s.digichg('irttl2',0)
	s.digichg('irttl3',0)
	s.wait(20.0)
	
	#REFERENCE #1
	s=manta.MantaPicture(s, Manta.exp, lbf.light, 0)
	s.wait(Manta.noatoms)
	#REFERENCE #2
	s=manta.MantaPicture(s, Manta.exp, lbf.light, 0)
	s.wait(Manta.noatoms)


#print s.digital_chgs_str(500,100000.,['cameratrig','probe','odtttl','prshutter'])

#After taking a picture sequence returns at time of the last probe strobe
#Wait 50ms to get past the end
s.wait(50.0)
s=gen.shutdown(s)
s.digichg('odtttl',0)
s.digichg('odt7595',0)

#print s.digital_chgs_str(500,100000., ['cameratrig','probe','odtttl','prshutter'])
#print s.digital_chgs_str(0.,100000.)

import seqconf
s.save( seqconf.seqtxtout() )
s.save( __file__.split('.')[0]+'.txt')

s.clear_disk()
        
print '...Compilation = %.2f seconds\n' % (time.time()-t0)
#HERE TURN OFF ALL LIGHT THAT COULD GET TO THE MANTA
s.digichg('odtttl',0)
s.digichg('odt7595',0)
s.digichg('ipgttl',0)
s.digichg('greenttl1',0)
s.digichg('greenttl2',0)
s.digichg('greenttl3',0)
s.digichg('irttl1',0)
s.digichg('irttl2',0)
s.digichg('irttl3',0)
s.wait(20.0)



#After taking a picture sequence returns at time of the last probe strobe
#Wait 50ms to get past the end
s.wait(50.0)
s=gen.shutdown(s)
s.digichg('odtttl',0)


outputfile = seqconf.seqtxtout() 
s.save( outputfile )

shutil.copyfile( outputfile,  __file__.split('.')[0]+'.txt')

s.clear_disk()
        
__author__ = "Pedro M Duarte"
Ejemplo n.º 3
0
def dimple_to_lattice(s,cpowend):
    
    print "----- LATTICE LOADING RAMPS -----"

    # Find out which is the longest of the ramps we are dealing with:
    maxX =max( [xdomain(DL.latticeV0)[1] ,\
         xdomain(DL.irpow)[1],\
         xdomain(DL.grpow1)[1],\
         xdomain(DL.grpow2)[1],\
         xdomain(DL.grpow3)[1],\
         xdomain(DL.a_s)[1]] )
    print "Largest x value = %.3f ms\n" %  maxX
   
    # We define the times for which all functions will be evaluated
    # MIN TIME TO DO DIGITAL EXTENSION
    DIGEXTENSION = 2050.
    if DL.image >= DIGEXTENSION:
        Xendtime = DIGEXTENSION
    else:
        Xendtime = DL.image

    Nnew = int(math.floor( Xendtime / DL.ss) )  
    Xnew = numpy.arange( Xendtime/Nnew, DL.image, Xendtime/Nnew ) 
    print "X array defined from dt:"
    print "DL.ss =", DL.ss
    print "x0  = ",Xnew[0]
    print "xf  = ",Xnew[-1]
    print "xdt = ",Xnew[1]-Xnew[0]
    print "%d samples" % Nnew
    print 'x shape = ', Xnew.shape
    
    # Define how we want to ramp up the lattice depth
    v0_ramp, xy_v0, v0set =  interpolate_ramp( DL.latticeV0)
    v0  = v0_ramp(Xnew)
                        
    
    
    ###########################################
    #### AXIS DEFINITIONS FOR PLOTS ###
    ###########################################    
    
    fig = plt.figure( figsize=(4.5*1.05,8.*1.1))
    ax0 = fig.add_axes( [0.18,0.76,0.76,0.20]) 
    ax2 = fig.add_axes( [0.18,0.645,0.76,0.11])
    ax3 = fig.add_axes( [0.18,0.53,0.76,0.11])
    ax1 = fig.add_axes( [0.18,0.415,0.76,0.11])
    ax5 = fig.add_axes( [0.18,0.30,0.76,0.11])
    ax4 = fig.add_axes( [0.18,0.185,0.76,0.11])
    ax6 = fig.add_axes( [0.18,0.07,0.76,0.11])

    allax = [ax0, ax1, ax2, ax3, ax4, ax5, ax6]
    for ax in allax:
        ax.axvline( DL.image, linewidth = 1., color='black', alpha=0.6)
    
    lw=1.5
    labelx=-0.12
    legsz =8.
    
    xymew=0.5
    xyms=9
    
    
    ax0.plot( Xnew, v0, 'b', lw=2.5, label='Lattice depth')
    ax0.plot(xy_v0[:,0],xy_v0[:,1], 'x', color='blue', ms=5.)
    ax0.plot(v0set[:,0],v0set[:,1], '.', mew=xymew, ms=xyms, color='blue')
    
    
    ###########################################
    #### USER DEFINED RAMPS: IR, GR, and U ###
    ###########################################      
    
    # Define how we want to ramp up the IR power
    if DIMPLE.allirpow > 0.:
      ir_offset = DIMPLE.allirpow
    else:
      ir_offset = DIMPLE.ir1pow2
    ir_ramp, xy_ir, ir =  interpolate_ramp( DL.irpow, yoffset=ir_offset)
    
    dt_ir = numpy.amax( ir[:,0]) - numpy.amin( ir[:,0])
    N_ir = int(math.floor( dt_ir / DL.ss ))
    x_ir = numpy.arange( dt_ir/N_ir, dt_ir, dt_ir/N_ir)
    
    y_ir = ir_ramp(Xnew)
    
    if v0.size > y_ir.size:
        y_ir = numpy.append(y_ir, (v0.size-y_ir.size)*[y_ir[-1]])
    elif v0.size < y_ir.size:
        y_ir = y_ir[0:v0.size]
        
    if v0.size != y_ir.size:
        msg = "IRPOW ERROR: number of samples in IR ramp and V0 ramp does not match!"
        errormsg.box('LATTICE LOADING ERROR',msg)
        exit(1)
        
   
    alpha_clip_range = 0.1 
    if (v0 > y_ir+ alpha_clip_range).any():
        msg = "IRPOW ERROR:  not enough power to get desired lattice depth"
        print msg
        bad = numpy.where( v0 > y_ir + alpha_clip_range)
        timefail =  int(bad[0][0])*float(DL.ss)
        msg = msg + "\nFirst bad sample = %d out of %d" % (bad[0][0], v0.size)
        msg = msg + "\n  t = %f " %  timefail
        msg = msg + "\n v0 = %f " %   v0[ bad[0][0] ]
        msg = msg + "\n ir = %f " % y_ir[ bad[0][0] ]
        print v0[bad[0][0]]
        print y_ir[bad[0][0]]
        errormsg.box('LATTICE LOADING ERROR',msg)
        exit(1)
    
    ax0.plot(xy_ir[:,0],xy_ir[:,1], 'x', color='darkorange', ms=5.)
    ax0.plot(ir[:,0],ir[:,1], '.', mew=xymew, ms=xyms, color='darkorange')
    ax0.plot(Xnew, y_ir, lw=lw, color='darkorange',label='irpow')
    
    
    # Define how we want to ramp up the GR power
    grwfms = {}
    splmrkr = ['x','+','d']
    ptsmrkr = ['^','s','p']
    for i,grramp in enumerate([(DL.grpow1,DIMPLE.gr1pow2), (DL.grpow2,DIMPLE.gr2pow2), (DL.grpow3,DIMPLE.gr3pow2)]):
      ramppts = grramp[0]
      ramp0 = grramp[1] 

      print 'gr'+'%d'%i +' offset = %f' % ramp0

      gr_ramp, xy_gr, gr =  interpolate_ramp( ramppts, yoffset=ramp0)
    
      dt_gr = numpy.amax( gr[:,0]) - numpy.amin( gr[:,0])
      N_gr = int(math.floor( dt_gr / DL.ss ))
      x_gr = numpy.arange( dt_gr/N_gr, dt_gr, dt_gr/N_gr)
    
      y_gr = gr_ramp(Xnew)
      if DL.signal == 0:
          y_gr = y_gr / 2.0
    
      if v0.size > y_gr.size:
          y_gr = numpy.append(y_gr, (v0.size-y_gr.size)*[y_gr[-1]])
      elif v0.size < y_gr.size:
          y_gr = y_gr[0:v0.size]
        
      if v0.size != y_gr.size:
          msg = "GRPOW ERROR: number of samples in GR ramp and V0 ramp does not match!"
          errormsg.box('LATTICE LOADING ERROR',msg)
          exit(1)

      grwfms[ 'greenpow' + '%1d' % (i+1) ] = y_gr 

      ax0.plot(xy_gr[:,0],xy_gr[:,1], marker= splmrkr[i] ,mec='green', mfc='None', ms=3.)
      ax0.plot(gr[:,0],gr[:,1], marker=ptsmrkr[i], mew=xymew, ms=xyms/2., mfc='None', mec='green')#, label='grpow dat')
      ax0.plot(Xnew, y_gr, lw=lw, color='green', label='grpow')

    for grch in grwfms.keys():
      print grch, " = ", grwfms[grch].shape
    
    ax0.set_xlim(left=-10., right= ax0.get_xlim()[1]*1.1)   
    plt.setp( ax0.get_xticklabels(), visible=False)
    ylim = ax0.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax0.set_ylim( ylim[0]-extra, ylim[1]+extra )
    ax0.grid(True)
    ax0.set_ylabel('$E_{r}$',size=16, labelpad=0)
    ax0.yaxis.set_label_coords(labelx, 0.5)
    ax0.set_title('Lattice Loading')
    ax0.legend(loc='best',numpoints=1,prop={'size':legsz*0.8})
    
    
    # Define how we want to ramp up the scattering length (control our losses)
    a_s_ramp, xy_a_s, a_s =  interpolate_ramp( DL.a_s)
    
    
    dt_a_s = numpy.amax( a_s[:,0]) - numpy.amin( a_s[:,0])
    N_a_s = int(math.floor( dt_a_s / DL.ss ))
    x_a_s = numpy.arange( dt_a_s/N_a_s, dt_a_s, dt_a_s/N_a_s)
    y_a_s = a_s_ramp(Xnew)

   
    
    if v0.size > y_a_s.size:
        y_a_s = numpy.append(y_a_s, (v0.size-y_a_s.size)*[y_a_s[-1]])
    elif v0.size < y_a_s.size:
        y_a_s = y_a_s[0:v0.size]
        
    if v0.size != y_a_s.size:
        msg = "a_s ERROR: number of samples in a_s ramp and V0 ramp does not match!"
        errormsg.box('LATTICE LOADING ERROR',msg)
        exit(1)
    
    
    
    ax1.plot(xy_a_s[:,0],xy_a_s[:,1]/100., 'x', color='#C10087', ms=5.)
    ax1.plot(a_s[:,0],a_s[:,1]/100., '.', mew=xymew, ms=xyms, color='#C10087')
    ax1.plot(Xnew, y_a_s/100., lw=lw, color='#C10087', label=r'$a_s\mathrm{(100 a_{0})}$')
    ax1.set_ylabel(r'$a_s\mathrm{(100 a_{0})}$',size=16, labelpad=0)
    ax1.yaxis.set_label_coords(labelx, 0.5)

    
    ax1.set_xlim( ax0.get_xlim()) 
    ylim = ax1.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax1.set_ylim( ylim[0]-extra, ylim[1]+extra )
    plt.setp( ax1.get_xticklabels(), visible=False)
    ax1.grid(True)
    ax1.legend(loc='best',numpoints=1,prop={'size':legsz})
    

    #######################################################################
    #### CALCULATED RAMPS:  ALPHA, TUNNELING, SCATTERING LENGTH, BFIELD ###
    #######################################################################
    
    alpha = (v0/y_ir)**2.
    
    alpha_advance = 100.
    N_adv = int(math.floor( alpha_advance / DL.ss))
    
    alpha  = alpha.clip(0.,1.)
    alpha_desired = numpy.copy(alpha)
    
    if N_adv < v0.size:
        alpha = alpha[N_adv:]
        alpha = numpy.append(alpha, (v0.size-alpha.size)*[alpha[-1]])
    else:
        alpha = numpy.array( v0.size*[alpha[-1]] )
    
    #alpha = alpha.clip(0., 1.)
    
    ax2.plot( Xnew, alpha, lw=lw, color='saddlebrown', label='alpha adv')
    ax2.plot( Xnew, alpha_desired,':', lw=lw, color='saddlebrown', label='alpha')
    
    ax2.set_xlim( ax0.get_xlim()) 
    ax2.set_ylim(-0.05,1.05)
    plt.setp( ax2.get_xticklabels(), visible=False)
    ax2.grid()
    ax2.set_ylabel('$\\alpha$',size=16, labelpad=0)
    ax2.yaxis.set_label_coords(labelx, 0.5)
    
    ax2.legend(loc='best',numpoints=1,prop={'size':legsz})
    
    
    tunneling_Er  = physics.inv('t_to_V0', v0)
    tunneling_kHz = tunneling_Er * 29.2
    
    ax3.plot( Xnew, tunneling_kHz, lw=lw, color='red', label='$t$ (kHz)')

    
    ax3.set_xlim( ax0.get_xlim()) 
    ylim = ax3.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax3.set_ylim( ylim[0]-extra, ylim[1]+extra )
    plt.setp( ax3.get_xticklabels(), visible=False)
    ax3.grid(True)
    ax3.set_ylabel(r'$t\,\mathrm{(kHz)}$',size=16, labelpad=0)
    ax3.yaxis.set_label_coords(labelx, 0.5)
    ax3.legend(loc='best',numpoints=1,prop={'size':legsz})

    
    wannierF = physics.inv('wF_to_V0', v0)
     
    bohrRadius = 5.29e-11 #meters
    lattice_spacing = 1.064e-6 / 2. #meters
    
    bfieldG = physics.cnv('as_to_B', y_a_s)
    print 
    print "The last value of the scattering length ramp is:"
    print 'a_s =', y_a_s[-1]
    print 'B   =', bfieldG[-1]
    print 
    
    U_over_t = y_a_s * bohrRadius / lattice_spacing * wannierF / tunneling_Er
    
    
    
    
    ax4.plot( Xnew, U_over_t, lw=lw, color='k', label=r'$U/t$')
    
    ax4.set_xlim( ax0.get_xlim()) 
    ylim = ax4.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax4.set_ylim( ylim[0]-extra, ylim[1]+extra )
    plt.setp( ax4.get_xticklabels(), visible=False)
    ax4.grid(True)
    ax4.set_ylabel(r'$U/t$',size=16, labelpad=0)
    ax4.yaxis.set_label_coords(labelx, 0.5)
    
    ax4.legend(loc='best',numpoints=1,prop={'size':legsz})
    
    
    ax5.plot( Xnew, bfieldG, lw=lw, color='purple', label='$B$ (G)')
    
    ax5.set_xlim( ax0.get_xlim()) 
    ylim = ax5.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax5.set_ylim( ylim[0]-extra, ylim[1]+extra )
    ax5.grid(True)
    plt.setp( ax5.get_xticklabels(), visible=False)
    ax5.set_ylabel(r'$B\,\mathrm{(G)}$',size=16, labelpad=0)
    ax5.yaxis.set_label_coords(labelx, 0.5)
    
    
    ax5.legend(loc='best',numpoints=1,prop={'size':legsz})
    
    
    ax6.plot( Xnew, (tunneling_Er / U_over_t), lw=lw, color='#25D500', label=r'$t^{2}/U\,(E_{r)}$')
    #ax6.set_yscale('log')
    
    ax6.set_xlim( ax0.get_xlim()) 
    ylim = ax6.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax6.set_ylim( ylim[0]*0.5, ylim[1] )
    ax6.grid(True)
    ax6.set_ylabel(r'$t^{2}/U\,(E_{r)}$',size=16, labelpad=0)
    ax6.yaxis.set_label_coords(labelx, 0.5)
    
    
    ax6.legend(loc='best',numpoints=1,prop={'size':legsz})
    
    ax6.set_xlabel('time (ms)')

    figfile = seqconf.seqtxtout().split('.')[0]+'_latticeRamp.png'    
    plt.savefig(figfile , dpi=120 )
    
