manhattan'],
                                                        'leaf_size': leaf_range}],
                            'LogisticRegression()': [{'penalty': ['l1', 'l2'],
                                                      'C': c_range,
                                                      'class_weight': [None, 'auto']}]}
             return grid_params[cur_model]
         else:
             rand_params = {'SVC()': {'C': stats.expon(scale=300),
                                      'kernel': ['linear', 'poly', 'rbf', 'sigmoid'],
                                      'degree': [3, 4, 5, 6, 7, 8],
                                      'gamma': stats.expon(scale=1/3),
                                      'random_state': [10],
                                      'probability': [True],
                                      'class_weight': ['auto', None]},
                            'KNeighborsClassifier()': {'n_neighbors': stats.randint(low=2, high=20),
                                                       'weights': ['uniform', 'distance'],
                                                       'algorithm': ['ball_tree', 'kd_tree', 'brute'],
                                                       'metric': ['euclidean', 'manhattan'],
                                                       'leaf_size': stats.randint(low=10, high=60)},
                            'LogisticRegression()': {'penalty': ['l1', 'l2'],
                                                     'C': stats.expon(scale=300),
                                                     'class_weight': [None, 'auto']}}
             return rand_params[cur_model]
     except:
         print('could not get parameter grid')
Ejemplo n.º 6
0
 def generate_receiver_events(self, trial_start_time, trial_duration_seconds, num_receivers_at_time_zero, arrival_rate, service_rate):
     """Generates receiver init and termination events.
     
     Receiver initialization events are generated as a poission process with arrival rate: arrival_rate (in receivers per second).
     Each receiver has an exponential service time with rate: service_rate.
     This should be called at the start of a simulation run, just after initialization of mininet.
     """
     if self.event_list is not None:
         return
     self.event_list = []
     self.past_event_list = []
     self.trial_start_time = trial_start_time
     
     # First, generate the initial receievers (active at time 0)
     for i in range(0, num_receivers_at_time_zero):
         # Generate a service time
         service_time = expon(loc = 0, scale=(1.0 / service_rate)).rvs(1)[0]
         # Select a host through a uniform random distribution
         receiver = self.net_hosts[randint(0,len(self.net_hosts))]
         receiver = MulticastReceiverApplication(receiver, self.group_ip, self.mcast_port, self.echo_port, trial_start_time, service_time)
         self.receiver_applications.append(receiver)
         self.event_list.append((trial_start_time, DynamicMulticastGroupDefinition.EVENT_RECEIVER_INIT, receiver))
         self.event_list.append((trial_start_time + service_time, DynamicMulticastGroupDefinition.EVENT_RECEIVER_TERMINATION, receiver))
     
     # Alternative: Generate inter-arrival times using exponential distribution
     arrival_times = []
     expo_rv = expon(loc = 0, scale=(1.0 / arrival_rate))
     last_arrival_time = 0
     while last_arrival_time < trial_duration_seconds:
         next_arrival_time = expo_rv.rvs(1)[0] + last_arrival_time
         if next_arrival_time < trial_duration_seconds:
             arrival_times.append(next_arrival_time)
         last_arrival_time = next_arrival_time
     
     # Alternative Method
     # Find the number of arrivals in the interval [0, trial_duration_seconds]
     # Size = trial_duration_seconds, since we want the number of arrivals in trial_duration_seconds time units
     # num_arrivals = sum(poisson.rvs(arrival_rate, size=trial_duration_seconds))
     # Once the number of arrivals is known, generate arrival times uniform on [0, trial_duration_seconds]
     # arrival_times = []
     # for i in range(0, num_arrivals):
     #    arrival_times.append(uniform(0, trial_duration_seconds))
     
     # Now, for each arrival, generate a corresponding receiver application and events
     for arrival_time in arrival_times:
         # Generate a service time
         service_time = expon(loc = 0, scale=(1.0 / service_rate)).rvs(1)[0]
         # Select a host through a uniform random distribution
         receiver = self.net_hosts[randint(0,len(self.net_hosts))]
         receiver = MulticastReceiverApplication(receiver, self.group_ip, self.mcast_port, self.echo_port, trial_start_time + arrival_time, service_time)
         self.receiver_applications.append(receiver)
         self.event_list.append((trial_start_time + arrival_time, DynamicMulticastGroupDefinition.EVENT_RECEIVER_INIT, receiver))
         self.event_list.append((trial_start_time + arrival_time + service_time, DynamicMulticastGroupDefinition.EVENT_RECEIVER_TERMINATION, receiver))
     
     # Sort the event list by time
     self.event_list = sorted(self.event_list, key=lambda tup: tup[0])
     
     # Debug printing
     for event in self.event_list:
         print 'Time:' + str(event[0]) + ' ' + str(event[1]) + ' ' + str(event[2])
Ejemplo n.º 7
0
def test_randomized_search_grid_scores():
    # Make a dataset with a lot of noise to get various kind of prediction
    # errors across CV folds and parameter settings
    X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0)

    # XXX: as of today (scipy 0.12) it's not possible to set the random seed
    # of scipy.stats distributions: the assertions in this test should thus
    # not depend on the randomization
    params = dict(C=expon(scale=10), gamma=expon(scale=0.1))
    n_cv_iter = 3
    n_search_iter = 30
    search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_cv_iter, param_distributions=params, iid=False)
    search.fit(X, y)
    assert_equal(len(search.grid_scores_), n_search_iter)

    # Check consistency of the structure of each cv_score item
    for cv_score in search.grid_scores_:
        assert_equal(len(cv_score.cv_validation_scores), n_cv_iter)
        # Because we set iid to False, the mean_validation score is the
        # mean of the fold mean scores instead of the aggregate sample-wise
        # mean score
        assert_almost_equal(np.mean(cv_score.cv_validation_scores), cv_score.mean_validation_score)
        assert_equal(list(sorted(cv_score.parameters.keys())), list(sorted(params.keys())))

    # Check the consistency with the best_score_ and best_params_ attributes
    sorted_grid_scores = list(sorted(search.grid_scores_, key=lambda x: x.mean_validation_score))
    best_score = sorted_grid_scores[-1].mean_validation_score
    assert_equal(search.best_score_, best_score)

    tied_best_params = [s.parameters for s in sorted_grid_scores if s.mean_validation_score == best_score]
    assert_true(
        search.best_params_ in tied_best_params,
        "best_params_={0} is not part of the" " tied best models: {1}".format(search.best_params_, tied_best_params),
    )
Ejemplo n.º 8
0
def nc_of_expon():
    # 1st non-center moment of expon distribution whose lambda is 0.5
    E1 = lambda x: x * 0.5 * np.exp(-x / 2)
    # 2nd non-center moment of expon distribution whose lambda is 0.5
    E2 = lambda x: x ** 2 * 0.5 * np.exp(-x / 2)
    print(integrate.quad(E1, 0, np.inf))
    print(integrate.quad(E2, 0, np.inf))

    print(expon(scale=2).moment(1))
    print(expon(scale=2).moment(2))
Ejemplo n.º 9
0
def SalehValenzuela(**kwargs):
    """ generic Saleh and Valenzuela Model