    #Save all ramps to a txt file for later plotting. 
    datfile = seqconf.seqtxtout().split('.')[0]+'_latticeRamp.dat'
    allRamps = numpy.transpose(numpy.vstack((Xnew, v0, y_ir, grwfms['greenpow1'], y_a_s, alpha, alpha_desired, \
                                    tunneling_kHz, U_over_t, bfieldG)))
    header = '# Column index'
    header = header + '\n#\t0\t' + 'time(ms)'
    header = header + '\n#\t1\t' + 'Lattice Depth (Er)'
    header = header + '\n#\t2\t' + 'Ir power (Er)'
    header = header + '\n#\t3\t' + 'GR power (Er)'
    header = header + '\n#\t4\t' + 'a_s (a0)'
    header = header + '\n#\t5\t' + 'alpha - advance'
    header = header + '\n#\t6\t' + 'alpha - desired'
    header = header + '\n#\t7\t' + 'tunneling (kHz)'
    header = header + '\n#\t8\t' + 'U/t'
    header = header + '\n#\t9\t' + 'bfield (Gauss)'
    header = header + '\n'
    
    numpy.savetxt( datfile, allRamps)
    
    with open(datfile, 'w') as f:
        X = numpy.asarray( allRamps )
        f.write(bytes(header))
        
        format = '%.6e'
        ncol = X.shape[1]
        format = [format ,] *ncol
        format = ' '.join(format)
        
        newline = '\n'
        for row in X:
            f.write(numpy.compat.asbytes(format % tuple(row) + newline))

    
    shutil.copyfile( figfile,  seqconf.savedir() + 'expseq' + seqconf.runnumber() + '_latticeRamp.png')
    shutil.copyfile( datfile,  seqconf.savedir() + 'expseq' + seqconf.runnumber() + '_latticeRamp.dat')
    #plt.savefig( seqconf.savedir() + 'expseq' + seqconf.runnumber() + '_latticeRamp.png', dpi=120)
    
    
    #################################
    #### APPEND RAMPS TO SEQUENCE ###
    #################################
    
    wfms=[]

    if DL.signal == 0:
          print " LOCK VALUE FOR SIGNAL / NOSIGNAL "
          print " before = ", DL.lock_Er
          DL.lock_Er = DL.lock_Er / 1.8
          print " after  = \n", DL.lock_Er
    
    for ch in ['ir1pow','ir2pow','ir3pow']:
        n = filter( str.isdigit, ch)[0] 
        w = wfm.wave(ch, 0.0, DL.ss)  #Start value will be overrriden
        w.y = physics.cnv( ch, y_ir )
        if DL.lock:
            endval = w.y[-1]
            w.insertlin_cnv(DL.lock_Er, DL.lock_dtUP, DL.lock_t0 )
        elif DL.lightassist_lock:
            endval = w.y[-1]
            w.linear(DL.lightassist_lockpowIR, DL.lightassist_lockdtUP)
            w.appendhold( DL.lightassist_t0 + DL.lightassistdt )
            if DL.endvalIR >= 0.:
                w.linear(  DL.endvalIR, DL.lightassist_lockdtDOWN)
            else:
                w.linear(  None, DL.lightassist_lockdtDOWN, volt=endval)
        wfms.append(w)
        
    for ch in ['greenpow1','greenpow2','greenpow3']:
        n = filter( str.isdigit, ch)[0] 
        w = wfm.wave(ch, 0.0, DL.ss)  #Start value will be overrriden
        
        correction = DIMPLE.__dict__['gr'+n+'correct']
        
        w.y = physics.cnv( ch, correction * grwfms[ch] )
        if DL.lightassist_lock:
            endval = w.y[-1]
            w.linear(DL.lightassist_lockpowGR, DL.lightassist_lockdtUP)
            w.appendhold( DL.lightassist_t0 + DL.lightassistdt )
            if DL.endvalGR >= 0.:
                w.linear(  DL.endvalGR, DL.lightassist_lockdtDOWN)
            else:
                w.linear(  None, DL.lightassist_lockdtDOWN, volt=endval)
        wfms.append(w)
     

    for ch in ['lcr1','lcr2','lcr3']:
        n = filter( str.isdigit, ch)[0] 
        w = wfm.wave(ch, 0.0, DL.ss)  #Start value will be overrriden
        force = DL.__dict__['force_'+ch]
        if force >= 0 and force <=1:
            print "...Forcing LCR%s = %f during lattice ramp" % (n,force)
            w.y = physics.cnv( ch, numpy.array( alpha.size*[force] )  )
        elif DL.signal == 0:
            print "...Forcing LCR%s = 0. so that it does NOT rotate to LATTICE" % n 
            w.y = physics.cnv( ch, numpy.array( alpha.size*[0.0] )  )
        else:
            w.y = physics.cnv( ch, alpha )
        wfms.append(w)
    

    
    bfieldA = bfieldG/6.8
    
    ##ADD field
    bfield = wfm.wave('bfield', 0.0, DL.ss)
    bfield.y = physics.cnv( 'bfield', bfieldA)
    print "The last value of the bfield voltage is =", bfield.y[-1]
    print 
    wfms.append(bfield)
    
    
    ##ADD gradient field
    gradient = gradient_wave('gradientfield', 0.0, DL.ss,volt = 0.0)
    gradient.follow(bfield)
    wfms.append(gradient)
   
    
    buffer = 40.
    s.wait(buffer)
    
    
    #~ odtpow = odt.odt_wave('odtpow', cpowend, DL.ss)
    #~ if DIMPLE.odt_t0 > buffer :
        #~ odtpow.appendhold( DIMPLE.odt_t0 - buffer)
    #~ if DIMPLE.odt_pow < 0.:
        #~ odtpow.appendhold( DIMPLE.odt_dt)
    #~ else:
        #~ odtpow.tanhRise( DIMPLE.odt_pow, DIMPLE.odt_dt, DIMPLE.odt_tau, DIMPLE.odt_shift)    
        
    #~ if numpy.absolute(DIMPLE.odt_pow) < 0.0001:
        #~ s.wait( odtpow.dt() )
        #~ s.digichg('odtttl',0)
        #~ s.wait(-odtpow.dt() )
    
    #~ wfms.append(odtpow)
        
    
    # RF sweep
    if DL.rf == 1:   
        rfmod  = wfm.wave('rfmod', 0., DL.ss)
        rfmod.appendhold( bfield.dt() + DL.rftime )
        rfmod.linear( DL.rfvoltf, DL.rfpulsedt)
        wfms.append(rfmod)


    if DL.round_trip == 1:
        bindex = 0  # Calculate detunings using starting field
    else: 
        bindex = -1 # Calculate detunings using field at the end of ramps

    bfieldG = physics.inv( 'bfield', bfield.y[bindex]) * 6.8
    hfimg0 = -1.*(100.0 + 163.7 - 1.414*bfieldG)
   
    # Find bindex for braggkill time 
    bindex_BK =  math.floor(-DL.braggkilltime / bfield.ss)
    bfieldG_BK = physics.inv( 'bfield', bfield.y[-1-bindex_BK]) * 6.8
    hfimg0_BK =  -1.*(100.0 + 163.7 - 1.414*bfieldG_BK) 
    DL.braggkill_hfimg = hfimg0_BK - DL.braggkill_hfimg
    print "\n...Braggkill hfimg modification:\n"
    print "\tNEW braggkill_hfimg = %.2f MHz" % DL.braggkill_hfimg

    # Find bindex for bragg2kill time 
    bindex_B2K =  math.floor(-DL.bragg2killtime / bfield.ss)
    bfieldG_B2K = physics.inv( 'bfield', bfield.y[-1-bindex_B2K]) * 6.8
    hfimg0_B2K =  -1.*(100.0 + 163.7 - 1.414*bfieldG_B2K) 
    DL.bragg2kill_hfimg1 = hfimg0_B2K - DL.bragg2kill_hfimg1
    DL.bragg2kill_hfimg2 = hfimg0_B2K - DL.bragg2kill_hfimg2
    print "\n...Bragg2kill hfimg modification:\n"
    print "\tNEW brag2gkill_hfimg1 = %.2f MHz" % DL.bragg2kill_hfimg1
    print "\tNEW brag2gkill_hfimg2 = %.2f MHz" % DL.bragg2kill_hfimg2
    
    
    print "\n...ANDOR:hfimg and hfimg0 will be modified  in report\n"
    print "\tNEW  ANDOR:hfimg  = %.2f MHz" % ( hfimg0 - DL.imgdet)
    print "\tNEW  ANDOR:hfimg0 = %.2f MHz\n" %  hfimg0
    gen.save_to_report('ANDOR','hfimg', hfimg0 - DL.imgdet)
    gen.save_to_report('ANDOR','hfimg0', hfimg0)
    
    newANDORhfimg = hfimg0 - DL.imgdet

    # THIS DEFINES THE TIME IT TAKES THE OFFSET LOCK TO SWITCH TO
    # A NEW SETPOINT
    hfimgdelay = 50. #ms
        
    # Kill hfimg
    if DL.probekill ==1 or DL.braggkill ==1 or  DL.bragg2kill==1 or DL.lightassist or DL.lightassist_lock:
        analogimg = wfm.wave('analogimg', newANDORhfimg, DL.ss)
        
        if DL.probekill == 1:
            if (-DL.probekilltime+hfimgdelay) < DL.image:
                analogimg.appendhold( bfield.dt() + DL.probekilltime - hfimgdelay)
                analogimg.linear( DL.probekill_hfimg , 0.0)
                analogimg.appendhold( hfimgdelay + DL.probekilldt + 3*DL.ss)
        
        elif DL.braggkill == 1:
            print "Setting up analogimg for braggkill"
            if (-DL.braggkilltime+hfimgdelay) < DL.image:
                analogimg.appendhold( bfield.dt() + DL.braggkilltime - hfimgdelay)
                analogimg.linear( DL.braggkill_hfimg , 0.0)
                analogimg.appendhold( hfimgdelay + DL.braggkilldt + 3*DL.ss)
 
        elif DL.bragg2kill == 1:
            print "Setting up analogimg for bragg2kill"
            if (-DL.bragg2killtime+hfimgdelay) < DL.image:
                # This sets up the detuning for the first pulse
                analogimg.appendhold( bfield.dt() + DL.bragg2killtime - hfimgdelay)
                analogimg.linear( DL.bragg2kill_hfimg1 , 0.0)
                analogimg.appendhold( hfimgdelay + DL.bragg2killdt + 3*DL.ss)
 
                # Then set up the detuning for the second pulse
                analogimg.linear( DL.bragg2kill_hfimg2 , 0.0)
                analogimg.appendhold( hfimgdelay + DL.bragg2killdt + 3*DL.ss)
                
            
        
        elif DL.lightassist == 1 or DL.lightassist_lock:
            analogimg.appendhold( bfield.dt()  - hfimgdelay)
            analogimg.linear( DL.lightassist_hfimg , 0.0)
            duration = DL.lightassist_lockdtUP + DL.lightassist_t0 + DL.lightassistdt + DL.lightassist_lockdtDOWN
            analogimg.appendhold( hfimgdelay + duration + 3*DL.ss)
            
        analogimg.linear( newANDORhfimg, 0.)
        analogimg.extend(10)
        wfms.append(analogimg)
    
        

    
    #analogimg = bfieldwfm.hfimg_wave('analogimg', ANDOR.hfimg, DL.ss)
    #andorhfimg0 = analogimg.follow(bfield, DL.imgdet)
    #wfms.append(analogimg)
    

    # If we are doing round trip END, then mirror all the ramps 
    # before adding them to the sequence
    if DL.round_trip == 1:
        if DL.round_trip_type == 1:
            maxdt = 0.
            maxi = -1
            for i,w in enumerate(wfms):
                if w.dt() > maxdt:
                    maxdt = w.dt()
                    maxi = i
    
            maxdt = maxdt + DL.wait_at_top / 2. 
    
            for w in wfms:
                w.extend(maxdt)
                if 'lcr' in w.name:
                    yvals = w.y
                    
                    #Get the reverse of the alpha desired array
                    alpha_mirror = numpy.copy(alpha_desired[::-1])
                    
                    #Add the wait at top part so that it has same length as yvals
                    if alpha_mirror.size > yvals.size:
                        print "Error making mirror ramp for LCR."
                        print "Program will exit."
                        exit(1)
                    alpha_mirror = numpy.append( (yvals.size - alpha_mirror.size)*[ alpha_mirror[0] ], alpha_mirror )
                    
                                   
                    #This is how much the mirror ramp will be advanced
                    N_adv = int(math.floor( DL.lcr_mirror_advance / DL.ss))
                    
                    if N_adv < alpha_mirror.size:
                        alpha_mirror = alpha_mirror[N_adv:]
                        alpha_mirror = numpy.append(alpha_mirror, (yvals.size-alpha_mirror.size)*[alpha_mirror[-1]])
                    else:
                        alpha_mirror = numpy.array( yvals.size*[alpha_mirror[-1]] )
                    
                    
                    
                    w.y = numpy.concatenate((yvals,physics.cnv( w.name, alpha_mirror )))
                else:
                    w.mirror()
                w.appendhold( DL.wait_at_end)
            
        
    
    N_adv = int(math.floor( alpha_advance / DL.ss))
    
    alpha_desired = numpy.copy(alpha)
    
    
    for wavefm in wfms:
        print "%s dt = %f" % (wavefm.name, wavefm.dt())
   
     
    
    duration = s.analogwfm_add(DL.ss,wfms)
    
    if DL.image < DIGEXTENSION:
        s.wait(duration)
    else:
        print "...DL.image = %f  >= %.2f  Digital seq extension will be used." % (DL.image, DIGEXTENSION)
        s.wait( DL.image )
        
    
    ### Prepare the parts of the ramps that are going to be used to mock
    ### the conditions for the noatoms shot
    ### 1. get dt = [noatoms] ms from the end of the lattice ramps.
    if 'manta' in DL.camera:
        noatomsdt = MANTA.noatoms
    else:
        noatomsdt = ANDOR.noatoms
    noatomswfms = []
    for wavefm in wfms:
        cp = copy.deepcopy( wavefm ) 
        cp.idnum = time.time()*100
        cp.retain_last( DL.bgRetainDT )
        noatomswfms.append( cp ) 
    
        
        
    
    
    
    ### Figure out when to turn interlock back on, using alpha information
    #~ if duration > DL.t0 + DL.dt:
        #~ s.wait(-DL.lattice_interlock_time)
        #~ if DL.use_lattice_interlock == 1:
            #~ s.digichg('latticeinterlockbypass',0)
        #~ else:
            #~ s.digichg('latticeinterlockbypass',1)
        #~ s.wait( DL.lattice_interlock_time)
        
        
    #########################################
    ## OTHER TTL EVENTS: probekill, braggkill, rf, quick2
    #########################################
    # Braggkill
    if DL.braggkill == 1:
        print "Using Bragg Kill"
        s.wait( DL.braggkilltime)
        s = manta.OpenShutterBragg(s,DL.shutterdelay)
        s.digichg('bragg',1)
        s.wait( DL.braggkilldt)
        s.digichg('brshutter',1) # to close shutter
        s.digichg('bragg',0)
        
        s.wait( -DL.braggkilldt)
        s.wait( -DL.braggkilltime )

    if DL.bragg2kill == 1:
        print "Using Bragg 2 Kill"
        tcur = s.tcur 
        s.wait( DL.bragg2killtime )
        s = manta.OpenShutterBragg(s,DL.shutterdelay)
        s.digichg('bragg',1)
        s.wait( DL.bragg2killdt)
        s.digichg('brshutter',1) # to close shutter
        s.digichg('bragg',0)
  
        s.wait( hfimgdelay + 3*DL.ss )
        s = manta.OpenShutterBragg(s,DL.shutterdelay)
        s.digichg('bragg',1)
        s.wait( DL.bragg2killdt)
        s.digichg('brshutter',1) # to close shutter
        s.digichg('bragg',0)

        # Revert to current time after pulses have been added in the past
        s.tcur = tcur

        
       
        
         

    # Probe Kill
    if DL.probekill == 1:
        s.wait(DL.probekilltime)
        
        s.wait(-10)
        s.digichg('prshutter',0)
        s.wait(10)
        s.digichg('probe',1)
        s.wait(DL.probekilldt)
        s.digichg('probe',0)

        s.digichg('prshutter',1)
        s.wait(-DL.probekilltime)