    Parameters
    ----------

    Lam : clusters Poisson Process parameter (ns)
    lam : rays Poisson Process parameter (ns)
    Gam : clusters exponential decay factor
    gam : rays exponential decay factor
    T   : observation duration


    """
    defaults = { 'Lam' : .1,
                 'lam' : .5,
                 'Gam' : 30,
                 'gam' : 5 ,
                 'T'   : 100}

    for k in defaults:
        if k not in kwargs:
            kwargs[k]=defaults[k]

    Lam = kwargs['Lam']
    lam = kwargs['lam']
    Gam = kwargs['Gam']
    gam = kwargs['gam']
    T   = kwargs['T']
    Nr  = 1.2*T/Lam
    Nc  = 1.2*T/lam
    e1 = st.expon(1./Lam)
    e2 = st.expon(1./lam)
    # cluster time of arrival
    tc   = np.cumsum(e1.rvs(Nr))
    tc   = tc[np.where(tc<T)]
    Nc   = len(tc)
    tauc = np.kron(tc,np.ones((1,Nr)))[0,:]
    # rays time of arrival
    taur = np.cumsum(e2.rvs((Nr,Nc)),axis=0).ravel()
    # exponential decays of cluster and rays
    etc = np.exp(-tauc/(1.0*Gam))
    etr = np.exp(-taur/(1.0*gam))
    et = etc*etr
    tau = tauc+taur
    # filtering < T and reordering in delay domain
    tau = tau[np.where(tau<T)]
    et = et[np.where(tau<T)]
    u = np.argsort(tau)
    taus = tau[u]
    ets  = et[u]*np.sign(np.random.rand(len(u))-0.5)
    SVir = bs.TBsignal(taus,ets)
    return(SVir)
Ejemplo n.º 10
0
 def testExponential1(self):
     distV = expon(scale=5)
     distW = expon(scale=3)
     v = 2
     w = 3
     expected = ([0,1],[0,3])
     bids = [v,w]
     distributions = [distV,distW]
     obtained = myersonAuction(bids,distributions)
     self.assertAlmostEqual(expected, obtained, 
                            msg="Myerson auction with inputs: " + str(bids) + ", " +
                                  str(distributions) + ". Expected " + str(expected) + 
                                 "but obtained " + str(obtained) + ".")
Ejemplo n.º 11
0
def sgd(pd, pl, qd, ql):
    params = {'loss':['squared_loss', 'huber', 'epsilon_insensitive',
                     'squared_epsilon_insensitive'],
                'alpha':expon(scale=1),
                'epsilon':expon(scale=1),
                'l1_ratio':uniform(),
                'penalty':[ 'l2', 'l1', 'elasticnet']}
    clf = SGDRegressor()
    #clf = RandomizedSearchCV(clf, params, n_jobs=2, n_iter=10, verbose=10)
    print("Training Linear SVM Randomly")
    clf.fit(pd, pl)
    print("Score: " + str(clf.score(qd, ql)))
    return clf
 def __init__(self, scenario_flag = "Freeway_Free"):
     """
     Totally five scenarios are supported here:
     Freeway_Night, Freeway_Free, Freeway_Rush;
     Urban_Peak, Urban_Nonpeak.
     The PDFs of the vehicle speed and the inter-vehicle space are adapted 
      from existing references.
     """
     if scenario_flag == "Freeway_Night":
         self.headway_random = expon(0.0, 1.0/256.41)
         meanSpeed = 30.93 #m/s
         stdSpeed = 1.2 #m/s
     elif scenario_flag == "Freeway_Free":
         self.headway_random = lognorm(0.75, 0.0, np.exp(3.4))
         meanSpeed = 29.15 #m/s
         stdSpeed = 1.5 #m/s
     elif scenario_flag == "Freeway_Rush":
         self.headway_random = lognorm(0.5, 0.0, np.exp(2.5))
         meanSpeed = 10.73 #m/s
         stdSpeed = 2.0 #m/s
     elif scenario_flag == "Urban_Peak":
         scale = 1.096
         c = 0.314
         loc = 0.0
         self.headway_random = fisk(c, loc, scale)
         meanSpeed = 6.083 #m/s
         stdSpeed = 1.2 #m/s
     elif scenario_flag == "Urban_Nonpeak":
         self.headway_random = lognorm(0.618, 0.0, np.exp(0.685)) 
         meanSpeed = 12.86 #m/s
         stdSpeed = 1.5 #m/s
     else:
         raise
     
     self.speed_random = norm(meanSpeed, stdSpeed)
Ejemplo n.º 13
0
 def test_random_vector(self):
     comp = (stats.expon(), stats.beta(0.4, 0.8), stats.norm())
     rv = best.random.RandomVectorIndependent(comp)
     print str(rv)
     x = rv.rvs()
     print 'One sample: ', x
     print 'pdf:', rv.pdf(x)
     x = rv.rvs(size=10)
     print '10 samples: ', x
     print 'pdf: ', rv.pdf(x)
     print rv.mean()
     print rv.var()
     print rv.std()
     print rv.stats()
     # Split it in two:
     rv1, rv2 = rv.split(0)
     print str(rv1)
     x = rv1.rvs(size=5)
     print x
     print rv1.pdf(x)
     print rv2.pdf(x)
     print str(rv2)
     print x
     x = rv2.rvs(size=5)
     print rv2.pdf(x)
     rv3, rv4 = rv1.split(0)
     print str(rv3)
     print str(rv4)
     rv5, rv6 = rv3.split(1)
     print str(rv5)
     print str(rv6)
     rv7, rv8 = rv5.split(2)
     print str(rv7)
     print str(rv8)
def gillespie_logistique2(taille_ini, b1,b2,d1,d2,temps):
    """une autre implémentation de l'algorithme de Gillepie
    on ne conserve la taille qu'à des instants prédéfinis"""
    taille = zeros(temps.size) # préalocation de la mémoire
    # initialisation des temps et taille courantes
    temps_courant, taille_courante = 0.0, taille_ini 
    t_nais = (b1 + b2 * taille_courante) * taille_courante # taux de naissance
    t_mort = (d1 + d2 * taille_courante) * taille_courante # taux de mort
    tau    = t_nais + t_mort                               # taux global
    ee = expon()
    uu = uniform()
    delta_temps = ee.rvs() / tau
    for k in range(temps.size):
        # on simule sans dépasser temps[k]
        while temps_courant + delta_temps < temps[k]: 
            temps_courant += delta_temps  # mise à jour instant courant
            if uu.rvs() < (b1 * taille_courante) / tau:
                taille_courante += 1 # naissance
            else:
                taille_courante -= 1 # mort
            t_nais = (b1 + b2 * taille_courante) * taille_courante # taux de naissance
            t_mort = (d1 + d2 * taille_courante) * taille_courante # taux de mort
            tau    = t_nais + t_mort                               # taux global
            delta_temps = ee.rvs() / tau                           # temps de séjour
        taille[k] = taille_courante
    return taille
Ejemplo n.º 15
0
 def test_conditional_rv(self):
     return
     px = stats.expon()
     py = best.random.RandomVariableConditional(px, (1, 2),
                                                name='Conditioned Exponential')
     print str(py)
     print py.rvs(size=10)
     print py.interval(0.5)
     print py.median()
     print py.mean()
     print py.var()
     print py.std()
     print py.stats()
     print py.moment(10)
     return
     i = (0, 4)
     t = np.linspace(i[0], i[1], 100)
     plt.plot(t, py.pdf(t), t, py.cdf(t), linewidth=2.)
     plt.legend(['PDF', 'CDF'])
     #plt.show()
     py1, py2 = py.split()
     print str(py1)
     print str(py2)
     plt.plot(t, py1.pdf(t), t, py1.cdf(t),
              t, py2.pdf(t), t, py2.cdf(t), linewidth=2)
     plt.legend(['PDF $y_1$', 'CDF $y_1$', 'PDF $y_2$', 'CDF $y_2$'])
    def get_value(self):
        fig = figure()
        