    # Pulse RF
    if DL.rf == 1:
        s.wait(DL.rftime)
        s.digichg('rfttl',1)
        s.wait(DL.rfpulsedt)
        s.digichg('rfttl',0)
        s.wait(-DL.rfpulsedt)
        s.wait(-DL.rftime)
        



    # QUICK2
    if DL.quick2 == 1:
        s.wait( DL.quick2time)
        s.digichg('quick2',1)
        s.wait(-DL.quick2time)
        

    # Light-assisted collisions
    if DL.lightassist == 1 or DL.lightassist_lock:
        s.wait( -DL.lightassist_lockdtUP -DL.lightassist_t0 -DL.lightassistdt -DL.lightassist_lockdtDOWN - 3*DL.ss)
        
        s.wait(DL.lightassist_lockdtUP + DL.lightassist_t0)
        s.wait(-10)
        s.digichg('prshutter',0)
        s.wait(10)
        s.digichg('probe', DL.lightassist)
        s.wait(DL.lightassistdt)
        s.digichg('probe',0)

        s.digichg('prshutter',1)
        s.wait(DL.lightassist_lockdtDOWN)
        s.wait(3*DL.ss)
        # After the collisions happen we still need to wait some time 
        # for the probe frequency to come back to the desired value
        s.wait(hfimgdelay)


    #########################################
    ## GO BACK IN TIME IF DOING ROUND-TRIP START
    #########################################
    if DL.round_trip == 1:
        if DL.round_trip_type == 0:
            s.wait( -DL.image )
            s.stop_analog()


    #########################################
    ## TURN GREEN OFF BEFORE PICTURES
    #########################################
    if DL.greenoff == 1:
      s.wait( DL.greenoff_t0 ) 
      s.digichg('greenttl1', 0)
      s.digichg('greenttl2', 0)
      s.digichg('greenttl3', 0)
      s.wait(-DL.greenoff_t0 ) 


    
    #########################################
    ## LATTICE LOCK WITH POSSIBILITY OF RF
    #########################################
    bufferdt = 5.0
    lastIR = y_ir[-1]
   
    lockwfms=[]
    if DL.locksmooth == 1 and DL.lock == 0:
        s.wait(bufferdt)
        for ch in ['ir1pow','ir2pow','ir3pow']:
            n = filter( str.isdigit, ch)[0]
            w = wfm.wave(ch, lastIR, DL.lockss)  #Start value will be overrriden
            w.tanhRise( DL.lock_Er, DL.lock_dtUP, 0.4,0.2)
            lockwfms.append(w)
        print "...LOCKING LATTICE TO %f Er" % DL.lock_Er
        print "...lastIR = %.4f" % lastIR
        duration = s.analogwfm_add(DL.lockss,lockwfms)
        print "...duration = %.2f" % duration
        s.wait(duration)
        #~ if DL.lockrf:
            #~ s.digichg('rfttl',1)
            #~ s.wait(DL.rfpulsedt)
            #~ s.digichg('rfttl',0)
        #~ s.wait(0.036)
    #else:
    #    s.wait(bufferdt)
  
    lockwfmscopy = []
    for wavefm in lockwfms:
        cp = copy.deepcopy( wavefm ) 
        cp.idnum = time.time()*100 + 1e3*numpy.random.randint(0,1e8)
        lockwfmscopy.append( cp ) 
        
    
    #########################################
    ## IMAGING AT LOW FIELD
    #########################################
    if DL.lowfieldimg == 1:
        s.wait(DL.lowfieldimg_t0)
        s.digichg('field',0)
        s.wait(-DL.lowfieldimg_t0)
    
    
    #########################################
    ## TTL RELEASE FROM ODT and LATTICE
    #########################################
    #INDICATE WHICH CHANNELS ARE TO BE CONSIDERED FOR THE BACKGROUND
    bg = ['odtttl','irttl1','irttl2','irttl3','greenttl1','greenttl2','greenttl3']
    bgdictPRETOF={}
    for ch in bg:
        bgdictPRETOF[ch] = s.digistatus(ch)
    bgdictPRETOF['tof'] = DL.tof
    print "\nChannel status for pictures: PRE-TOF"
    print bgdictPRETOF
    print
        
    #RELEASE FROM LATTICE
    if DL.tof <= 0.:
        s.wait(1.0+ANDOR.exp)
    s.digichg('greenttl1',0)
    s.digichg('greenttl2',0)
    s.digichg('greenttl3',0)
    s.digichg('irttl1',0)
    s.digichg('irttl2',0)
    s.digichg('irttl3',0)
    #RELEASE FROM IR TRAP
    s.digichg('odtttl',0)
    if DL.tof <= 0.:
        s.wait(-1.0+ANDOR.exp)

    print "TIME WHEN RELEASED FROM LATTICE = ",s.tcur
    s.wait(DL.tof)
    
    return s, noatomswfms, lockwfmscopy, bgdictPRETOF

import seqconf
from time import sleep
import pickle
import copy

#Setup the path for the pck file that contains the session info
mainpck = os.path.realpath(__file__).split('.')[0]+'_'+os.name+'.pck'

print ""
print ""

#Get the path for the default sequence
if os.name == "posix":
    default_file = seqconf.seqtxtout().replace("L:","/lab")
else:
    default_file = seqconf.seqtxtout()
print "DEFAULT_FILE = ",default_file


#Initialize sequence count iterator
seqct = 0


#The sequence class contains the digital and analog wavforms
#for a given sequence 
class sequence(HasTraits):

    calcwfms = {}
Ejemplo n.º 5
0
#RELEASE FROM IR TRAP
s.digichg('odtttl', 0)
odttof = float(report['ODT']['odttof'])
s.wait(odttof)

#TAKE PICTURES
light = 'probe'
trap_on_picture = 0
#light = 'motswitch'
kinetics = gen.bstr('Kinetics', report)
print '...kinetics = ' + str(kinetics)
if kinetics == True:
    s, SERIESDT = andor.KineticSeries4(s, exp, light, noatoms, trap_on_picture)
else:
    s, SERIESDT = andor.FKSeries2(s, stepsize, exp, light, noatoms,
                                  trap_on_picture)

#After taking a picture sequence returns at time of the last probe strobe
#Wait 30ms to get past the end
s.wait(30.0)
s = gen.shutdown(s)
s.digichg('odtttl', 0)
s.digichg('odt7595', 0)

import seqconf
s.save(seqconf.seqtxtout())
s.save(__file__.split('.')[0] + '.txt')
s.clear_disk()

print '...Compilation = %.2f seconds\n' % (time.time() - t0)
Ejemplo n.º 6
0
        s, SERIESDT = andor.KineticSeries4_SmartBackground(
            s, ANDOR.exp, DL.light, ANDOR.noatoms, bg, trigger='cameratrig2')

s.wait(20.0)

#HERE TURN OFF ALL LIGHT THAT COULD GET TO THE MANTA
s.digichg('odtttl', 0)
s.digichg('odt7595', 0)
s.digichg('ipgttl', 0)
s.digichg('greenttl1', 0)
s.digichg('greenttl2', 0)
s.digichg('greenttl3', 0)
s.digichg('irttl1', 0)
s.digichg('irttl2', 0)
s.digichg('irttl3', 0)
s.wait(20.0)

#After taking a picture sequence returns at time of the last probe strobe
#Wait 50ms to get past the end
s.wait(50.0)
s = gen.shutdown(s)
s.digichg('odtttl', 0)
s.digichg('odt7595', 0)

outputfile = seqconf.seqtxtout()
s.save(outputfile)

shutil.copyfile(outputfile, __file__.split('.')[0] + '.txt')

s.clear_disk()
Ejemplo n.º 7
0
def dimple_to_lattice(s, cpowend):

    print "----- LATTICE LOADING RAMPS -----"

    dt = DL.dt
    N0 = 0

    N = int(math.floor(dt / DL.ss))
    x = numpy.arange(dt / N, dt, dt / N)

    print "%d samples" % N
    print x.shape

    # Define how we want to ramp up the lattice depth
    v0_ramp, xy_v0, v0set = interpolate_ramp(DL.latticeV0)
    v0 = v0_ramp(x)

    NH = int(math.floor(DL.dthold / DL.ss))

    v0 = numpy.concatenate((numpy.zeros(N0), v0, numpy.array(NH * [v0[-1]])))

    x_v0 = numpy.arange(v0.size)
    x_v0 = x_v0 * DL.ss

    # Number of samples to keep
    NS = int(math.floor(DL.image / DL.ss))
    if NS > v0.size and DL.image < 2500.:
        x_v0 = numpy.append(x_v0, (NS - v0.size) * [x_v0[-1]])
        v0 = numpy.append(v0, (NS - v0.size) * [v0[-1]])

    else:
        x_v0 = x_v0[:NS]
        v0 = v0[:NS]

    ###########################################
    #### AXIS DEFINITIONS FOR PLOTS ###
    ###########################################

    fig = plt.figure(figsize=(4.5 * 1.05, 8. * 1.1))
    ax0 = fig.add_axes([0.18, 0.76, 0.76, 0.20])
    ax2 = fig.add_axes([0.18, 0.645, 0.76, 0.11])
    ax3 = fig.add_axes([0.18, 0.53, 0.76, 0.11])
    ax1 = fig.add_axes([0.18, 0.415, 0.76, 0.11])
    ax5 = fig.add_axes([0.18, 0.30, 0.76, 0.11])
    ax4 = fig.add_axes([0.18, 0.185, 0.76, 0.11])
    ax6 = fig.add_axes([0.18, 0.07, 0.76, 0.11])

    lw = 1.5
    labelx = -0.12
    legsz = 8.

    xymew = 0.5
    xyms = 9

    ax0.plot(x_v0, v0, 'b', lw=2.5, label='Lattice depth')
    ax0.plot(xy_v0[:, 0], xy_v0[:, 1], 'x', color='blue', ms=5.)
    ax0.plot(v0set[:, 0], v0set[:, 1], '.', mew=xymew, ms=xyms, color='blue')

    ###########################################
    #### USER DEFINED RAMPS: IR, GR, and U ###
    ###########################################

    # Define how we want to ramp up the IR power
    if DIMPLE.allirpow > 0.:
        ir_offset = DIMPLE.allirpow
    else:
        ir_offset = DIMPLE.ir1pow2
    ir_ramp, xy_ir, ir = interpolate_ramp(DL.irpow, yoffset=ir_offset)

    dt_ir = numpy.amax(ir[:, 0]) - numpy.amin(ir[:, 0])
    N_ir = int(math.floor(dt_ir / DL.ss))
    x_ir = numpy.arange(dt_ir / N_ir, dt_ir, dt_ir / N_ir)

    #y_ir = ir_spline(x_ir)
    y_ir = ir_ramp(x_ir)

    if v0.size > y_ir.size:
        y_ir = numpy.append(y_ir, (v0.size - y_ir.size) * [y_ir[-1]])
    elif v0.size < y_ir.size:
        y_ir = y_ir[0:v0.size]

    if v0.size != y_ir.size:
        msg = "IRPOW ERROR: number of samples in IR ramp and V0 ramp does not match!"
        errormsg.box('LATTICE LOADING ERROR', msg)
        exit(1)

    alpha_clip_range = 0.1
    if (v0 > y_ir + alpha_clip_range).any():
        msg = "IRPOW ERROR:  not enough power to get desired lattice depth"
        print msg
        bad = numpy.where(v0 > y_ir + alpha_clip_range)
        timefail = int(bad[0][0]) * float(DL.ss)
        msg = msg + "\nFirst bad sample = %d out of %d" % (bad[0][0], v0.size)
        msg = msg + "\n  t = %f " % timefail
        msg = msg + "\n v0 = %f " % v0[bad[0][0]]
        msg = msg + "\n ir = %f " % y_ir[bad[0][0]]
        print v0[bad[0][0]]
        print y_ir[bad[0][0]]
        errormsg.box('LATTICE LOADING ERROR', msg)
        exit(1)

    ax0.plot(xy_ir[:, 0], xy_ir[:, 1], 'x', color='darkorange', ms=5.)
    ax0.plot(ir[:, 0], ir[:, 1], '.', mew=xymew, ms=xyms, color='darkorange')
    ax0.plot(x_v0, y_ir, lw=lw, color='darkorange', label='irpow')

    # Define how we want to ramp up the GR power
    grwfms = {}
    splmrkr = ['x', '+', 'd']
    ptsmrkr = ['^', 's', 'p']
    for i, grramp in enumerate([(DL.grpow1, DIMPLE.gr1pow2),
                                (DL.grpow2, DIMPLE.gr2pow2),
                                (DL.grpow3, DIMPLE.gr3pow2)]):
        ramppts = grramp[0]
        ramp0 = grramp[1]

        print 'gr' + '%d' % i + ' offset = %f' % ramp0

        gr_ramp, xy_gr, gr = interpolate_ramp(ramppts, yoffset=ramp0)

        dt_gr = numpy.amax(gr[:, 0]) - numpy.amin(gr[:, 0])
        N_gr = int(math.floor(dt_gr / DL.ss))
        x_gr = numpy.arange(dt_gr / N_gr, dt_gr, dt_gr / N_gr)

        y_gr = gr_ramp(x_gr)

        if v0.size > y_gr.size:
            y_gr = numpy.append(y_gr, (v0.size - y_gr.size) * [y_gr[-1]])
        elif v0.size < y_gr.size:
            y_gr = y_gr[0:v0.size]

        if v0.size != y_gr.size:
            msg = "GRPOW ERROR: number of samples in GR ramp and V0 ramp does not match!"
            errormsg.box('LATTICE LOADING ERROR', msg)
            exit(1)

        grwfms['greenpow' + '%1d' % (i + 1)] = y_gr

        ax0.plot(xy_gr[:, 0],
                 xy_gr[:, 1],
                 marker=splmrkr[i],
                 mec='green',
                 mfc='None',
                 ms=3.)
        ax0.plot(gr[:, 0],
                 gr[:, 1],
                 marker=ptsmrkr[i],
                 mew=xymew,
                 ms=xyms / 2.,
                 mfc='None',
                 mec='green')  #, label='grpow dat')
        ax0.plot(x_v0, y_gr, lw=lw, color='green', label='grpow')

    for grch in grwfms.keys():
        print grch, " = ", grwfms[grch].shape

    ax0.set_xlim(left=-10., right=ax0.get_xlim()[1] * 1.1)
    plt.setp(ax0.get_xticklabels(), visible=False)
    ylim = ax0.get_ylim()
    extra = (ylim[1] - ylim[0]) * 0.1
    ax0.set_ylim(ylim[0] - extra, ylim[1] + extra)
    ax0.grid(True)
    ax0.set_ylabel('$E_{r}$', size=16, labelpad=0)
    ax0.yaxis.set_label_coords(labelx, 0.5)
    ax0.set_title('Lattice Loading')
    ax0.legend(loc='best', numpoints=1, prop={'size': legsz * 0.8})

    # Define how we want to ramp up the scattering length (control our losses)
    a_s_ramp, xy_a_s, a_s = interpolate_ramp(DL.a_s)

    dt_a_s = numpy.amax(a_s[:, 0]) - numpy.amin(a_s[:, 0])
    N_a_s = int(math.floor(dt_a_s / DL.ss))
    x_a_s = numpy.arange(dt_a_s / N_a_s, dt_a_s, dt_a_s / N_a_s)
    y_a_s = a_s_ramp(x_a_s)

    if v0.size > y_a_s.size:
        y_a_s = numpy.append(y_a_s, (v0.size - y_a_s.size) * [y_a_s[-1]])
    elif v0.size < y_a_s.size:
        y_a_s = y_a_s[0:v0.size]

    if v0.size != y_a_s.size:
        msg = "a_s ERROR: number of samples in a_s ramp and V0 ramp does not match!"
        errormsg.box('LATTICE LOADING ERROR', msg)
        exit(1)

    ax1.plot(xy_a_s[:, 0], xy_a_s[:, 1] / 100., 'x', color='#C10087', ms=5.)
    ax1.plot(a_s[:, 0],
             a_s[:, 1] / 100.,
             '.',
             mew=xymew,
             ms=xyms,
             color='#C10087')
    ax1.plot(x_v0,
             y_a_s / 100.,
             lw=lw,
             color='#C10087',
             label=r'$a_s\mathrm{(100 a_{0})}$')
    ax1.set_ylabel(r'$a_s\mathrm{(100 a_{0})}$', size=16, labelpad=0)
    ax1.yaxis.set_label_coords(labelx, 0.5)

    ax1.set_xlim(ax0.get_xlim())
    ylim = ax1.get_ylim()
    extra = (ylim[1] - ylim[0]) * 0.1
    ax1.set_ylim(ylim[0] - extra, ylim[1] + extra)
    plt.setp(ax1.get_xticklabels(), visible=False)
    ax1.grid(True)
    ax1.legend(loc='best', numpoints=1, prop={'size': legsz})

    #######################################################################
    #### CALCULATED RAMPS:  ALPHA, TUNNELING, SCATTERING LENGTH, BFIELD ###
    #######################################################################

    alpha = (v0 / y_ir)**2.

    alpha_advance = 100.
    N_adv = int(math.floor(alpha_advance / DL.ss))

    alpha = alpha.clip(0., 1.)
    alpha_desired = numpy.copy(alpha)

    if N_adv < v0.size:
        alpha = alpha[N_adv:]
        alpha = numpy.append(alpha, (v0.size - alpha.size) * [alpha[-1]])
    else:
        alpha = numpy.array(v0.size * [alpha[-1]])

    #alpha = alpha.clip(0., 1.)

    ax2.plot(x_v0, alpha, lw=lw, color='saddlebrown', label='alpha adv')
    ax2.plot(x_v0,
             alpha_desired,
             ':',
             lw=lw,
             color='saddlebrown',
             label='alpha')

    ax2.set_xlim(ax0.get_xlim())
    ax2.set_ylim(-0.05, 1.05)
    plt.setp(ax2.get_xticklabels(), visible=False)
    ax2.grid()
    ax2.set_ylabel('$\\alpha$', size=16, labelpad=0)
    ax2.yaxis.set_label_coords(labelx, 0.5)

    ax2.legend(loc='best', numpoints=1, prop={'size': legsz})

    tunneling_Er = physics.inv('t_to_V0', v0)
    tunneling_kHz = tunneling_Er * 29.2

    ax3.plot(x_v0, tunneling_kHz, lw=lw, color='red', label='$t$ (kHz)')

    ax3.set_xlim(ax0.get_xlim())
    ylim = ax3.get_ylim()
    extra = (ylim[1] - ylim[0]) * 0.1
    ax3.set_ylim(ylim[0] - extra, ylim[1] + extra)
    plt.setp(ax3.get_xticklabels(), visible=False)
    ax3.grid(True)
    ax3.set_ylabel(r'$t\,\mathrm{(kHz)}$', size=16, labelpad=0)
    ax3.yaxis.set_label_coords(labelx, 0.5)
    ax3.legend(loc='best', numpoints=1, prop={'size': legsz})

    wannierF = physics.inv('wF_to_V0', v0)

    bohrRadius = 5.29e-11  #meters
    lattice_spacing = 1.064e-6 / 2.  #meters

    bfieldG = physics.cnv('as_to_B', y_a_s)

    U_over_t = y_a_s * bohrRadius / lattice_spacing * wannierF / tunneling_Er

    ax4.plot(x_v0, U_over_t, lw=lw, color='k', label=r'$U/t$')

    ax4.set_xlim(ax0.get_xlim())
    ylim = ax4.get_ylim()
    extra = (ylim[1] - ylim[0]) * 0.1
    ax4.set_ylim(ylim[0] - extra, ylim[1] + extra)
    plt.setp(ax4.get_xticklabels(), visible=False)
    ax4.grid(True)
    ax4.set_ylabel(r'$U/t$', size=16, labelpad=0)
    ax4.yaxis.set_label_coords(labelx, 0.5)

    ax4.legend(loc='best', numpoints=1, prop={'size': legsz})

    ax5.plot(x_v0, bfieldG, lw=lw, color='purple', label='$B$ (G)')

    ax5.set_xlim(ax0.get_xlim())
    ylim = ax5.get_ylim()
    extra = (ylim[1] - ylim[0]) * 0.1
    ax5.set_ylim(ylim[0] - extra, ylim[1] + extra)
    ax5.grid(True)
    plt.setp(ax5.get_xticklabels(), visible=False)
    ax5.set_ylabel(r'$B\,\mathrm{(G)}$', size=16, labelpad=0)
    ax5.yaxis.set_label_coords(labelx, 0.5)

    ax5.legend(loc='best', numpoints=1, prop={'size': legsz})

    ax6.plot(x_v0, (tunneling_Er / U_over_t),
             lw=lw,
             color='#25D500',
             label=r'$t^{2}/U\,(E_{r)}$')
    #ax6.set_yscale('log')

    ax6.set_xlim(ax0.get_xlim())
    ylim = ax6.get_ylim()
    extra = (ylim[1] - ylim[0]) * 0.1
    ax6.set_ylim(ylim[0] * 0.5, ylim[1])
    ax6.grid(True)
    ax6.set_ylabel(r'$t^{2}/U\,(E_{r)}$', size=16, labelpad=0)
    ax6.yaxis.set_label_coords(labelx, 0.5)

    ax6.legend(loc='best', numpoints=1, prop={'size': legsz})

    ax6.set_xlabel('time (ms)')

    figfile = seqconf.seqtxtout().split('.')[0] + '_latticeRamp.png'
    plt.savefig(figfile, dpi=120)

    #Save all ramps to a txt file for later plotting.
    datfile = seqconf.seqtxtout().split('.')[0] + '_latticeRamp.dat'
    allRamps = numpy.transpose(numpy.vstack((x_v0, v0, y_ir, grwfms['greenpow1'], y_a_s, alpha, alpha_desired, \
                                    tunneling_kHz, U_over_t, bfieldG)))
    header = '# Column index'
    header = header + '\n#\t0\t' + 'time(ms)'
    header = header + '\n#\t1\t' + 'Lattice Depth (Er)'
    header = header + '\n#\t2\t' + 'Ir power (Er)'
    header = header + '\n#\t3\t' + 'GR power (Er)'
    header = header + '\n#\t4\t' + 'a_s (a0)'
    header = header + '\n#\t5\t' + 'alpha - advance'
    header = header + '\n#\t6\t' + 'alpha - desired'
    header = header + '\n#\t7\t' + 'tunneling (kHz)'
    header = header + '\n#\t8\t' + 'U/t'
    header = header + '\n#\t9\t' + 'bfield (Gauss)'
    header = header + '\n'

    numpy.savetxt(datfile, allRamps)

    with open(datfile, 'w') as f:
        X = numpy.asarray(allRamps)
        f.write(bytes(header))

        format = '%.6e'
        ncol = X.shape[1]
        format = [
            format,
        ] * ncol
        format = ' '.join(format)

        newline = '\n'
        for row in X:
            f.write(numpy.compat.asbytes(format % tuple(row) + newline))

    shutil.copyfile(
        figfile,
        seqconf.savedir() + 'expseq' + seqconf.runnumber() +
        '_latticeRamp.png')
    shutil.copyfile(
        datfile,
        seqconf.savedir() + 'expseq' + seqconf.runnumber() +
        '_latticeRamp.dat')
    #plt.savefig( seqconf.savedir() + 'expseq' + seqconf.runnumber() + '_latticeRamp.png', dpi=120)

    #################################
    #### APPEND RAMPS TO SEQUENCE ###
    #################################

    wfms = []

    for ch in ['ir1pow', 'ir2pow', 'ir3pow']:
        n = filter(str.isdigit, ch)[0]
        w = wfm.wave(ch, 0.0, DL.ss)  #Start value will be overrriden
        w.y = physics.cnv(ch, y_ir)
        wfms.append(w)

    for ch in ['greenpow1', 'greenpow2', 'greenpow3']:
        n = filter(str.isdigit, ch)[0]
        w = wfm.wave(ch, 0.0, DL.ss)  #Start value will be overrriden

        correction = DIMPLE.__dict__['gr' + n + 'correct']

        w.y = physics.cnv(ch, correction * grwfms[ch])
        wfms.append(w)

    for ch in ['lcr1', 'lcr2', 'lcr3']:
        n = filter(str.isdigit, ch)[0]
        w = wfm.wave(ch, 0.0, DL.ss)  #Start value will be overrriden
        force = DL.__dict__['force_' + ch]
        if force >= 0 and force <= 1:
            print "...Forcing LCR%s = %f during lattice ramp" % (n, force)
            w.y = physics.cnv(ch, numpy.array(alpha.size * [force]))
        else:
            w.y = physics.cnv(ch, alpha)
        wfms.append(w)

    bfieldA = bfieldG / 6.8

    ##ADD field
    bfield = wfm.wave('bfield', 0.0, DL.ss)
    bfield.y = physics.cnv('bfield', bfieldA)
    wfms.append(bfield)

    ##ADD gradient field
    gradient = gradient_wave('gradientfield', 0.0, DL.ss, volt=0.0)
    gradient.follow(bfield)
    wfms.append(gradient)

    # RF sweep
    if DL.rf == 1:
        rfmod = wfm.wave('rfmod', 0., DL.ss)
        rfmod.appendhold(bfield.dt() + DL.rftime)
        rfmod.linear(DL.rfvoltf, DL.rfpulsedt)
        wfms.append(rfmod)

    #Take care of imaging frequencies, including various kill experiments
    bfieldG = physics.inv('bfield', bfield.y[-1]) * 6.8
    hfimg0 = -1. * (100.0 + 163.7 - 1.414 * bfieldG)

    print "...ANDOR:hfimg and hfimg0 will be modified  in report\n"
    print "\tNEW  ANDOR:hfimg  = %.2f MHz" % (hfimg0 - DL.imgdet)
    print "\tNEW  ANDOR:hfimg0 = %.2f MHz\n" % hfimg0
    gen.save_to_report('ANDOR', 'hfimg', hfimg0 - DL.imgdet)
    gen.save_to_report('ANDOR', 'hfimg0', hfimg0)
    newANDORhfimg = hfimg0 - DL.imgdet

    # Kill hfimg
    if DL.probekill == 1 or DL.braggkill == 1 or DL.lightassist or DL.lightassist_lock:
        hfimgdelay = 50.  #ms
        analogimg = wfm.wave('analogimg', newANDORhfimg, DL.ss)

        if DL.probekill == 1:
            if (-DL.probekilltime + hfimgdelay) < DL.image:
                analogimg.appendhold(bfield.dt() + DL.probekilltime -
                                     hfimgdelay)
                analogimg.linear(DL.probekill_hfimg, 0.0)
                analogimg.appendhold(hfimgdelay + DL.probekilldt + 3 * DL.ss)

        elif DL.braggkill == 1:
            if (-DL.braggkilltime + hfimgdelay) < DL.image:
                analogimg.appendhold(bfield.dt() + DL.braggkilltime -
                                     hfimgdelay)
                analogimg.linear(DL.braggkill_hfimg, 0.0)
                analogimg.appendhold(hfimgdelay + DL.braggkilldt + 3 * DL.ss)

        #elif DL.lightassist == 1 or DL.lightassist_lock:
        #    analogimg.appendhold( bfield.dt()  - hfimgdelay)
        #    analogimg.linear( DL.lightassist_hfimg , 0.0)
        #    duration = DL.lightassist_lockdtUP + DL.lightassist_t0 + DL.lightassistdt + DL.lightassist_lockdtDOWN
        #    analogimg.appendhold( hfimgdelay + duration + 3*DL.ss)

        analogimg.linear(newANDORhfimg, 0.)
        analogimg.extend(10)
        wfms.append(analogimg)

    #analogimg = bfieldwfm.hfimg_wave('analogimg', ANDOR.hfimg, DL.ss)
    #andorhfimg0 = analogimg.follow(bfield, DL.imgdet)
    #wfms.append(analogimg)

    # If we are doing round trip END, then mirror all the ramps
    # before adding them to the sequence
    if DL.round_trip == 1:
        if DL.round_trip_type == 1:
            maxdt = 0.
            maxi = -1
            for i, w in enumerate(wfms):
                if w.dt() > maxdt:
                    maxdt = w.dt()
                    maxi = i

            maxdt = maxdt + DL.wait_at_top / 2.

            for w in wfms:
                w.extend(maxdt)
                if 'lcr' in w.name:
                    yvals = w.y

                    #Get the reverse of the alpha desired array
                    alpha_mirror = numpy.copy(alpha_desired[::-1])

                    #Add the wait at top part so that it has same length as yvals
                    if alpha_mirror.size > yvals.size:
                        print "Error making mirror ramp for LCR."
                        print "Program will exit."
                        exit(1)
                    alpha_mirror = numpy.append(
                        (yvals.size - alpha_mirror.size) * [alpha_mirror[0]],
                        alpha_mirror)

                    #This is how much the mirror ramp will be advanced
                    N_adv = int(math.floor(DL.lcr_mirror_advance / DL.ss))

                    if N_adv < alpha_mirror.size:
                        alpha_mirror = alpha_mirror[N_adv:]
                        alpha_mirror = numpy.append(
                            alpha_mirror, (yvals.size - alpha_mirror.size) *
                            [alpha_mirror[-1]])
                    else:
                        alpha_mirror = numpy.array(yvals.size *
                                                   [alpha_mirror[-1]])

                    w.y = numpy.concatenate(
                        (yvals, physics.cnv(w.name, alpha_mirror)))
                else:
                    w.mirror()
                w.appendhold(DL.wait_at_end)

    N_adv = int(math.floor(alpha_advance / DL.ss))

    alpha_desired = numpy.copy(alpha)

    for wavefm in wfms:
        print "%s dt = %f" % (wavefm.name, wavefm.dt())

    #Wait the buffer for the lattice loading ramps before adding them
    bufferdt = 20.
    s.wait(bufferdt)
    #Add lattice wfms
    duration = s.analogwfm_add(DL.ss, wfms)

    if DL.image < 2500.:
        s.wait(duration)
    else:
        print "...DL.image = %f  >= 2500.  Digital seq extension will be used." % DL.image
        s.wait(DL.image)

    #Here give some buffer time to do lock, RF etc.
    #It has to be minimum 5.0 ms

    ### Figure out when to turn interlock back on, using alpha information
    #~ if duration > DL.t0 + DL.dt:
    #~ s.wait(-DL.lattice_interlock_time)
    #~ if DL.use_lattice_interlock == 1:
    #~ s.digichg('latticeinterlockbypass',0)
    #~ else:
    #~ s.digichg('latticeinterlockbypass',1)
    #~ s.wait( DL.lattice_interlock_time)

    return s, y_ir[-1]
def dimple_to_lattice(s,cpowend):
    
    print "----- LATTICE LOADING RAMPS -----"
    
    dt = DL.dt
    N0 = 0
    
    N = int(math.floor( dt/ DL.ss))
    x = numpy.arange(dt/N, dt, dt/N)

    print "%d samples" % N
    print x.shape
    
    # Define how we want to ramp up the lattice depth
    v0_ramp, xy_v0, v0set =  interpolate_ramp( DL.latticeV0)
    v0  = v0_ramp(x)
                        
    NH = int(math.floor( DL.dthold/ DL.ss))
    
    v0 = numpy.concatenate(( numpy.zeros(N0), v0, numpy.array(NH*[v0[-1]])  ))
    
    x_v0 = numpy.arange( v0.size )
    x_v0 = x_v0*DL.ss
    
    # Number of samples to keep
    NS = int(math.floor( DL.image / DL.ss))
    if NS > v0.size and DL.image < 2500.:
        x_v0 = numpy.append(x_v0, (NS-v0.size)*[x_v0[-1]])
        v0 = numpy.append(v0, (NS-v0.size)*[v0[-1]])
        
    else:
        x_v0 = x_v0[:NS]
        v0 = v0[:NS]
    
    ###########################################
    #### AXIS DEFINITIONS FOR PLOTS ###
    ###########################################    
    
    fig = plt.figure( figsize=(4.5*1.05,8.*1.1))
    ax0 = fig.add_axes( [0.18,0.76,0.76,0.20]) 
    ax2 = fig.add_axes( [0.18,0.645,0.76,0.11])
    ax3 = fig.add_axes( [0.18,0.53,0.76,0.11])
    ax1 = fig.add_axes( [0.18,0.415,0.76,0.11])
    ax5 = fig.add_axes( [0.18,0.30,0.76,0.11])
    ax4 = fig.add_axes( [0.18,0.185,0.76,0.11])
    ax6 = fig.add_axes( [0.18,0.07,0.76,0.11])
    
    lw=1.5
    labelx=-0.12
    legsz =8.
    