        xname = "invariantMass"
        xmin,xmax,xbins = -5.,15.,50
        index = "run*"
        
        x,counts = vis_bokeh.get_1d_hist(xname,xmin,xmax,xbins,es,index=index)
        
        deltas = np.sqrt(counts)
        
        fig=vis_bokeh.whiskered_histogram(xmin,xmax,xbins,counts,deltas,-deltas)
        
        #fit params
        model = mix
        model.fit(sample_weight=counts)#,values_init={'sig_weightlog':np.log(0.4),'bck_weightlog':np.log(0.6)})
        parameters = model.parameters
        w_sig,w_bkg =np.exp(parameters['sig_weightlog']),np.exp(parameters['bck_weightlog'])
        w_sum = w_sig+w_bkg
        w_sig,w_bkg = w_sig/w_sum,w_bkg/w_sum
        n_events = np.sum(counts)
        norm = n_events*(xmax-xmin)/xbins
        
        #plot lines
        expo = lambda x_arr:st.expon(0,1./parameters['slope']).pdf(x_arr)*w_bkg*norm
        gauss = lambda x_arr:st.norm(parameters['mean'],parameters['sigma']).pdf(x_arr)*w_sig*norm
        pdf_x = np.arange(1000,dtype='float')/1000.*(xmax-xmin) + xmin
        
        fig.line(pdf_x, expo(pdf_x), legend="Background", line_width=2,color = 'red')
        fig.line(pdf_x, gauss(pdf_x), legend="Signal", line_width=2,color='blue')
        fig.line(pdf_x, gauss(pdf_x)+expo(pdf_x), legend="Sum", line_width=2,color='green')

        fig.xaxis.axis_label = time.strftime("%H:%M:%S")
        return vis_bokeh.fig_to_html(fig)
 def fit_exponential(vect):
     exponential_dist = stats.expon(scale=mean(vect)) # lambda = 1 / mean
     print 'Performing the KS test on exponential data:'
     dstat, p = stats.kstest(vect, exponential_dist.pdf)
     print 'D-Statistic:\t{}'.format(dstat)
     print 'P Value:\t\t{}'.format(p)
     print '----------------------------'
Ejemplo n.º 18
0
def particlesF(t,pRecs,tol,xs,sim,distFunc,ii):
    '''
    # Filter particles step.
    '''
    p_num = len(pRecs)
    np.random.seed()
    sys.stdout.flush()
    a_star = np.zeros(p_num)
    rho = tol+1.
    N = np.size(pRecs[0],axis=1) #number of particles. Should check all pRec match.
    n = 1000 #upper bound for number of samples rejected before raising error.
    rejects = 0 #count number of rejects.
    while(rho>tol and rejects < n):
        #FIXED: if no particles are accepted after a number of steps tolerance may be too low
        # fix by adding condition to raise error after n particles being rejected.
        r = np.random.randint(0,high=N)
        for i in range(p_num):
            if (pRecs[i][t-1,r] > 0):
                a_star[i] = stats.gamma.rvs(pRecs[i][t-1,r]/rw_var,scale=rw_var)#p1A[t-1,r] + stats.norm.rvs(scale=0.1)
            else:
                a_star[i] = stats.expon(scale=0.1).rvs()
        ys = sim(*a_star)#sim(a_star[0],a_star[1],ii)
        rho = distFunc(ys,xs)
        rejects += 1

    if (rejects >= n):
        raise NameError('Rejected all particles. Try increasing tolerances or increasing number of particles to reject.')

    res = a_star.tolist()
    res.append(rho)
    return res #return parameters and accepted distance.
Ejemplo n.º 19
0
def svc_appr():
    """
    Best params: {'C': 0.022139881953014046}

    Submission:
    E_val:
    E_in:
    E_out:
    """
    from sklearn.svm import LinearSVC
    from sklearn.preprocessing import StandardScaler
    from sklearn.pipeline import Pipeline
    from sklearn.cross_validation import StratifiedKFold
    from sklearn.grid_search import RandomizedSearchCV
    from scipy.stats import expon

    X, y = dataset.load_train()

    raw_scaler = StandardScaler()
    raw_scaler.fit(X)
    X_scaled = raw_scaler.transform(X)

    svc = LinearSVC(dual=False, class_weight='auto')
    rs = RandomizedSearchCV(svc, n_iter=50, scoring='roc_auc', n_jobs=-1,
                            cv=StratifiedKFold(y, 5), verbose=2,
                            param_distributions={'C': expon()})
    rs.fit(X_scaled, y)

    logger.debug('Got best SVC.')
    logger.debug('Best params: %s', rs.best_params_)
    logger.debug('Grid scores:')
    for i, grid_score in enumerate(rs.grid_scores_):
        print('\t%s' % grid_score)
    logger.debug('Best score (E_val): %s', rs.best_score_)
    logger.debug('E_in: %f', Util.auc_score(rs, X_scaled, y))
def setup_logistic():
    """
    Creates clf pipeline for Logistic Regression
    Returns pipeline and parameters for GridSearchCV
    """

    pipeline = Pipeline(steps=[('scaler', MinMaxScaler()),
                                 ('kbest', SelectKBest(score_func=f_classif)),
                                 ('pca', PCA()),
                                 ('clf', LogisticRegression())
                                 ]
                       )
    
    params = {'kbest__k': range(3,30),
              'pca__whiten': (True, False),
#              'clf__C': [ 0.001, 0.1, 10, 10**2, 10**5, 10**10],
              'clf__C': expon(),
              'clf__class_weight': [{False: 1, True: 12},
                                    {False: 1, True: 10},
                                    {False: 1, True: 8},
                                    {False: 1, True: 6},
                                    {False: 1, True: 4}],
              'clf__tol': [2**i for i in range(-20, -1)],
              'clf__penalty': ('l1','l2')
             }
    