    xymew=0.5
    xyms=9

    ax0.plot( x_v0, v0, 'b', lw=2.5, label='Lattice depth')
    ax0.plot(xy_v0[:,0],xy_v0[:,1], 'x', color='blue', ms=5.)
    ax0.plot(v0set[:,0],v0set[:,1], '.', mew=xymew, ms=xyms, color='blue')
    
    
    ###########################################
    #### USER DEFINED RAMPS: IR, GR, and U ###
    ###########################################      
    
    # Define how we want to ramp up the IR power
    if DIMPLE.allirpow > 0.:
      ir_offset = DIMPLE.allirpow
    else:
      ir_offset = DIMPLE.ir1pow2
    ir_ramp, xy_ir, ir =  interpolate_ramp( DL.irpow, yoffset=ir_offset)
    
    dt_ir = numpy.amax( ir[:,0]) - numpy.amin( ir[:,0])
    N_ir = int(math.floor( dt_ir / DL.ss ))
    x_ir = numpy.arange( dt_ir/N_ir, dt_ir, dt_ir/N_ir)
    
    #y_ir = ir_spline(x_ir) 
    y_ir = ir_ramp(x_ir)
    
    if v0.size > y_ir.size:
        y_ir = numpy.append(y_ir, (v0.size-y_ir.size)*[y_ir[-1]])
    elif v0.size < y_ir.size:
        y_ir = y_ir[0:v0.size]
        
    if v0.size != y_ir.size:
        msg = "IRPOW ERROR: number of samples in IR ramp and V0 ramp does not match!"
        errormsg.box('LATTICE LOADING ERROR',msg)
        exit(1)
        
   
    alpha_clip_range = 0.1 
    if (v0 > y_ir+ alpha_clip_range).any():
        msg = "IRPOW ERROR:  not enough power to get desired lattice depth"
        print msg
        bad = numpy.where( v0 > y_ir + alpha_clip_range)
        timefail =  int(bad[0][0])*float(DL.ss)
        msg = msg + "\nFirst bad sample = %d out of %d" % (bad[0][0], v0.size)
        msg = msg + "\n  t = %f " %  timefail
        msg = msg + "\n v0 = %f " %   v0[ bad[0][0] ]
        msg = msg + "\n ir = %f " % y_ir[ bad[0][0] ]
        print v0[bad[0][0]]
        print y_ir[bad[0][0]]
        errormsg.box('LATTICE LOADING ERROR',msg)
        exit(1)
    
    ax0.plot(xy_ir[:,0],xy_ir[:,1], 'x', color='darkorange', ms=5.)
    ax0.plot(ir[:,0],ir[:,1], '.', mew=xymew, ms=xyms, color='darkorange')
    ax0.plot(x_v0, y_ir, lw=lw, color='darkorange',label='irpow')
    
    
    # Define how we want to ramp up the GR power
    grwfms = {}
    splmrkr = ['x','+','d']
    ptsmrkr = ['^','s','p']
    for i,grramp in enumerate([(DL.grpow1,DIMPLE.gr1pow2), (DL.grpow2,DIMPLE.gr2pow2), (DL.grpow3,DIMPLE.gr3pow2)]):
      ramppts = grramp[0]
      ramp0 = grramp[1] 

      print 'gr'+'%d'%i +' offset = %f' % ramp0

      gr_ramp, xy_gr, gr =  interpolate_ramp( ramppts, yoffset=ramp0)
    
      dt_gr = numpy.amax( gr[:,0]) - numpy.amin( gr[:,0])
      N_gr = int(math.floor( dt_gr / DL.ss ))
      x_gr = numpy.arange( dt_gr/N_gr, dt_gr, dt_gr/N_gr)
    
      y_gr = gr_ramp(x_gr)
    
      if v0.size > y_gr.size:
          y_gr = numpy.append(y_gr, (v0.size-y_gr.size)*[y_gr[-1]])
      elif v0.size < y_gr.size:
          y_gr = y_gr[0:v0.size]
        
      if v0.size != y_gr.size:
          msg = "GRPOW ERROR: number of samples in GR ramp and V0 ramp does not match!"
          errormsg.box('LATTICE LOADING ERROR',msg)
          exit(1)

      grwfms[ 'greenpow' + '%1d' % (i+1) ] = y_gr 

      ax0.plot(xy_gr[:,0],xy_gr[:,1], marker= splmrkr[i] ,mec='green', mfc='None', ms=3.)
      ax0.plot(gr[:,0],gr[:,1], marker=ptsmrkr[i], mew=xymew, ms=xyms/2., mfc='None', mec='green')#, label='grpow dat')
      ax0.plot(x_v0, y_gr, lw=lw, color='green', label='grpow')

    for grch in grwfms.keys():
      print grch, " = ", grwfms[grch].shape
    
    ax0.set_xlim(left=-10., right= ax0.get_xlim()[1]*1.1)   
    plt.setp( ax0.get_xticklabels(), visible=False)
    ylim = ax0.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax0.set_ylim( ylim[0]-extra, ylim[1]+extra )
    ax0.grid(True)
    ax0.set_ylabel('$E_{r}$',size=16, labelpad=0)
    ax0.yaxis.set_label_coords(labelx, 0.5)
    ax0.set_title('Lattice Loading')
    ax0.legend(loc='best',numpoints=1,prop={'size':legsz*0.8})
    
    
    # Define how we want to ramp up the scattering length (control our losses)
    a_s_ramp, xy_a_s, a_s =  interpolate_ramp( DL.a_s)
    
    
    dt_a_s = numpy.amax( a_s[:,0]) - numpy.amin( a_s[:,0])
    N_a_s = int(math.floor( dt_a_s / DL.ss ))
    x_a_s = numpy.arange( dt_a_s/N_a_s, dt_a_s, dt_a_s/N_a_s)
    y_a_s = a_s_ramp(x_a_s)
    
    if v0.size > y_a_s.size:
        y_a_s = numpy.append(y_a_s, (v0.size-y_a_s.size)*[y_a_s[-1]])
    elif v0.size < y_a_s.size:
        y_a_s = y_a_s[0:v0.size]
        
    if v0.size != y_a_s.size:
        msg = "a_s ERROR: number of samples in a_s ramp and V0 ramp does not match!"
        errormsg.box('LATTICE LOADING ERROR',msg)
        exit(1)
    
    
    
    ax1.plot(xy_a_s[:,0],xy_a_s[:,1]/100., 'x', color='#C10087', ms=5.)
    ax1.plot(a_s[:,0],a_s[:,1]/100., '.', mew=xymew, ms=xyms, color='#C10087')
    ax1.plot(x_v0, y_a_s/100., lw=lw, color='#C10087', label=r'$a_s\mathrm{(100 a_{0})}$')
    ax1.set_ylabel(r'$a_s\mathrm{(100 a_{0})}$',size=16, labelpad=0)
    ax1.yaxis.set_label_coords(labelx, 0.5)

    
    ax1.set_xlim( ax0.get_xlim()) 
    ylim = ax1.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax1.set_ylim( ylim[0]-extra, ylim[1]+extra )
    plt.setp( ax1.get_xticklabels(), visible=False)
    ax1.grid(True)
    ax1.legend(loc='best',numpoints=1,prop={'size':legsz})
    

    #######################################################################
    #### CALCULATED RAMPS:  ALPHA, TUNNELING, SCATTERING LENGTH, BFIELD ###
    #######################################################################
    
    alpha = (v0/y_ir)**2.
    
    alpha_advance = 100.
    N_adv = int(math.floor( alpha_advance / DL.ss))
    
    alpha  = alpha.clip(0.,1.)
    alpha_desired = numpy.copy(alpha)
    
    if N_adv < v0.size:
        alpha = alpha[N_adv:]
        alpha = numpy.append(alpha, (v0.size-alpha.size)*[alpha[-1]])
    else:
        alpha = numpy.array( v0.size*[alpha[-1]] )
    
    #alpha = alpha.clip(0., 1.)
    
    ax2.plot( x_v0, alpha, lw=lw, color='saddlebrown', label='alpha adv')
    ax2.plot( x_v0, alpha_desired,':', lw=lw, color='saddlebrown', label='alpha')
    
    ax2.set_xlim( ax0.get_xlim()) 
    ax2.set_ylim(-0.05,1.05)
    plt.setp( ax2.get_xticklabels(), visible=False)
    ax2.grid()
    ax2.set_ylabel('$\\alpha$',size=16, labelpad=0)
    ax2.yaxis.set_label_coords(labelx, 0.5)
    
    ax2.legend(loc='best',numpoints=1,prop={'size':legsz})
    
    
    tunneling_Er  = physics.inv('t_to_V0', v0)
    tunneling_kHz = tunneling_Er * 29.2
    
    ax3.plot( x_v0, tunneling_kHz, lw=lw, color='red', label='$t$ (kHz)')
    
    ax3.set_xlim( ax0.get_xlim()) 
    ylim = ax3.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax3.set_ylim( ylim[0]-extra, ylim[1]+extra )
    plt.setp( ax3.get_xticklabels(), visible=False)
    ax3.grid(True)
    ax3.set_ylabel(r'$t\,\mathrm{(kHz)}$',size=16, labelpad=0)
    ax3.yaxis.set_label_coords(labelx, 0.5)
    ax3.legend(loc='best',numpoints=1,prop={'size':legsz})

    
    wannierF = physics.inv('wF_to_V0', v0)
     
    bohrRadius = 5.29e-11 #meters
    lattice_spacing = 1.064e-6 / 2. #meters
    
    bfieldG = physics.cnv('as_to_B', y_a_s)
    
    U_over_t = y_a_s * bohrRadius / lattice_spacing * wannierF / tunneling_Er
    
    
    
    
    ax4.plot( x_v0, U_over_t, lw=lw, color='k', label=r'$U/t$')
    
    ax4.set_xlim( ax0.get_xlim()) 
    ylim = ax4.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax4.set_ylim( ylim[0]-extra, ylim[1]+extra )
    plt.setp( ax4.get_xticklabels(), visible=False)
    ax4.grid(True)
    ax4.set_ylabel(r'$U/t$',size=16, labelpad=0)
    ax4.yaxis.set_label_coords(labelx, 0.5)
    
    ax4.legend(loc='best',numpoints=1,prop={'size':legsz})
    
    
    ax5.plot( x_v0, bfieldG, lw=lw, color='purple', label='$B$ (G)')
    
    ax5.set_xlim( ax0.get_xlim()) 
    ylim = ax5.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax5.set_ylim( ylim[0]-extra, ylim[1]+extra )
    ax5.grid(True)
    plt.setp( ax5.get_xticklabels(), visible=False)
    ax5.set_ylabel(r'$B\,\mathrm{(G)}$',size=16, labelpad=0)
    ax5.yaxis.set_label_coords(labelx, 0.5)
    
    
    ax5.legend(loc='best',numpoints=1,prop={'size':legsz})
    
    
    ax6.plot( x_v0, (tunneling_Er / U_over_t), lw=lw, color='#25D500', label=r'$t^{2}/U\,(E_{r)}$')
    #ax6.set_yscale('log')
    
    ax6.set_xlim( ax0.get_xlim()) 
    ylim = ax6.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax6.set_ylim( ylim[0]*0.5, ylim[1] )
    ax6.grid(True)
    ax6.set_ylabel(r'$t^{2}/U\,(E_{r)}$',size=16, labelpad=0)
    ax6.yaxis.set_label_coords(labelx, 0.5)
    
    
    ax6.legend(loc='best',numpoints=1,prop={'size':legsz})
    
    ax6.set_xlabel('time (ms)')

    figfile = seqconf.seqtxtout().split('.')[0]+'_latticeRamp.png'    
    plt.savefig(figfile , dpi=120 )
    
    #Save all ramps to a txt file for later plotting. 
    datfile = seqconf.seqtxtout().split('.')[0]+'_latticeRamp.dat'
    allRamps = numpy.transpose(numpy.vstack((x_v0, v0, y_ir, grwfms['greenpow1'], y_a_s, alpha, alpha_desired, \
                                    tunneling_kHz, U_over_t, bfieldG)))
    header = '# Column index'
    header = header + '\n#\t0\t' + 'time(ms)'
    header = header + '\n#\t1\t' + 'Lattice Depth (Er)'
    header = header + '\n#\t2\t' + 'Ir power (Er)'
    header = header + '\n#\t3\t' + 'GR power (Er)'
    header = header + '\n#\t4\t' + 'a_s (a0)'
    header = header + '\n#\t5\t' + 'alpha - advance'
    header = header + '\n#\t6\t' + 'alpha - desired'
    header = header + '\n#\t7\t' + 'tunneling (kHz)'
    header = header + '\n#\t8\t' + 'U/t'
    header = header + '\n#\t9\t' + 'bfield (Gauss)'
    header = header + '\n'
    
    numpy.savetxt( datfile, allRamps)
    
    with open(datfile, 'w') as f:
        X = numpy.asarray( allRamps )
        f.write(bytes(header))
        
        format = '%.6e'
        ncol = X.shape[1]
        format = [format ,] *ncol
        format = ' '.join(format)
        
        newline = '\n'
        for row in X:
            f.write(numpy.compat.asbytes(format % tuple(row) + newline))

    
    shutil.copyfile( figfile,  seqconf.savedir() + 'expseq' + seqconf.runnumber() + '_latticeRamp.png')
    shutil.copyfile( datfile,  seqconf.savedir() + 'expseq' + seqconf.runnumber() + '_latticeRamp.dat')
    #plt.savefig( seqconf.savedir() + 'expseq' + seqconf.runnumber() + '_latticeRamp.png', dpi=120)
    
    
    #################################
    #### APPEND RAMPS TO SEQUENCE ###
    #################################
    
    wfms=[]
    
    for ch in ['ir1pow','ir2pow','ir3pow']:
        n = filter( str.isdigit, ch)[0] 
        w = wfm.wave(ch, 0.0, DL.ss)  #Start value will be overrriden
        w.y = physics.cnv( ch, y_ir )
        wfms.append(w)
        
    for ch in ['greenpow1','greenpow2','greenpow3']:
        n = filter( str.isdigit, ch)[0] 
        w = wfm.wave(ch, 0.0, DL.ss)  #Start value will be overrriden
        
        correction = DIMPLE.__dict__['gr'+n+'correct']
        
        w.y = physics.cnv( ch, correction * grwfms[ch] )
        wfms.append(w)

    for ch in ['lcr1','lcr2','lcr3']:
        n = filter( str.isdigit, ch)[0] 
        w = wfm.wave(ch, 0.0, DL.ss)  #Start value will be overrriden
        force = DL.__dict__['force_'+ch]
        if force >= 0 and force <=1:
            print "...Forcing LCR%s = %f during lattice ramp" % (n,force)
            w.y = physics.cnv( ch, numpy.array( alpha.size*[force] )  )
        else:
            w.y = physics.cnv( ch, alpha )
        wfms.append(w)
    
    bfieldA = bfieldG/6.8
    
    ##ADD field
    bfield = wfm.wave('bfield', 0.0, DL.ss)
    bfield.y = physics.cnv( 'bfield', bfieldA)
    wfms.append(bfield)
    
    ##ADD gradient field
    gradient = gradient_wave('gradientfield', 0.0, DL.ss,volt = 0.0)
    gradient.follow(bfield)
    wfms.append(gradient)
     
    
    # RF sweep
    if DL.rf == 1:   
        rfmod  = wfm.wave('rfmod', 0., DL.ss)
        rfmod.appendhold( bfield.dt() + DL.rftime )
        rfmod.linear( DL.rfvoltf, DL.rfpulsedt)
        wfms.append(rfmod)

    
    #Take care of imaging frequencies, including various kill experiments
    bfieldG = physics.inv( 'bfield', bfield.y[-1]) * 6.8
    hfimg0 = -1.*(100.0 + 163.7 - 1.414*bfieldG)
    
    print "...ANDOR:hfimg and hfimg0 will be modified  in report\n"
    print "\tNEW  ANDOR:hfimg  = %.2f MHz" % ( hfimg0 - DL.imgdet)
    print "\tNEW  ANDOR:hfimg0 = %.2f MHz\n" %  hfimg0
    gen.save_to_report('ANDOR','hfimg', hfimg0 - DL.imgdet)
    gen.save_to_report('ANDOR','hfimg0', hfimg0)
    newANDORhfimg = hfimg0 - DL.imgdet
        