    return pipeline, params
Ejemplo n.º 21
0
def create_svm(pd, pl, qd, ql):
    lsvc = LinearSVC()
    params = {'C': expon(scale=100)}
    svm = RandomizedSearchCV(lsvc, params, n_jobs=4, n_iter=10, verbose=10)
    print("Training Linear SVM Randomly")
    svm.fit(pd, pl)
    print("SVM Score: " + str(svm.score(qd, ql)))
    return svm
Ejemplo n.º 22
0
def exponential(location = 0.0, scale = 1.0, N = None, quantiles = None):
    # Exponential distribution
    # similar usage to scipy.stats.expon(loc, scale)
    # The scale parameter is equal to scale = 1.0 / lambda
    # see http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html
    from scipy.stats import expon
    ppf_engine = expon(location, scale).ppf
    return continuous(ppf = ppf_engine, quantiles = quantiles, N = N, Str = 'exponential distribution with location = %g and scale = %g' % (location, scale))
Ejemplo n.º 23
0
 def __init__(self, rate_func, dt):
     SpikingInputStream.__init__(self)
     self.dt = dt
     self.length = 1
     self.rate_func = rate_func
     self.spikes = np.ones([1, SPIKE_HISTORY_LENGTH])*-10000.0
     self.rv_expon = expon()
     self.reset()
Ejemplo n.º 24
0
 def test_random_vector_independent(self):
     return
     comp = (stats.expon(), stats.beta(0.4, 0.8), stats.norm())
     rv = best.random.RandomVectorIndependent(comp)
     subdomain = [[0.1, 4.], [0.1, 0.8], [-1., 1.]]
     rvc = best.random.RandomVectorConditional(rv, subdomain)
     print str(rvc)
     return
Ejemplo n.º 25
0
def nc_of_expon():
    rv = expon(scale=2)
    print(rv.mean())
    print(rv.var())
    print(rv.moment(1))
    print(rv.moment(2))
    print(rv.moment(3))
    print(rv.moment(4))
    print(rv.stats(moments='mvsk'))
Ejemplo n.º 26
0
def Exp(lamda, tag=None):
    """
    An Exponential random variate
    
    Parameters
    ----------
    lamda : scalar
        The inverse scale (as shown on Wikipedia), FYI: mu = 1/lamda.
    """
    return uv(rv=ss.expon(scale=1./lamda), tag=tag)
Ejemplo n.º 27
0
def test_random_search_cv_results():
    # Make a dataset with a lot of noise to get various kind of prediction
    # errors across CV folds and parameter settings
    X, y = make_classification(n_samples=200, n_features=100, n_informative=3,
                               random_state=0)

    # scipy.stats dists now supports `seed` but we still support scipy 0.12
    # which doesn't support the seed. Hence the assertions in the test for
    # random_search alone should not depend on randomization.
    n_splits = 3
    n_search_iter = 30
    params = dict(C=expon(scale=10), gamma=expon(scale=0.1))
    random_search = RandomizedSearchCV(SVC(), n_iter=n_search_iter,
                                       cv=n_splits, iid=False,
                                       param_distributions=params)
    random_search.fit(X, y)
    random_search_iid = RandomizedSearchCV(SVC(), n_iter=n_search_iter,
                                           cv=n_splits, iid=True,
                                           param_distributions=params)
    random_search_iid.fit(X, y)

    param_keys = ('param_C', 'param_gamma')
    score_keys = ('mean_test_score', 'mean_train_score',
                  'rank_test_score',
                  'split0_test_score', 'split1_test_score',
                  'split2_test_score',
                  'split0_train_score', 'split1_train_score',
                  'split2_train_score',
                  'std_test_score', 'std_train_score',
                  'mean_fit_time', 'std_fit_time',
                  'mean_score_time', 'std_score_time')
    n_cand = n_search_iter

    for search, iid in zip((random_search, random_search_iid), (False, True)):
        assert_equal(iid, search.iid)
        cv_results = search.cv_results_
        # Check results structure
        check_cv_results_array_types(cv_results, param_keys, score_keys)
        check_cv_results_keys(cv_results, param_keys, score_keys, n_cand)
        # For random_search, all the param array vals should be unmasked
        assert_false(any(cv_results['param_C'].mask) or
                     any(cv_results['param_gamma'].mask))
        check_cv_results_grid_scores_consistency(search)
Ejemplo n.º 28
0
 def __init__(self, totaljobs, numServers, labda, mu, failurerate, maintenance):
     np.random.seed(1)
     self.rho = labda/mu
     self.scheduler = Scheduler()
     now = self.scheduler.now
     self.sender = Sender()
     arrival = expon(scale = 1./labda)
     service = expon(scale = 1./mu)
     self.sender.setTotalJobs( totaljobs )
     self.sender.setTimeBetweenConsecutiveJobs(arrival)
     self.queue = Server()
     self.queue.setServiceTimeDistribution(service)
     self.sink = Sink()
     self.sender.Out = self.queue
     self.queue.In = self.sender
     self.queue.Out = self.sink
     self.sink.In = self.queue
     self.scheduler.register(self.sender, self.queue)
     self.sender.start()
def get_simulation(dv=.001, update_method='approx', approx_order=None, tol=1e-8):
    import scipy.stats as sps

    # Create simulation:
    b1 = ExternalPopulation(100)
    i1 = InternalPopulation(v_min=0, v_max=.02, dv=dv, update_method=update_method, approx_order=approx_order, tol=tol)
    b1_i1 = Connection(b1, i1, 1, delays=0.0, weights=(sps.expon(0,.005), 201))
    simulation = Network([b1, i1], [b1_i1])

    return simulation
Ejemplo n.º 30
0
 def test_random_vector_poly(self):
     return
     comp = (stats.expon(), stats.beta(0.4, 0.8), stats.norm())
     rv = best.random.RandomVectorIndependent(comp)
     print str(rv)
     prod = best.gpc.ProductBasis(degree=5, rv=rv)
     print str(prod)
     x = rv.rvs(num_samples=10)
     print x
     print prod(x)
Ejemplo n.º 31
0
 def ppf(self,p):
     if self.rtype=="n":
         return(norm(loc=self.args[0],scale=self.args[1]).ppf(p))
     elif self.rtype=="ln":
         return(lognorm(s=self.args[1],scale=math.exp(self.args[0])).ppf(p))
     elif self.rtype=="g":
         return(gumbel_r(loc=self.args[0],scale=self.args[1]).ppf(p))
     elif self.rtype=="e":
         return(expon(loc=self.args[0],scale=self.args[1]).ppf(p))
     elif self.rtype=="u":
         return(uniform_r(loc=self.args[0],scale=self.args[1]).ppf(p))
     else:
         print("distribution {0} not found" .format(rtype))
         return("error - distribution")     
Ejemplo n.º 32
0
def part2():
    def create_exponential_estimator(k):
        k_factorial = scipy.special.gamma(k)

        def exponential_estimator(samples):
            return (k_factorial / (samples**k).mean(axis=1))**1 / k

        return exponential_estimator

    exponential_estimators = [(create_exponential_estimator(k),
                               '$k = {}$'.format(k)) for k in range(1, 5 + 1)]
    grid_for_tetta = np.arange(0.01, 5 + 0.01, 0.01)
    draw_risk(grid_for_tetta, exponential_estimators,
              lambda tetta: sps.expon(scale=1 / tetta))
Ejemplo n.º 33
0
def get_area_distribution(tracks, fit=False):
    area = np.sum(tracks > 0, axis=(1, 2))