    # Kill hfimg
    if DL.probekill ==1 or DL.braggkill ==1 or DL.lightassist or DL.lightassist_lock:
        hfimgdelay = 50. #ms
        analogimg = wfm.wave('analogimg', newANDORhfimg, DL.ss)
        
        if DL.probekill == 1:
            if (-DL.probekilltime+hfimgdelay) < DL.image:
                analogimg.appendhold( bfield.dt() + DL.probekilltime - hfimgdelay)
                analogimg.linear( DL.probekill_hfimg , 0.0)
                analogimg.appendhold( hfimgdelay + DL.probekilldt + 3*DL.ss)
        
        elif DL.braggkill == 1:
            if (-DL.braggkilltime+hfimgdelay) < DL.image:
                analogimg.appendhold( bfield.dt() + DL.braggkilltime - hfimgdelay)
                analogimg.linear( DL.braggkill_hfimg , 0.0)
                analogimg.appendhold( hfimgdelay + DL.braggkilldt + 3*DL.ss)
        
        #elif DL.lightassist == 1 or DL.lightassist_lock:
        #    analogimg.appendhold( bfield.dt()  - hfimgdelay)
        #    analogimg.linear( DL.lightassist_hfimg , 0.0)
        #    duration = DL.lightassist_lockdtUP + DL.lightassist_t0 + DL.lightassistdt + DL.lightassist_lockdtDOWN
        #    analogimg.appendhold( hfimgdelay + duration + 3*DL.ss)
            
        analogimg.linear( newANDORhfimg, 0.)
        analogimg.extend(10)
        wfms.append(analogimg)
    
        

    
    #analogimg = bfieldwfm.hfimg_wave('analogimg', ANDOR.hfimg, DL.ss)
    #andorhfimg0 = analogimg.follow(bfield, DL.imgdet)
    #wfms.append(analogimg)
    

    # If we are doing round trip END, then mirror all the ramps 
    # before adding them to the sequence
    if DL.round_trip == 1:
        if DL.round_trip_type == 1:
            maxdt = 0.
            maxi = -1
            for i,w in enumerate(wfms):
                if w.dt() > maxdt:
                    maxdt = w.dt()
                    maxi = i
    
            maxdt = maxdt + DL.wait_at_top / 2. 
    
            for w in wfms:
                w.extend(maxdt)
                if 'lcr' in w.name:
                    yvals = w.y
                    
                    #Get the reverse of the alpha desired array
                    alpha_mirror = numpy.copy(alpha_desired[::-1])
                    
                    #Add the wait at top part so that it has same length as yvals
                    if alpha_mirror.size > yvals.size:
                        print "Error making mirror ramp for LCR."
                        print "Program will exit."
                        exit(1)
                    alpha_mirror = numpy.append( (yvals.size - alpha_mirror.size)*[ alpha_mirror[0] ], alpha_mirror )
                    
                                   
                    #This is how much the mirror ramp will be advanced
                    N_adv = int(math.floor( DL.lcr_mirror_advance / DL.ss))
                    
                    if N_adv < alpha_mirror.size:
                        alpha_mirror = alpha_mirror[N_adv:]
                        alpha_mirror = numpy.append(alpha_mirror, (yvals.size-alpha_mirror.size)*[alpha_mirror[-1]])
                    else:
                        alpha_mirror = numpy.array( yvals.size*[alpha_mirror[-1]] )
                    
                    
                    
                    w.y = numpy.concatenate((yvals,physics.cnv( w.name, alpha_mirror )))
                else:
                    w.mirror()
                w.appendhold( DL.wait_at_end)
            
        
    
    N_adv = int(math.floor( alpha_advance / DL.ss))
    
    alpha_desired = numpy.copy(alpha)
    
    
    for wavefm in wfms:
        print "%s dt = %f" % (wavefm.name, wavefm.dt())
   
     
    #Wait the buffer for the lattice loading ramps before adding them
    bufferdt = 20.
    s.wait(bufferdt)
    #Add lattice wfms
    duration = s.analogwfm_add(DL.ss,wfms)
    
    
    if DL.image < 2500.:
        s.wait(duration)
    else:
        print "...DL.image = %f  >= 2500.  Digital seq extension will be used." % DL.image
        s.wait( DL.image )

    #Here give some buffer time to do lock, RF etc. 
    #It has to be minimum 5.0 ms 
    
    
    ### Figure out when to turn interlock back on, using alpha information
    #~ if duration > DL.t0 + DL.dt:
        #~ s.wait(-DL.lattice_interlock_time)
        #~ if DL.use_lattice_interlock == 1:
            #~ s.digichg('latticeinterlockbypass',0)
        #~ else:
            #~ s.digichg('latticeinterlockbypass',1)
        #~ s.wait( DL.lattice_interlock_time)
    
    
    return s, y_ir[-1]  
Ejemplo n.º 9
0
def dimple_to_lattice(s,cpowend):
    
    print "----- LATTICE LOADING RAMPS -----"
    
    dt = DL.dt
    tau = DL.tau
    shift = DL.shift
    
    N0 = 0
    
    N = int(math.floor( dt/ DL.ss))
    x = numpy.arange(dt/N, dt, dt/N)
    tau = tau*dt
    shift = dt/2. + shift*dt/2.
    
    # Define how we want to ramp up the lattice depth
    v0_ramp, xy_v0, v0set =  interpolate_ramp( DL.latticeV0)
    
    
    v0  = v0_ramp(x)
    
    #v0 = 0. + DL.latticeV0 * ( (1+numpy.tanh((x-shift)/tau)) - (1+numpy.tanh((-shift)/tau)) )\
    #                    / ( (1+numpy.tanh((dt-shift)/tau)) - (1+numpy.tanh((-shift)/tau)) )
                        
    NH = int(math.floor( DL.dthold/ DL.ss))
    
    v0 = numpy.concatenate(( numpy.zeros(N0), v0, numpy.array(NH*[v0[-1]])  ))
    
    x_v0 = numpy.arange( v0.size )
    x_v0 = x_v0*DL.ss
    
    # Number of samples to keep
    NS = int(math.floor( DL.image / DL.ss))
    if NS > v0.size:
        x_v0 = numpy.append(x_v0, (NS-v0.size)*[x_v0[-1]])
        v0 = numpy.append(v0, (NS-v0.size)*[v0[-1]])
        
    else:
        x_v0 = x_v0[:NS]
        v0 = v0[:NS]
    
    ###########################################
    #### AXIS DEFINITIONS FOR PLOTS ###
    ###########################################    
    
    fig = plt.figure( figsize=(4.5*1.05,8.*1.1))
    ax0 = fig.add_axes( [0.18,0.76,0.76,0.20]) 
    ax2 = fig.add_axes( [0.18,0.645,0.76,0.11])
    ax3 = fig.add_axes( [0.18,0.53,0.76,0.11])
    ax1 = fig.add_axes( [0.18,0.415,0.76,0.11])
    ax5 = fig.add_axes( [0.18,0.30,0.76,0.11])
    ax4 = fig.add_axes( [0.18,0.185,0.76,0.11])
    ax6 = fig.add_axes( [0.18,0.07,0.76,0.11])
    
    lw=1.5
    labelx=-0.12
    legsz =8.
    
    xymew=0.5
    xyms=9

    ax0.plot( x_v0, v0, 'b', lw=2.5, label='Lattice depth')
    ax0.plot(xy_v0[:,0],xy_v0[:,1], 'x', color='blue', ms=5.)
    ax0.plot(v0set[:,0],v0set[:,1], '.', mew=xymew, ms=xyms, color='blue')
    
    
    ###########################################
    #### USER DEFINED RAMPS: IR, GR, and U ###
    ###########################################      
    
    # Define how we want to ramp up the IR power
    ir_ramp, xy_ir, ir =  interpolate_ramp( DL.irpow, yoffset=DIMPLE.ir1pow)
    
    dt_ir = numpy.amax( ir[:,0]) - numpy.amin( ir[:,0])
    N_ir = int(math.floor( dt_ir / DL.ss ))
    x_ir = numpy.arange( dt_ir/N_ir, dt_ir, dt_ir/N_ir)
    
    #y_ir = ir_spline(x_ir) 
    y_ir = ir_ramp(x_ir)
    
    if v0.size > y_ir.size:
        y_ir = numpy.append(y_ir, (v0.size-y_ir.size)*[y_ir[-1]])
    elif v0.size < y_ir.size:
        y_ir = y_ir[0:v0.size]
        
    if v0.size != y_ir.size:
        msg = "IRPOW ERROR: number of samples in IR ramp and V0 ramp does not match!"
        errormsg.box('LATTICE LOADING ERROR',msg)
        exit(1)
        
    
    if (v0 > y_ir).any():
        msg = "IRPOW ERROR:  not enough power to get desired lattice depth"
        print msg
        bad = numpy.where( v0 > y_ir)
        msg = msg + "\nFirst bad sample = %d out of %d" % (bad[0][0], v0.size)
        msg = msg + "\n v0 = %f " %   v0[ bad[0][0] ]
        msg = msg + "\n ir = %f " % y_ir[ bad[0][0] ]
        print v0[bad[0][0]]
        print y_ir[bad[0][0]]
        errormsg.box('LATTICE LOADING ERROR',msg)
        exit(1)
    
    ax0.plot(xy_ir[:,0],xy_ir[:,1], 'x', color='darkorange', ms=5.)
    ax0.plot(ir[:,0],ir[:,1], '.', mew=xymew, ms=xyms, color='darkorange')
    ax0.plot(x_v0, y_ir, lw=lw, color='darkorange',label='irpow')
    
    
    # Define how we want to ramp up the GR power
    gr_ramp, xy_gr, gr =  interpolate_ramp( DL.grpow, yoffset=DIMPLE.gr1pow)
    
    dt_gr = numpy.amax( gr[:,0]) - numpy.amin( gr[:,0])
    N_gr = int(math.floor( dt_gr / DL.ss ))
    x_gr = numpy.arange( dt_gr/N_gr, dt_gr, dt_gr/N_gr)
    
    y_gr = gr_ramp(x_gr) 
    
    if v0.size > y_gr.size:
        y_gr = numpy.append(y_gr, (v0.size-y_gr.size)*[y_gr[-1]])
    elif v0.size < y_gr.size:
        y_gr = y_gr[0:v0.size]
        
    if v0.size != y_gr.size:
        msg = "GRPOW ERROR: number of samples in GR ramp and V0 ramp does not match!"
        errormsg.box('LATTICE LOADING ERROR',msg)
        exit(1)


    ax0.plot(xy_gr[:,0],xy_gr[:,1], 'x', color='green', ms=5.)
    ax0.plot(gr[:,0],gr[:,1],'.', mew=xymew, ms=xyms, color='green')#, label='grpow dat')
    ax0.plot(x_v0, y_gr, lw=lw, color='green', label='grpow')
    
    ax0.set_xlim(left=-10., right= ax0.get_xlim()[1]*1.1)   
    plt.setp( ax0.get_xticklabels(), visible=False)
    ylim = ax0.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax0.set_ylim( ylim[0]-extra, ylim[1]+extra )
    ax0.grid(True)
    ax0.set_ylabel('$E_{r}$',size=16, labelpad=0)
    ax0.yaxis.set_label_coords(labelx, 0.5)
    ax0.set_title('Lattice Loading')
    ax0.legend(loc='best',numpoints=1,prop={'size':legsz*0.8})
    
    
    # Define how we want to ramp up the scattering length (control our losses)
    a_s_ramp, xy_a_s, a_s =  interpolate_ramp( DL.a_s)
    
    
    dt_a_s = numpy.amax( a_s[:,0]) - numpy.amin( a_s[:,0])
    N_a_s = int(math.floor( dt_a_s / DL.ss ))
    x_a_s = numpy.arange( dt_a_s/N_a_s, dt_a_s, dt_a_s/N_a_s)
    y_a_s = a_s_ramp(x_a_s)
    
    if v0.size > y_a_s.size:
        y_a_s = numpy.append(y_a_s, (v0.size-y_a_s.size)*[y_a_s[-1]])
    elif v0.size < y_a_s.size:
        y_a_s = y_a_s[0:v0.size]
        
    if v0.size != y_a_s.size:
        msg = "a_s ERROR: number of samples in a_s ramp and V0 ramp does not match!"
        errormsg.box('LATTICE LOADING ERROR',msg)
        exit(1)
    
    
    
    ax1.plot(xy_a_s[:,0],xy_a_s[:,1]/100., 'x', color='#C10087', ms=5.)
    ax1.plot(a_s[:,0],a_s[:,1]/100., '.', mew=xymew, ms=xyms, color='#C10087')
    ax1.plot(x_v0, y_a_s/100., lw=lw, color='#C10087', label=r'$a_s\mathrm{(100 a_{0})}$')
    ax1.set_ylabel(r'$a_s\mathrm{(100 a_{0})}$',size=16, labelpad=0)
    ax1.yaxis.set_label_coords(labelx, 0.5)

    
    ax1.set_xlim( ax0.get_xlim()) 
    ylim = ax1.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax1.set_ylim( ylim[0]-extra, ylim[1]+extra )
    plt.setp( ax1.get_xticklabels(), visible=False)
    ax1.grid(True)
    ax1.legend(loc='best',numpoints=1,prop={'size':legsz})
    

    #######################################################################
    #### CALCULATED RAMPS:  ALPHA, TUNNELING, SCATTERING LENGTH, BFIELD ###
    #######################################################################
    
    alpha = (v0/y_ir)**2.
    
    alpha_advance = 100.
    N_adv = int(math.floor( alpha_advance / DL.ss))
    
    alpha_desired = numpy.copy(alpha)
    
    if N_adv < v0.size:
        alpha = alpha[N_adv:]
        alpha = numpy.append(alpha, (v0.size-alpha.size)*[alpha[-1]])
    else:
        alpha = numpy.array( v0.size*[alpha[-1]] )
    
    
    
    ax2.plot( x_v0, alpha, lw=lw, color='saddlebrown', label='alpha adv')
    ax2.plot( x_v0, alpha_desired,':', lw=lw, color='saddlebrown', label='alpha')
    
    ax2.set_xlim( ax0.get_xlim()) 
    ax2.set_ylim(-0.05,1.05)
    plt.setp( ax2.get_xticklabels(), visible=False)
    ax2.grid()
    ax2.set_ylabel('$\\alpha$',size=16, labelpad=0)
    ax2.yaxis.set_label_coords(labelx, 0.5)
    
    ax2.legend(loc='best',numpoints=1,prop={'size':legsz})
    
    
    tunneling_Er  = physics.inv('t_to_V0', v0)
    tunneling_kHz = tunneling_Er * 29.2
    
    ax3.plot( x_v0, tunneling_kHz, lw=lw, color='red', label='$t$ (kHz)')
    
    ax3.set_xlim( ax0.get_xlim()) 
    ylim = ax3.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax3.set_ylim( ylim[0]-extra, ylim[1]+extra )
    plt.setp( ax3.get_xticklabels(), visible=False)
    ax3.grid(True)
    ax3.set_ylabel(r'$t\,\mathrm{(kHz)}$',size=16, labelpad=0)
    ax3.yaxis.set_label_coords(labelx, 0.5)
    ax3.legend(loc='best',numpoints=1,prop={'size':legsz})

    
    wannierF = physics.inv('wF_to_V0', v0)
     
    bohrRadius = 5.29e-11 #meters
    lattice_spacing = 1.064e-6 / 2. #meters
    
    bfieldG = physics.cnv('as_to_B', y_a_s)
    
    U_over_t = y_a_s * bohrRadius / lattice_spacing * wannierF / tunneling_Er
    
    
    
    
    ax4.plot( x_v0, U_over_t, lw=lw, color='k', label=r'$U/t$')
    
    ax4.set_xlim( ax0.get_xlim()) 
    ylim = ax4.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax4.set_ylim( ylim[0]-extra, ylim[1]+extra )
    plt.setp( ax4.get_xticklabels(), visible=False)
    ax4.grid(True)
    ax4.set_ylabel(r'$U/t$',size=16, labelpad=0)
    ax4.yaxis.set_label_coords(labelx, 0.5)
    
    ax4.legend(loc='best',numpoints=1,prop={'size':legsz})
    
    
    ax5.plot( x_v0, bfieldG, lw=lw, color='purple', label='$B$ (G)')
    
    ax5.set_xlim( ax0.get_xlim()) 
    ylim = ax5.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax5.set_ylim( ylim[0]-extra, ylim[1]+extra )
    ax5.grid(True)
    plt.setp( ax5.get_xticklabels(), visible=False)
    ax5.set_ylabel(r'$B\,\mathrm{(G)}$',size=16, labelpad=0)
    ax5.yaxis.set_label_coords(labelx, 0.5)
    
    
    ax5.legend(loc='best',numpoints=1,prop={'size':legsz})
    
    
    ax6.plot( x_v0, (tunneling_Er / U_over_t), lw=lw, color='#25D500', label=r'$t^{2}/U\,(E_{r)}$')
    #ax6.set_yscale('log')
    
    ax6.set_xlim( ax0.get_xlim()) 
    ylim = ax6.get_ylim()
    extra = (ylim[1]-ylim[0])*0.1
    ax6.set_ylim( ylim[0]*0.5, ylim[1] )
    ax6.grid(True)
    ax6.set_ylabel(r'$t^{2}/U\,(E_{r)}$',size=16, labelpad=0)
    ax6.yaxis.set_label_coords(labelx, 0.5)
    
    
    ax6.legend(loc='best',numpoints=1,prop={'size':legsz})
    
    ax6.set_xlabel('time (ms)')

    figfile = seqconf.seqtxtout().split('.')[0]+'_latticeRamp.png'    
    plt.savefig(figfile , dpi=120 )
    
    #Save all ramps to a txt file for later plotting. 
    datfile = seqconf.seqtxtout().split('.')[0]+'_latticeRamp.dat'
    allRamps = numpy.transpose(numpy.vstack((x_v0, v0, y_ir, y_gr, y_a_s, alpha, alpha_desired, \
                                    tunneling_kHz, U_over_t, bfieldG)))
    header = '# Column index'
    header = header + '\n#\t0\t' + 'time(ms)'
    header = header + '\n#\t1\t' + 'Lattice Depth (Er)'
    header = header + '\n#\t2\t' + 'Ir power (Er)'
    header = header + '\n#\t3\t' + 'GR power (Er)'
    header = header + '\n#\t4\t' + 'a_s (a0)'
    header = header + '\n#\t5\t' + 'alpha - advance'
    header = header + '\n#\t6\t' + 'alpha - desired'
    header = header + '\n#\t7\t' + 'tunneling (kHz)'
    header = header + '\n#\t8\t' + 'U/t'
    header = header + '\n#\t9\t' + 'bfield (Gauss)'
    header = header + '\n'
    
    numpy.savetxt( datfile, allRamps)
    
    with open(datfile, 'w') as f:
        X = numpy.asarray( allRamps )
        f.write(bytes(header))
        
        format = '%.6e'
        ncol = X.shape[1]
        format = [format ,] *ncol
        format = ' '.join(format)
        
        newline = '\n'
        for row in X:
            f.write(numpy.compat.asbytes(format % tuple(row) + newline))

    
    shutil.copyfile( figfile,  seqconf.savedir() + 'expseq' + seqconf.runnumber() + '_latticeRamp.png')
    #plt.savefig( seqconf.savedir() + 'expseq' + seqconf.runnumber() + '_latticeRamp.png', dpi=120)
    
    
    #################################
    #### APPEND RAMPS TO SEQUENCE ###
    #################################
    
    wfms=[]
    
    for ch in ['ir1pow','ir2pow','ir3pow']:
        n = filter( str.isdigit, ch)[0] 
        w = wfm.wave(ch, 0.0, DL.ss)  #Start value will be overrriden
        w.y = physics.cnv( ch, y_ir )
        if DL.lock:
            endval = w.y[-1]
            w.insertlin_cnv(DL.lock_Er, DL.lock_dtUP, DL.lock_t0 )
            if DL.camera == 'manta' or DL.camera == 'both':
                w.appendhold( MANTA.exp + 1.0 ) 
                w.insertlin( endval, 0., 0.)
                w.appendhold( MANTA.noatoms - MANTA.exp - 1.0)
                w.insertlin_cnv(DL.lock_Er, DL.lock_dtUP, DL.lock_t0 )
        elif DL.lightassist_lock:
            endval = w.y[-1]
            w.linear(DL.lightassist_lockpowIR, DL.lightassist_lockdtUP)
            w.appendhold( DL.lightassist_t0 + DL.lightassistdt )
            if DL.endvalIR >= 0.:
                w.linear(  DL.endvalIR, DL.lightassist_lockdtDOWN)
            else:
                w.linear(  None, DL.lightassist_lockdtDOWN, volt=endval)
        wfms.append(w)
        
    for ch in ['greenpow1','greenpow2','greenpow3']:
        n = filter( str.isdigit, ch)[0] 
        w = wfm.wave(ch, 0.0, DL.ss)  #Start value will be overrriden
        w.y = physics.cnv( ch, y_gr )
        if DL.lightassist_lock:
            endval = w.y[-1]
            w.linear(DL.lightassist_lockpowGR, DL.lightassist_lockdtUP)
            w.appendhold( DL.lightassist_t0 + DL.lightassistdt )
            if DL.endvalGR >= 0.:
                w.linear(  DL.endvalGR, DL.lightassist_lockdtDOWN)
            else:
                w.linear(  None, DL.lightassist_lockdtDOWN, volt=endval)
        wfms.append(w)
        
    for ch in ['lcr1','lcr2','lcr3']:
        n = filter( str.isdigit, ch)[0] 
        w = wfm.wave(ch, 0.0, DL.ss)  #Start value will be overrriden
        force = DL.__dict__['force_'+ch]
        if force >= 0 and force <=1:
            print "...Forcing LCR%s = %f during lattice ramp" % (n,force)
            w.y = physics.cnv( ch, numpy.array( alpha.size*[force] )  )
        else:
            w.y = physics.cnv( ch, alpha )
        wfms.append(w)
    

    
    bfieldA = bfieldG/6.8
    
    ##ADD field
    bfield = wfm.wave('bfield', 0.0, DL.ss)
    bfield.y = physics.cnv( 'bfield', bfieldA)
    wfms.append(bfield)
    
    
    ##ADD gradient field
    gradient = gradient_wave('gradientfield', 0.0, DL.ss,volt = 0.0)
    gradient.follow(bfield)
    wfms.append(gradient)
    
    
    buffer = 20.
    s.wait(buffer)
    
    
    #~ odtpow = odt.odt_wave('odtpow', cpowend, DL.ss)
    #~ if DIMPLE.odt_t0 > buffer :
        #~ odtpow.appendhold( DIMPLE.odt_t0 - buffer)
    #~ if DIMPLE.odt_pow < 0.:
        #~ odtpow.appendhold( DIMPLE.odt_dt)
    #~ else:
        #~ odtpow.tanhRise( DIMPLE.odt_pow, DIMPLE.odt_dt, DIMPLE.odt_tau, DIMPLE.odt_shift)    
        
    #~ if numpy.absolute(DIMPLE.odt_pow) < 0.0001:
        #~ s.wait( odtpow.dt() )
        #~ s.digichg('odtttl',0)
        #~ s.wait(-odtpow.dt() )
    
    #~ wfms.append(odtpow)
        
    
    # RF sweep
    if DL.rf == 1:   
        rfmod  = wfm.wave('rfmod', 0., DL.ss)
        rfmod.appendhold( bfield.dt() + DL.rftime )
        rfmod.linear( DL.rfvoltf, DL.rfpulsedt)
        wfms.append(rfmod)


    bfieldG = physics.inv( 'bfield', bfield.y[-1]) * 6.8
    hfimg0 = -1.*(100.0 + 163.7 - 1.414*bfieldG)
    
    print "...ANDOR:hfimg and hfimg0 will be modified  in report\n"
    print "\tNEW  ANDOR:hfimg  = %.2f MHz" % ( hfimg0 - DL.imgdet)
    print "\tNEW  ANDOR:hfimg0 = %.2f MHz\n" %  hfimg0
    gen.save_to_report('ANDOR','hfimg', hfimg0 - DL.imgdet)
    gen.save_to_report('ANDOR','hfimg0', hfimg0)
    
    newANDORhfimg = hfimg0 - DL.imgdet
        
    # Kill hfimg
    if DL.probekill ==1 or DL.braggkill ==1 or DL.lightassist or DL.lightassist_lock:
        hfimgdelay = 50. #ms
        analogimg = wfm.wave('analogimg', newANDORhfimg, DL.ss)
        
        if DL.probekill == 1:
            if (-DL.probekilltime+hfimgdelay) < DL.image:
                analogimg.appendhold( bfield.dt() + DL.probekilltime - hfimgdelay)
                analogimg.linear( DL.probekill_hfimg , 0.0)
                analogimg.appendhold( hfimgdelay + DL.probekilldt + 3*DL.ss)
        
        elif DL.braggkill == 1:
            if (-DL.braggkilltime+hfimgdelay) < DL.image:
                analogimg.appendhold( bfield.dt() + DL.braggkilltime - hfimgdelay)
                analogimg.linear( DL.braggkill_hfimg , 0.0)
                analogimg.appendhold( hfimgdelay + DL.braggkilldt + 3*DL.ss)
        
        elif DL.lightassist == 1 or DL.lightassist_lock:
            analogimg.appendhold( bfield.dt()  - hfimgdelay)
            analogimg.linear( DL.lightassist_hfimg , 0.0)
            duration = DL.lightassist_lockdtUP + DL.lightassist_t0 + DL.lightassistdt + DL.lightassist_lockdtDOWN
            analogimg.appendhold( hfimgdelay + duration + 3*DL.ss)
            
        analogimg.linear( newANDORhfimg, 0.)
        analogimg.extend(10)
        wfms.append(analogimg)
    
        

    
    #analogimg = bfieldwfm.hfimg_wave('analogimg', ANDOR.hfimg, DL.ss)
    #andorhfimg0 = analogimg.follow(bfield, DL.imgdet)
    #wfms.append(analogimg)
    

    # If we are doing round trip END, then mirror all the ramps 
    # before adding them to the sequence
    if DL.round_trip == 1:
        if DL.round_trip_type == 1:
            maxdt = 0.
            maxi = -1
            for i,w in enumerate(wfms):
                if w.dt() > maxdt:
                    maxdt = w.dt()
                    maxi = i
    
            maxdt = maxdt + DL.wait_at_top
    
            for w in wfms:
                w.extend(maxdt)
                if 'lcr' in w.name:
                    yvals = w.y
                    
                    alpha_mirror = numpy.copy(alpha_desired[::-1])
                    
                    N_adv = int(math.floor( DL.lcr_mirror_advance / DL.ss))
                    
                    if N_adv < v0.size:
                        alpha_mirror = alpha_mirror[N_adv:]
                        alpha_mirror = numpy.append(alpha_mirror, (yvals.size-alpha_mirror.size)*[alpha_mirror[-1]])
                    else:
                        alpha_mirror = numpy.array( yvals.size*[alpha_mirror[-1]] )
                    
                    
                    
                    w.y = numpy.concatenate((yvals,physics.cnv( w.name, alpha_mirror )))
                else:
                    w.mirror()
                w.appendhold( DL.wait_at_end)
            
        
    
    N_adv = int(math.floor( alpha_advance / DL.ss))
    
    alpha_desired = numpy.copy(alpha)
    
    
    
    
    duration = s.analogwfm_add(DL.ss,wfms)
    
        
    s.wait( duration )
    
    if DL.lock:
        if DL.camera == 'manta' or DL.camera == 'both':
            s.wait( - MANTA.noatoms)
    
    
    ### Figure out when to turn interlock back on, using alpha information
    #~ if duration > DL.t0 + DL.dt:
        #~ s.wait(-DL.lattice_interlock_time)
        #~ if DL.use_lattice_interlock == 1:
            #~ s.digichg('latticeinterlockbypass',0)
        #~ else:
            #~ s.digichg('latticeinterlockbypass',1)
        #~ s.wait( DL.lattice_interlock_time)
    
    
    return s 
Ejemplo n.º 10
0
from matplotlib.figure import Figure

import wx

import numpy

import seqconf

from time import sleep

import pickle

mainpck = os.path.realpath(__file__).split('.')[0] + '_' + os.name + '.pck'

if os.name == "posix":
    default_file = seqconf.seqtxtout().replace("L:", "/lab")
else:
    default_file = seqconf.seqtxtout()

#~ print "DEFAULT_FILE",default_file


class sequence(HasTraits):

    name = Str

    file = File()

    waveforms = List()

    digi_num = Int()
Ejemplo n.º 11
0
    seqlist = os.listdir(base_seqspy)

dir_temp = dir()

for i, file in enumerate(seqlist):

    if file.endswith('.py'):

        fpath = base_seqspy + '/' + file
        print '\nBenchmarking %s' % fpath
        print os.path.join(base_seqspy, file)

        try:
            execfile(fpath)
            try:
                shutil.copyfile(seqconf.seqtxtout(),
                                datapath + '/' + file.split('.')[0] + '.txt')
            except:
                shutil.copyfile(seqconf.seqtxtout().replace('L:', '/lab'),
                                datapath + '/' + file.split('.')[0] + '.txt')
        except:
            print "!!File %s did NOT compile!!" % fpath

        # Clean up the scope
        for n in dir():

            if (not (n in dir_temp)) & (n[0] != '_') & (n != 'dir_temp'):

                delattr(sys.modules[__name__], n)

shutil.copyfile(seqconf.savedir() + 'report' + seqconf.runnumber() + '.INI',
Ejemplo n.º 12
0
def dimple_to_lattice(s, cpowend):

    print "----- LATTICE LOADING RAMPS -----"

    # Find out which is the longest of the ramps we are dealing with:
    maxX =max( [xdomain(DL.latticeV0)[1] ,\
         xdomain(DL.irpow)[1],\
         xdomain(DL.grpow1)[1],\
         xdomain(DL.grpow2)[1],\
         xdomain(DL.grpow3)[1],\
         xdomain(DL.a_s)[1]] )
    print "Largest x value = %.3f ms\n" % maxX

    # We define the times for which all functions will be evaluated
    # MIN TIME TO DO DIGITAL EXTENSION
    DIGEXTENSION = 2050.
    if DL.image >= DIGEXTENSION:
        Xendtime = DIGEXTENSION
    else:
        Xendtime = DL.image

    Nnew = int(math.floor(Xendtime / DL.ss))
    Xnew = numpy.arange(Xendtime / Nnew, DL.image, Xendtime / Nnew)
    print "X array defined from dt:"
    print "DL.ss =", DL.ss
    print "x0  = ", Xnew[0]
    print "xf  = ", Xnew[-1]
    print "xdt = ", Xnew[1] - Xnew[0]
    print "%d samples" % Nnew
    print 'x shape = ', Xnew.shape

    # Define how we want to ramp up the lattice depth
    v0_ramp, xy_v0, v0set = interpolate_ramp(DL.latticeV0)
    v0 = v0_ramp(Xnew)

    ###########################################
    #### AXIS DEFINITIONS FOR PLOTS ###
    ###########################################

    fig = plt.figure(figsize=(4.5 * 1.05, 8. * 1.1))
    ax0 = fig.add_axes([0.18, 0.76, 0.76, 0.20])
    ax2 = fig.add_axes([0.18, 0.645, 0.76, 0.11])
    ax3 = fig.add_axes([0.18, 0.53, 0.76, 0.11])
    ax1 = fig.add_axes([0.18, 0.415, 0.76, 0.11])
    ax5 = fig.add_axes([0.18, 0.30, 0.76, 0.11])
    ax4 = fig.add_axes([0.18, 0.185, 0.76, 0.11])
    ax6 = fig.add_axes([0.18, 0.07, 0.76, 0.11])

    allax = [ax0, ax1, ax2, ax3, ax4, ax5, ax6]
    for ax in allax:
        ax.axvline(DL.image, linewidth=1., color='black', alpha=0.6)

    lw = 1.5
    labelx = -0.12
    legsz = 8.

    xymew = 0.5
    xyms = 9

    ax0.plot(Xnew, v0, 'b', lw=2.5, label='Lattice depth')
    ax0.plot(xy_v0[:, 0], xy_v0[:, 1], 'x', color='blue', ms=5.)
    ax0.plot(v0set[:, 0], v0set[:, 1], '.', mew=xymew, ms=xyms, color='blue')