    if not fit:
        count = np.bincount(area)
        probability = count / float(np.sum(count))
        return stats.rv_discrete(a=0,
                                 b=np.max(probability.shape[0]),
                                 name='signal distribution',
                                 values=(np.arange(count.shape[0]),
                                         probability))
    else:
        exp_params = stats.expon.fit(area)
        return stats.expon(*exp_params)
def shop_4():
    N, L = 10, 100
    G = uniform(loc=4, scale=2)  # G is called a frozen distribution.
    a = superposition(G.rvs((N, L)))

    labda = 1.0 / 5
    E = expon(scale=1.0 / (N * labda))
    print(E.mean())

    x, y = cdf(a)
    dist_name = "U[4,6]"
    plot_distributions(x, y, N, L, E, dist_name)

    print(KS(a, E))
Ejemplo n.º 35
0
    def histexponencial(self):
        np.random.seed(2016)  # replicar random

        # parametros esteticos de seaborn
        sns.set_palette("deep", desat=.6)
        sns.set_context(rc={"figure.figsize": (8, 4)})
        a = float(self.para.text())
        exponencial = stats.expon(a)
        aleatorios = exponencial.rvs(1000)  # genera aleatorios
        cuenta, cajas, ignorar = plt.hist(aleatorios, 20)
        plt.ylabel('frequencia')
        plt.xlabel('valores')
        plt.title('Histograma Exponencial')
        plt.show()
Ejemplo n.º 36
0
def KSTestCDFPlot(Stat_Stn, Stn, Setting):
    MonthlyStat = Stat_Stn["MonthlyStat"]
    Prep = Stat_Stn["PrepDF"]["P"]
    fig, axs = plt.subplots(nrows=4, ncols=3, sharex=True, sharey=True)
    m = 0
    for i in range(3):
        for j in range(4):
            Prep_m = Prep[Prep.index.month == (m + 1)].dropna()
            Prep_m = Prep_m[Prep_m != 0]
            coef1 = MonthlyStat.loc[m + 1, "exp"]
            coef2 = MonthlyStat.loc[m + 1, "gamma"]
            coef3 = MonthlyStat.loc[m + 1, "weibull"]
            coef4 = MonthlyStat.loc[m + 1, "lognorm"]
            # Plot
            ecdf = ECDF(Prep_m)
            x = np.arange(0, max(Prep_m), 0.1)
            axs[j, i].plot(x,
                           expon(coef1[0], coef1[1]).cdf(x),
                           label='exp',
                           linestyle=':')
            axs[j, i].plot(x,
                           gamma(coef2[0], coef2[1], coef2[2]).cdf(x),
                           label='gamma',
                           linestyle=':')
            axs[j, i].plot(x,
                           weibull_min(coef3[0], coef3[1], coef3[2]).cdf(x),
                           label='weibull',
                           linestyle=':')
            xlog = np.arange(min(np.log(Prep_m)), max(np.log(Prep_m)), 0.1)
            axs[j, i].plot(np.exp(xlog),
                           norm(coef4[0], coef4[1]).cdf(xlog),
                           label='lognorm',
                           linestyle=':')
            axs[j, i].plot(ecdf.x, ecdf.y, label='ecdf', color="red")
            axs[j,
                i].axvline(x=130, color="black", linestyle="--",
                           linewidth=1)  # Definition of storm defined by CWB
            axs[j, i].set_title(str(m + 1))
            axs[j, i].legend()
            m += 1
    fig.suptitle("KStest CDF " + Stn, fontsize=16)
    # Add common axis label
    fig.text(0.5, 0.04, 'Precipitation (mm)', ha='center', fontsize=14)
    fig.text(0.05, 0.5, 'CDF', va='center', rotation='vertical', fontsize=14)
    fig.set_size_inches(18.5, 10.5)
    plt.tight_layout(rect=[0.06, 0.05, 0.94,
                           0.94])  #rect : tuple (left, bottom, right, top)
    SaveFig(fig, "KStest CDF " + Stn, Setting)
    plt.show()
    return None
Ejemplo n.º 37
0
  def _impose_white_noise(self, data):
    import scipy.stats as stats
    original_shape = data.shape

    noise_area_distr = stats.expon(scale = self._white_noise_rate)
    data = data.reshape(data.shape[0], -1)
    s = data.shape[1]

    for i in xrange(data.shape[0]):
      n_white_noise = int(np.minimum(noise_area_distr.rvs(size=1), self._white_noise_maximum) * s)
      indx = np.random.choice(s, size=n_white_noise, replace=False)
      data[i, indx] = self._signal_level

    return data.reshape(original_shape)
Ejemplo n.º 38
0
def simulation_4():
    N = 1  # number of customers
    L = 300

    labda = 1.0 / 5  # lambda is a function in python. Hence we write labda
    E = expon(scale=1.0 / labda)
    print(E.mean())  # to check that we chose the right scale
    a = E.rvs(L)

    print(KS(a, E))
    x, y = cdf(a)
    dist_name = "U[4,6]"

    plot_distributions(x, y, N, L, E, dist_name)
Ejemplo n.º 39
0
def shop_3():
    N, L = 3, 100
    G = uniform(loc=4, scale=2)
    a = superposition(G.rvs((N, L)))

    labda = 1.0 / 5
    E = expon(scale=1.0 / (N * labda))
    print(E.mean())

    x, y = cdf(a)
    dist_name = "U[4,6]"
    plot_distributions(x, y, N, L, E, dist_name)

    print(KS(a, E))  # Compute KS statistic using the function defined earlier
Ejemplo n.º 40
0
    def testExponentialSampleMultiDimensional(self):
        batch_size = 2
        lam_v = [3.0, 22.0]
        lam = tf.constant([lam_v] * batch_size)

        exponential = tfd.Exponential(rate=lam, validate_args=True)

        n = 100000
        samples = exponential.sample(n, seed=test_util.test_seed())
        self.assertEqual(samples.shape, (n, batch_size, 2))

        sample_values = self.evaluate(samples)

        self.assertFalse(np.any(sample_values < 0.0))
        for i in range(2):
            self.assertLess(
                sp_stats.kstest(sample_values[:, 0, i],
                                sp_stats.expon(scale=1.0 / lam_v[i]).cdf)[0],
                0.01)
            self.assertLess(
                sp_stats.kstest(sample_values[:, 1, i],
                                sp_stats.expon(scale=1.0 / lam_v[i]).cdf)[0],
                0.01)
Ejemplo n.º 41
0
    def __init__(self, pose, agent=None, sensor=None, color="black", \
        noise_per_meter=5, noise_std=math.pi/60,\
        bias_rate_stds=(0.1,0.1),\
        expected_stuck_time=1e100, expected_escape_time=1e-100,\
        expected_kidnap_time=1e100, kidnap_range_x=(-5.0,5.0), kidnap_range_y=(-5.0,5.0)):

        super().__init__(pose,agent,sensor,color)
        self.noise_pdf = expon(scale=1.0/(1e-100+noise_per_meter))#exponは指数分布の関数なので、パラメーターを入れるだけでよい(λを掛けなくてよい)
        self.distance_until_noise = self.noise_pdf.rvs()
        self.theta_noise = norm(scale=noise_std)
        self.bias_rate_nu = norm.rvs(loc=1.0,scale=bias_rate_stds[0])
        self.bias_rate_omega = norm.rvs(loc=1.0,scale=bias_rate_stds[1])

        self.stuck_pdf = expon(scale=expected_stuck_time)#回数の逆数は間隔なのでそのまま入れる
        self.escape_pdf = expon(scale=expected_escape_time)
        self.time_until_stuck = self.stuck_pdf.rvs()
        self.time_until_escape = self.escape_pdf.rvs()
        self.is_stuck = False

        self.kidnap_pdf = expon(scale=expected_kidnap_time)
        self.time_until_kidnap = self.kidnap_pdf.rvs()
        rx, ry =kidnap_range_x, kidnap_range_y
        self.kidnap_dist = uniform(loc=(rx[0],ry[0],0.0),scale=(rx[1]-rx[0],ry[1]-ry[0],2*math.pi))#x,y,theta の3次元
Ejemplo n.º 42
0
  def testExponentialSample(self):
    lam = tf.constant([3.0, 4.0])
    lam_v = [3.0, 4.0]
    n = tf.constant(100000)
    exponential = exponential_lib.Exponential(rate=lam)

    samples = exponential.sample(n, seed=tfp_test_util.test_seed())
    sample_values = self.evaluate(samples)
    self.assertEqual(sample_values.shape, (100000, 2))
    self.assertFalse(np.any(sample_values < 0.0))
    for i in range(2):
      self.assertLess(
          sp_stats.kstest(sample_values[:, i],
                          sp_stats.expon(scale=1.0 / lam_v[i]).cdf)[0], 0.01)
Ejemplo n.º 43
0
def record_factory():
    """Generator for fake sales records."""

    pid = 0

    while True:
        pid += 1
        gender = random.choice(["male", "female"])
        if gender == "male":
            first_name = fkr.first_name_male()
        else:
            first_name = fkr.first_name_female()

        data = {
            "id":
            pid,
            "first_name":
            first_name,
            "last_name":
            fkr.last_name(),
            "birthdate":
            fkr.date_between(start_date="-30y", end_date="-18y"),
            "gender":
            gender,
            "city":
            random.choice(
                ["Amsterdam", "Den Haag", "Eindhoven", "Utrecht",
                 "Rotterdam"]),
            "orders":
            1 + int(stats.expon(0.1).rvs() * 3),
            "order_amount":
            1 + int(stats.expon(0.1).rvs() * 20),
            "opt_in":
            random.choice([True, False]),
        }

        yield data
Ejemplo n.º 44
0
    def __init__(self, pose, agent=None, sensor=None, color="black", \
        noise_per_meter=5, noise_std=math.pi/60, \
        bias_rate_stds=(0.1,0.1), \
        expected_stuck_time = 1e100, expected_escape_time = 1e-100, \
        expected_kidnap_time=1e100, kidnap_range_x=(-5.0,5.0), kidnap_range_y=(-5.0,5.0)):
        super().__init__(pose, agent, sensor,
                         color)  # IdeealRobotの__init__メソッドを呼び出す

        # 踏み石用確率密度関数の作成(指数分布)
        self.noise_pdf = expon(scale=1.0 / (1e-100 + noise_per_meter))
        # 最初に小石を踏むまでの道のり
        self.distance_until_noise = self.noise_pdf.rvs()
        # thetaに加えるノイズ
        self.theta_noise = norm(scale=noise_std)

        # ロボット固有のバイアスの作成
        self.bias_rate_nu = norm.rvs(loc=1.0, scale=bias_rate_stds[0])
        self.bias_rate_omega = norm.rvs(loc=1.0, scale=bias_rate_stds[1])

        # スタック用確率密度関数の作成(指数分布)
        self.stuck_pdf = expon(scale=expected_stuck_time)
        self.escape_pdf = expon(scale=expected_escape_time)
        # 時間の初期化
        self.time_until_stuck = self.stuck_pdf.rvs()
        self.time_until_escape = self.escape_pdf.rvs()
        # ロボットがスタック中が表すグラフ
        self.is_stuck = False

        # 誘拐が起こる確率密度関数(指数分布)
        self.kidnap_pdf = expon(scale=expected_kidnap_time)
        self.time_until_kidnap = self.kidnap_pdf.rvs()
        # 誘拐後のロボット位置の範囲
        rx, ry = kidnap_range_x, kidnap_range_y
        # 誘拐後のロボットの位置・姿勢の確率密度関数(一様分布)
        self.kidnap_dist = uniform(loc=(rx[0], ry[0], 0.0),
                                   scale=(rx[1] - rx[0], ry[1] - ry[0],
                                          2 * math.pi))
Ejemplo n.º 45
0
 def random_point(self, shape):
     """
     Sample uniformly from the constraint set.
     L1 and L2 are implemented here.
     Linf implemented in the subclass.
     https://arxiv.org/abs/math/0503650
     """
     if self.p == 2:
         distrib = Normal(0, 1)
     elif self.p == 1:
         distrib = Laplace(0, 1)
     x = distrib.sample(shape)
     e = expon(.5).rvs()
     denom = torch.sqrt(e + (x**2).sum())
     return self.alpha * x / denom
Ejemplo n.º 46
0
def get_simulation(dv=.001, update_method='approx', tol=1e-8):
    import scipy.stats as sps

    # Create simulation:
    b1 = ExternalPopulation(50)
    b2 = ExternalPopulation(1000)
    i1 = InternalPopulation(v_min=-.04,
                            v_max=.02,
                            dv=dv,
                            update_method=update_method,
                            tol=tol)
    b1_i1 = Connection(b1,
                       i1,
                       1,
                       delays=0.0,
                       weights=(sps.expon(0, .00196), 301))
    b2_i1 = Connection(b2,
                       i1,
                       1,
                       delays=0.0,
                       weights=(sps.expon(0, .001), 301))
    simulation = Network([b1, b2, i1], [b1_i1, b2_i1])

    return simulation
Ejemplo n.º 47
0
def checkFitService(vData, dMu, sDistribution):
    dMax = np.max(vData)
    vK = np.arange(dMax)
    iScale = 1 / dMu

    vDistribution = st.expon.pdf(vK, scale=iScale)

    plt.figure()
    plt.subplot(1, 2, 1)
    plotDistribution(vData, vDistribution, sDistribution)
    plt.subplot(1, 2, 2)
    st.probplot(vData, dist=st.expon(scale=iScale), plot=plt)
    plt.grid()
    plt.tight_layout()
    plt.show()
Ejemplo n.º 48
0
def generate_exp():
    a = request.args.get('a', 0, type=float)
    # generate pdf and return json results
    thetas = np.linspace(0, 5, 200)
    # expon is a standardized version of exponential dist
    # set scale to 1/lambda for non-scaled version
    prior = st.expon(scale= (1/a))
    ydat = prior.pdf(thetas)
    ycdf = prior.cdf(thetas)
    validIndex = ~np.isinf(ydat)
    d = collections.OrderedDict()
    d['x'] = list(thetas[validIndex])
    d['y'] = list(ydat[validIndex])
    d['cdf'] = list(ycdf[validIndex])
    return jsonify(result = d)
Ejemplo n.º 49
0
Archivo: main.py Proyecto: hnguye11/mwm
def IMPORTANCE_SAMPLING(q, Ns):
    lbd1 = [lbdi + qi for qi, lbdi in zip(q, lbd)]
    X = [expon(scale=1 / lbdi).rvs(Ns) for lbdi in lbd1]
    W = [0] * Ns
    C = [0] * Ns

    for ns in range(Ns):
        if ns != 0 and ns % 10**4 == 0: print(ns)

        x = [Xi[ns] for Xi in X]
        W[ns] = exp(CALC_LOGW(x, lbd, lbd1, T))
        C[ns] = CALC_F(x)
        # print ns, W[ns], C[ns], x

    return W, C
def validlhs_regular():
    from pyDOE import lhs as lhsd
    n_samples = 0
    while n_samples != 300:
        lhs = lhsd(6, 2800)
        #expand x, y coordinates to their real values
        lhs[:, 0] = expon(scale=10).ppf(lhs[:, 0])
        lhs[:, 1] = norm(0, 2.5).ppf(lhs[:, 1])
        lhs[:, 2] = expon(scale=10).ppf(lhs[:, 2])
        lhs[:, 3] = norm(0, 2.5).ppf(lhs[:, 3])
        lhs[:, 4] = expon(scale=10).ppf(lhs[:, 4])
        lhs[:, 5] = norm(0, 2.5).ppf(lhs[:, 5])
        #exclude points where turbine 2 is closer than turbine 1
        valid_1_2 = calculate_distance(lhs[:, 2],
                                        lhs[:, 3]) \
            - calculate_distance(lhs[:, 0], lhs[:, 1])
        lhs = lhs[valid_1_2 > 0]
        #exclude points where turbine 3 is closer than turbine 2
        valid_2_3 = calculate_distance(lhs[:, 4],
                                        lhs[:, 5]) \
            - calculate_distance(lhs[:, 2], lhs[:, 3])
        lhs = lhs[valid_2_3 > 0]
        #exclude points where turbines are closer than 2D to origin
        dist_1 = np.sqrt(lhs[:, 0]**2 + lhs[:, 1]**2)
        lhs = lhs[dist_1 > 2]
        dist_2 = np.sqrt(lhs[:, 2]**2 + lhs[:, 3]**2)
        lhs = lhs[dist_2 > 2]
        dist_3 = np.sqrt(lhs[:, 4]**2 + lhs[:, 5]**2)
        lhs = lhs[dist_3 > 2]
        #exclude points where turbines are closer than 2D from
        #each other
        dist_1_2 = np.sqrt((lhs[:, 0] - lhs[:, 2])**2 +
                           (lhs[:, 1] - lhs[:, 3])**2)
        lhs = lhs[dist_1_2 > 2]
        dist_2_3 = np.sqrt((lhs[:, 2] - lhs[:, 4])**2 +
                           (lhs[:, 3] - lhs[:, 5])**2)
        lhs = lhs[dist_2_3 > 2]
        dist_3_1 = np.sqrt((lhs[:, 4] - lhs[:, 0])**2 +
                           (lhs[:, 5] - lhs[:, 1])**2)
        lhs = lhs[dist_3_1 > 2]
        n_samples = len(lhs)
        print(n_samples)
    #return to transformed coordinates
    lhs[:, 0] = expon(scale=10).cdf(lhs[:, 0])
    lhs[:, 1] = norm(0, 2.5).cdf(lhs[:, 1])
    lhs[:, 2] = expon(scale=10).cdf(lhs[:, 2])
    lhs[:, 3] = norm(0, 2.5).cdf(lhs[:, 3])
    lhs[:, 4] = expon(scale=10).cdf(lhs[:, 4])
    lhs[:, 5] = norm(0, 2.5).cdf(lhs[:, 5])
    # replace lhs points with nearest regular arrays
    X_reg_tran = np.loadtxt('regular_arrays_no_rot_transformed.txt')
    min_dist = np.zeros(len(X_reg_tran))
    for i in range(len(lhs)):
        diff = np.linalg.norm(X_reg_tran - lhs[i, :], axis=1)
        lhs[i, :] = X_reg_tran[np.argmin(diff), :]
    return lhs
Ejemplo n.º 51
0
def KRRModel(n_jobs=int(os.getenv("SLURM_CPUS_PER_TASK", 3)),
             cv=5,
             n_iter=30,
             verbose=2,
             best_params=None):

    if best_params is None:
        kr = RandomizedSearchCV(KernelRidge(kernel="rbf"),
                                param_distributions={
                                    "alpha": expon(scale=.02),
                                    "gamma": expon(scale=.06)
                                },
                                verbose=verbose,
                                n_jobs=n_jobs,
                                cv=cv,
                                n_iter=n_iter)
    else:
        if "kernel" not in best_params:
            best_params["kernel"] = "rbf"
        kr = KernelRidge(**best_params)

    model = make_pipeline(StandardScaler(), kr)

    return model
Ejemplo n.º 52
0
 def __init__(self,
              pose,
              agent=None,
              sensor=None,
              color="black",
              noise_per_meter=5,
              noise_std=math.pi / 60):
     super().__init__(pose, agent, sensor,
                      color)  # IdeealRobotの__init__メソッドを呼び出す
     # 指数分布のオブジェクト
     self.noise_pdf = expon(scale=1.0 / (1e-100 + noise_per_meter))
     # 最初に小石を踏むまでの道のり
     self.distance_until_noise = self.noise_pdf.rvs()
     # thetaに加えるノイズ
     self.theta_noise = norm(scale=noise_std)
Ejemplo n.º 53
0
    def __init__(self, numBeams=41, sparsity=1):
        self.pHit = 0.95
        self.pShort = 0.02
        self.pMax = 0.02
        self.pRand = 0.01
        self.sigmaHit = 0.05
        self.lambdaShort = 1
        self.zMax = 20
        self.zMaxEps = 0.02
        self.Angles = np.linspace(-np.pi, np.pi, numBeams)  # array of angles
        self.Angles = self.Angles[::sparsity]

        # Pre-compute for efficiency
        self.normal = norm(0, self.sigmaHit)
        self.exponential = expon(self.lambdaShort)
Ejemplo n.º 54
0
def mpdf(x, Ns, Nb, mu, sg, lb, comps=["sig", "bkg"]):

    sig = norm(mu, sg)
    sigN = np.diff(sig.cdf(mrange))

    bkg = expon(mrange[0], lb)
    bkgN = np.diff(bkg.cdf(mrange))

    tot = 0
    if "sig" in comps:
        tot += Ns * sig.pdf(x) / sigN
    if "bkg" in comps:
        tot += Nb * bkg.pdf(x) / bkgN

    return tot
Ejemplo n.º 55
0
 def __init__(self, pose, agent=None, sensor=None, color="black",
             noise_per_meter=5, noise_std=math.pi/60,
             bias_rate_stds=(0.1, 0.1),
             expected_stuck_time=1e100, expected_escape_time=1e-100,
             expected_kidnap_time=1e100, kidnap_range_x=(-5.0, 5.0), kidnap_range_y=(-5.0, 5.0)):
     super().__init__(pose, agent, sensor, color)
     # noise #
     self.noise_pdf = expon(scale=1.0/(1e-100 + noise_per_meter))
     self.distance_until_noise = self.noise_pdf.rvs()
     self.theta_noise = norm(scale=noise_std)
     # bias #
     self.bias_rate_nu = norm.rvs(loc=1.0, scale=bias_rate_stds[0])
     self.bias_rate_omega = norm.rvs(loc=1.0, scale=bias_rate_stds[1])
     # stuck #
     self.stuck_pdf = expon(scale=expected_stuck_time)
     self.escape_pdf = expon(scale=expected_escape_time)
     self.time_until_stuck = self.stuck_pdf.rvs()
     self.time_until_escape = self.escape_pdf.rvs()
     self.is_stuck = False
     # kidnap #
     self.kidnap_pdf = expon(scale=expected_kidnap_time)
     self.time_until_kidnap = self.kidnap_pdf.rvs()
     rx, ry = kidnap_range_x, kidnap_range_y
     self.kidnap_dist = uniform(loc=(rx[0], ry[0], 0.0), scale=(rx[1]-rx[0], ry[1]-ry[0], 2*math.pi))
Ejemplo n.º 56
0
def test_random_search_results():
    # Make a dataset with a lot of noise to get various kind of prediction
    # errors across CV folds and parameter settings
    X, y = make_classification(n_samples=200, n_features=100, n_informative=3,
                               random_state=0)

    # scipy.stats dists now supports `seed` but we still support scipy 0.12
    # which doesn't support the seed. Hence the assertions in the test for
    # random_search alone should not depend on randomization.
    n_folds = 3
    n_search_iter = 30
    params = dict(C=expon(scale=10), gamma=expon(scale=0.1))
    random_search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_folds,
                                       iid=False, param_distributions=params)
    random_search.fit(X, y)
    random_search_iid = RandomizedSearchCV(SVC(), n_iter=n_search_iter,
                                           cv=n_folds, iid=True,
                                           param_distributions=params)
    random_search_iid.fit(X, y)

    param_keys = ('param_C', 'param_gamma')
    score_keys = ('test_mean_score', 'test_rank_score',
                  'test_split0_score', 'test_split1_score',
                  'test_split2_score', 'test_std_score')
    n_cand = n_search_iter

    for search, iid in zip((random_search, random_search_iid), (False, True)):
        assert_equal(iid, search.iid)
        results = search.results_
        # Check results structure
        check_results_array_types(results, param_keys, score_keys)
        check_results_keys(results, param_keys, score_keys, n_cand)
        # For random_search, all the param array vals should be unmasked
        assert_false(any(results['param_C'].mask) or
                     any(results['param_gamma'].mask))
        check_results_grid_scores_consistency(search)
Ejemplo n.º 57
0
def tpdf(x, Ns, Nb, tlb, comps=["sig", "bkg"]):

    sig = expon(trange[0], tlb)
    sigN = np.diff(sig.cdf(trange))

    bkg = uniform(trange[0], trange[1] - trange[0])
    bkgN = np.diff(bkg.cdf(trange))

    tot = 0
    if "sig" in comps:
        tot += Ns * sig.pdf(x) / sigN
    if "bkg" in comps:
        tot += Nb * bkg.pdf(x) / bkgN

    return tot
Ejemplo n.º 58
0
def square_error_exp(_lambda):

    from scipy.stats import expon

    distribution = expon(scale=1 / _lambda)

    square_errors = [
        np.power(mean - distribution.mean(), 2.0) * mean_error_weight,
        np.power(lejp - distribution.ppf(percentile_lower), 2.0) *
        lejp_error_weight,
        np.power(uejp - distribution.ppf(percentile_upper), 2.0) *
        uejp_error_weight
    ]

    return square_errors
Ejemplo n.º 59
0
    def testExponentialSampleMultiDimensional(self):
        with self.test_session():
            batch_size = 2
            lam_v = [3.0, 22.0]
            lam = tf.constant([lam_v] * batch_size)

            exponential = tf.contrib.distributions.Exponential(lam=lam)

            n = 100000
            samples = exponential.sample_n(n, seed=138)
            self.assertEqual(samples.get_shape(), (n, batch_size, 2))

            sample_values = samples.eval()

            self.assertFalse(np.any(sample_values < 0.0))
            for i in range(2):
                self.assertLess(
                    stats.kstest(sample_values[:, 0, i],
                                 stats.expon(scale=1.0 / lam_v[i]).cdf)[0],
                    0.01)
                self.assertLess(
                    stats.kstest(sample_values[:, 1, i],
                                 stats.expon(scale=1.0 / lam_v[i]).cdf)[0],
                    0.01)
Ejemplo n.º 60
0
    def __init__(self,
                 t,
                 mu_s,
                 sigma_s,
                 mu,
                 stot,
                 btot,
                 bin_edges,
                 use_gaussian_appoximation=False):
        # render all params positive
        t, mu_s, sigma_s, mu, stot, btot = np.abs(
            [t, mu_s, sigma_s, mu, stot, btot])
        stot, btot = int(stot), int(btot)
        self.t, self.mu_s, self.sigma_s, self.mu, self.stot, self.btot = t, mu_s, sigma_s, mu, stot, btot
        self.bin_edges = bin_edges
        self.n_bins = len(bin_edges) - 1
        self.params = {
            'stot': self.stot,
            'btot': self.btot,
            't': self.t,
            'mu_s': self.mu_s,
            'sigma_s': self.sigma_s,
            "mu": self.mu
        }

        # base continuous distributions
        self.b = stats.expon(scale=1 / t)
        self.s = stats.norm(loc=mu_s, scale=sigma_s)

        # compute distribution for each bin
        self.si = self.stot * pd.Series(
            [self.s.cdf(i) for i in self.bin_edges]).diff().dropna().values
        self.bi = self.btot * pd.Series(
            [self.b.cdf(i) for i in self.bin_edges]).diff().dropna().values
        if len(self.si) != len(self.bi):
            print("ERROR!!", self.t, self.mu_s, self.sigma_s, mu, btot, stot)
        self.ni = self.mu * self.si + self.bi

        if not use_gaussian_appoximation:
            self.bins_distributions = [
                stats.poisson(mu=self.ni[i]).pmf for i in range(len(self.ni))
            ]
        else:
            self.bins_distributions = [
                stats.norm(loc=self.ni[i],
                           scale=np.sqrt(self.ni[i]) + 1e-50).pdf
                for i in range(len(self.ni))
            ]