    ###########################################
    #### USER DEFINED RAMPS: IR, GR, and U ###
    ###########################################

    # Define how we want to ramp up the IR power
    if DIMPLE.allirpow > 0.:
        ir_offset = DIMPLE.allirpow
    else:
        ir_offset = DIMPLE.ir1pow2
    ir_ramp, xy_ir, ir = interpolate_ramp(DL.irpow, yoffset=ir_offset)

    dt_ir = numpy.amax(ir[:, 0]) - numpy.amin(ir[:, 0])
    N_ir = int(math.floor(dt_ir / DL.ss))
    x_ir = numpy.arange(dt_ir / N_ir, dt_ir, dt_ir / N_ir)

    y_ir = ir_ramp(Xnew)

    if v0.size > y_ir.size:
        y_ir = numpy.append(y_ir, (v0.size - y_ir.size) * [y_ir[-1]])
    elif v0.size < y_ir.size:
        y_ir = y_ir[0:v0.size]

    if v0.size != y_ir.size:
        msg = "IRPOW ERROR: number of samples in IR ramp and V0 ramp does not match!"
        errormsg.box('LATTICE LOADING ERROR', msg)
        exit(1)

    alpha_clip_range = 0.1
    if (v0 > y_ir + alpha_clip_range).any():
        msg = "IRPOW ERROR:  not enough power to get desired lattice depth"
        print msg
        bad = numpy.where(v0 > y_ir + alpha_clip_range)
        timefail = int(bad[0][0]) * float(DL.ss)
        msg = msg + "\nFirst bad sample = %d out of %d" % (bad[0][0], v0.size)
        msg = msg + "\n  t = %f " % timefail
        msg = msg + "\n v0 = %f " % v0[bad[0][0]]
        msg = msg + "\n ir = %f " % y_ir[bad[0][0]]
        print v0[bad[0][0]]
        print y_ir[bad[0][0]]
        errormsg.box('LATTICE LOADING ERROR', msg)
        exit(1)

    ax0.plot(xy_ir[:, 0], xy_ir[:, 1], 'x', color='darkorange', ms=5.)
    ax0.plot(ir[:, 0], ir[:, 1], '.', mew=xymew, ms=xyms, color='darkorange')
    ax0.plot(Xnew, y_ir, lw=lw, color='darkorange', label='irpow')

    # Define how we want to ramp up the GR power
    grwfms = {}
    splmrkr = ['x', '+', 'd']
    ptsmrkr = ['^', 's', 'p']
    for i, grramp in enumerate([(DL.grpow1, DIMPLE.gr1pow2),
                                (DL.grpow2, DIMPLE.gr2pow2),
                                (DL.grpow3, DIMPLE.gr3pow2)]):
        ramppts = grramp[0]
        ramp0 = grramp[1]

        print 'gr' + '%d' % i + ' offset = %f' % ramp0

        gr_ramp, xy_gr, gr = interpolate_ramp(ramppts, yoffset=ramp0)

        dt_gr = numpy.amax(gr[:, 0]) - numpy.amin(gr[:, 0])
        N_gr = int(math.floor(dt_gr / DL.ss))
        x_gr = numpy.arange(dt_gr / N_gr, dt_gr, dt_gr / N_gr)

        y_gr = gr_ramp(Xnew)
        if DL.signal == 0:
            y_gr = y_gr / 2.0

        if v0.size > y_gr.size:
            y_gr = numpy.append(y_gr, (v0.size - y_gr.size) * [y_gr[-1]])
        elif v0.size < y_gr.size:
            y_gr = y_gr[0:v0.size]

        if v0.size != y_gr.size:
            msg = "GRPOW ERROR: number of samples in GR ramp and V0 ramp does not match!"
            errormsg.box('LATTICE LOADING ERROR', msg)
            exit(1)

        grwfms['greenpow' + '%1d' % (i + 1)] = y_gr

        ax0.plot(xy_gr[:, 0],
                 xy_gr[:, 1],
                 marker=splmrkr[i],
                 mec='green',
                 mfc='None',
                 ms=3.)
        ax0.plot(gr[:, 0],
                 gr[:, 1],
                 marker=ptsmrkr[i],
                 mew=xymew,
                 ms=xyms / 2.,
                 mfc='None',
                 mec='green')  #, label='grpow dat')
        ax0.plot(Xnew, y_gr, lw=lw, color='green', label='grpow')

    for grch in grwfms.keys():
        print grch, " = ", grwfms[grch].shape

    ax0.set_xlim(left=-10., right=ax0.get_xlim()[1] * 1.1)
    plt.setp(ax0.get_xticklabels(), visible=False)
    ylim = ax0.get_ylim()
    extra = (ylim[1] - ylim[0]) * 0.1
    ax0.set_ylim(ylim[0] - extra, ylim[1] + extra)
    ax0.grid(True)
    ax0.set_ylabel('$E_{r}$', size=16, labelpad=0)
    ax0.yaxis.set_label_coords(labelx, 0.5)
    ax0.set_title('Lattice Loading')
    ax0.legend(loc='best', numpoints=1, prop={'size': legsz * 0.8})

    # Define how we want to ramp up the scattering length (control our losses)
    a_s_ramp, xy_a_s, a_s = interpolate_ramp(DL.a_s)

    dt_a_s = numpy.amax(a_s[:, 0]) - numpy.amin(a_s[:, 0])
    N_a_s = int(math.floor(dt_a_s / DL.ss))
    x_a_s = numpy.arange(dt_a_s / N_a_s, dt_a_s, dt_a_s / N_a_s)
    y_a_s = a_s_ramp(Xnew)

    if v0.size > y_a_s.size:
        y_a_s = numpy.append(y_a_s, (v0.size - y_a_s.size) * [y_a_s[-1]])
    elif v0.size < y_a_s.size:
        y_a_s = y_a_s[0:v0.size]

    if v0.size != y_a_s.size:
        msg = "a_s ERROR: number of samples in a_s ramp and V0 ramp does not match!"
        errormsg.box('LATTICE LOADING ERROR', msg)
        exit(1)

    ax1.plot(xy_a_s[:, 0], xy_a_s[:, 1] / 100., 'x', color='#C10087', ms=5.)
    ax1.plot(a_s[:, 0],
             a_s[:, 1] / 100.,
             '.',
             mew=xymew,
             ms=xyms,
             color='#C10087')
    ax1.plot(Xnew,
             y_a_s / 100.,
             lw=lw,
             color='#C10087',
             label=r'$a_s\mathrm{(100 a_{0})}$')
    ax1.set_ylabel(r'$a_s\mathrm{(100 a_{0})}$', size=16, labelpad=0)
    ax1.yaxis.set_label_coords(labelx, 0.5)

    ax1.set_xlim(ax0.get_xlim())
    ylim = ax1.get_ylim()
    extra = (ylim[1] - ylim[0]) * 0.1
    ax1.set_ylim(ylim[0] - extra, ylim[1] + extra)
    plt.setp(ax1.get_xticklabels(), visible=False)
    ax1.grid(True)
    ax1.legend(loc='best', numpoints=1, prop={'size': legsz})

    #######################################################################
    #### CALCULATED RAMPS:  ALPHA, TUNNELING, SCATTERING LENGTH, BFIELD ###
    #######################################################################

    alpha = (v0 / y_ir)**2.

    alpha_advance = 100.
    N_adv = int(math.floor(alpha_advance / DL.ss))

    alpha = alpha.clip(0., 1.)
    alpha_desired = numpy.copy(alpha)

    if N_adv < v0.size:
        alpha = alpha[N_adv:]
        alpha = numpy.append(alpha, (v0.size - alpha.size) * [alpha[-1]])
    else:
        alpha = numpy.array(v0.size * [alpha[-1]])

    #alpha = alpha.clip(0., 1.)

    ax2.plot(Xnew, alpha, lw=lw, color='saddlebrown', label='alpha adv')
    ax2.plot(Xnew,
             alpha_desired,
             ':',
             lw=lw,
             color='saddlebrown',
             label='alpha')

    ax2.set_xlim(ax0.get_xlim())
    ax2.set_ylim(-0.05, 1.05)
    plt.setp(ax2.get_xticklabels(), visible=False)
    ax2.grid()
    ax2.set_ylabel('$\\alpha$', size=16, labelpad=0)
    ax2.yaxis.set_label_coords(labelx, 0.5)

    ax2.legend(loc='best', numpoints=1, prop={'size': legsz})

    tunneling_Er = physics.inv('t_to_V0', v0)
    tunneling_kHz = tunneling_Er * 29.2

    ax3.plot(Xnew, tunneling_kHz, lw=lw, color='red', label='$t$ (kHz)')

    ax3.set_xlim(ax0.get_xlim())
    ylim = ax3.get_ylim()
    extra = (ylim[1] - ylim[0]) * 0.1
    ax3.set_ylim(ylim[0] - extra, ylim[1] + extra)
    plt.setp(ax3.get_xticklabels(), visible=False)
    ax3.grid(True)
    ax3.set_ylabel(r'$t\,\mathrm{(kHz)}$', size=16, labelpad=0)
    ax3.yaxis.set_label_coords(labelx, 0.5)
    ax3.legend(loc='best', numpoints=1, prop={'size': legsz})

    wannierF = physics.inv('wF_to_V0', v0)

    bohrRadius = 5.29e-11  #meters
    lattice_spacing = 1.064e-6 / 2.  #meters

    bfieldG = physics.cnv('as_to_B', y_a_s)
    print
    print "The last value of the scattering length ramp is:"
    print 'a_s =', y_a_s[-1]
    print 'B   =', bfieldG[-1]
    print

    U_over_t = y_a_s * bohrRadius / lattice_spacing * wannierF / tunneling_Er

    ax4.plot(Xnew, U_over_t, lw=lw, color='k', label=r'$U/t$')

    ax4.set_xlim(ax0.get_xlim())
    ylim = ax4.get_ylim()
    extra = (ylim[1] - ylim[0]) * 0.1
    ax4.set_ylim(ylim[0] - extra, ylim[1] + extra)
    plt.setp(ax4.get_xticklabels(), visible=False)
    ax4.grid(True)
    ax4.set_ylabel(r'$U/t$', size=16, labelpad=0)
    ax4.yaxis.set_label_coords(labelx, 0.5)

    ax4.legend(loc='best', numpoints=1, prop={'size': legsz})

    ax5.plot(Xnew, bfieldG, lw=lw, color='purple', label='$B$ (G)')

    ax5.set_xlim(ax0.get_xlim())
    ylim = ax5.get_ylim()
    extra = (ylim[1] - ylim[0]) * 0.1
    ax5.set_ylim(ylim[0] - extra, ylim[1] + extra)
    ax5.grid(True)
    plt.setp(ax5.get_xticklabels(), visible=False)
    ax5.set_ylabel(r'$B\,\mathrm{(G)}$', size=16, labelpad=0)
    ax5.yaxis.set_label_coords(labelx, 0.5)

    ax5.legend(loc='best', numpoints=1, prop={'size': legsz})

    ax6.plot(Xnew, (tunneling_Er / U_over_t),
             lw=lw,
             color='#25D500',
             label=r'$t^{2}/U\,(E_{r)}$')
    #ax6.set_yscale('log')

    ax6.set_xlim(ax0.get_xlim())
    ylim = ax6.get_ylim()
    extra = (ylim[1] - ylim[0]) * 0.1
    ax6.set_ylim(ylim[0] * 0.5, ylim[1])
    ax6.grid(True)
    ax6.set_ylabel(r'$t^{2}/U\,(E_{r)}$', size=16, labelpad=0)
    ax6.yaxis.set_label_coords(labelx, 0.5)

    ax6.legend(loc='best', numpoints=1, prop={'size': legsz})

    ax6.set_xlabel('time (ms)')

    figfile = seqconf.seqtxtout().split('.')[0] + '_latticeRamp.png'
    plt.savefig(figfile, dpi=120)

    #Save all ramps to a txt file for later plotting.
    datfile = seqconf.seqtxtout().split('.')[0] + '_latticeRamp.dat'
    allRamps = numpy.transpose(numpy.vstack((Xnew, v0, y_ir, grwfms['greenpow1'], y_a_s, alpha, alpha_desired, \
                                    tunneling_kHz, U_over_t, bfieldG)))
    header = '# Column index'
    header = header + '\n#\t0\t' + 'time(ms)'
    header = header + '\n#\t1\t' + 'Lattice Depth (Er)'
    header = header + '\n#\t2\t' + 'Ir power (Er)'
    header = header + '\n#\t3\t' + 'GR power (Er)'
    header = header + '\n#\t4\t' + 'a_s (a0)'
    header = header + '\n#\t5\t' + 'alpha - advance'
    header = header + '\n#\t6\t' + 'alpha - desired'
    header = header + '\n#\t7\t' + 'tunneling (kHz)'
    header = header + '\n#\t8\t' + 'U/t'
    header = header + '\n#\t9\t' + 'bfield (Gauss)'
    header = header + '\n'

    numpy.savetxt(datfile, allRamps)

    with open(datfile, 'w') as f:
        X = numpy.asarray(allRamps)
        f.write(bytes(header))

        format = '%.6e'
        ncol = X.shape[1]
        format = [
            format,
        ] * ncol
        format = ' '.join(format)

        newline = '\n'
        for row in X:
            f.write(numpy.compat.asbytes(format % tuple(row) + newline))

    shutil.copyfile(
        figfile,
        seqconf.savedir() + 'expseq' + seqconf.runnumber() +
        '_latticeRamp.png')
    shutil.copyfile(
        datfile,
        seqconf.savedir() + 'expseq' + seqconf.runnumber() +
        '_latticeRamp.dat')
    #plt.savefig( seqconf.savedir() + 'expseq' + seqconf.runnumber() + '_latticeRamp.png', dpi=120)

    #################################
    #### APPEND RAMPS TO SEQUENCE ###
    #################################

    wfms = []

    if DL.signal == 0:
        print " LOCK VALUE FOR SIGNAL / NOSIGNAL "
        print " before = ", DL.lock_Er
        DL.lock_Er = DL.lock_Er / 1.8
        print " after  = \n", DL.lock_Er

    for ch in ['ir1pow', 'ir2pow', 'ir3pow']:
        n = filter(str.isdigit, ch)[0]
        w = wfm.wave(ch, 0.0, DL.ss)  #Start value will be overrriden
        w.y = physics.cnv(ch, y_ir)
        if DL.lock:
            endval = w.y[-1]
            w.insertlin_cnv(DL.lock_Er, DL.lock_dtUP, DL.lock_t0)
        elif DL.lightassist_lock:
            endval = w.y[-1]
            w.linear(DL.lightassist_lockpowIR, DL.lightassist_lockdtUP)
            w.appendhold(DL.lightassist_t0 + DL.lightassistdt)
            if DL.endvalIR >= 0.:
                w.linear(DL.endvalIR, DL.lightassist_lockdtDOWN)
            else:
                w.linear(None, DL.lightassist_lockdtDOWN, volt=endval)
        wfms.append(w)

    for ch in ['greenpow1', 'greenpow2', 'greenpow3']:
        n = filter(str.isdigit, ch)[0]
        w = wfm.wave(ch, 0.0, DL.ss)  #Start value will be overrriden

        correction = DIMPLE.__dict__['gr' + n + 'correct']

        w.y = physics.cnv(ch, correction * grwfms[ch])
        if DL.lightassist_lock:
            endval = w.y[-1]
            w.linear(DL.lightassist_lockpowGR, DL.lightassist_lockdtUP)
            w.appendhold(DL.lightassist_t0 + DL.lightassistdt)
            if DL.endvalGR >= 0.:
                w.linear(DL.endvalGR, DL.lightassist_lockdtDOWN)
            else:
                w.linear(None, DL.lightassist_lockdtDOWN, volt=endval)
        wfms.append(w)

    for ch in ['lcr1', 'lcr2', 'lcr3']:
        n = filter(str.isdigit, ch)[0]
        w = wfm.wave(ch, 0.0, DL.ss)  #Start value will be overrriden
        force = DL.__dict__['force_' + ch]
        if force >= 0 and force <= 1:
            print "...Forcing LCR%s = %f during lattice ramp" % (n, force)
            w.y = physics.cnv(ch, numpy.array(alpha.size * [force]))
        elif DL.signal == 0:
            print "...Forcing LCR%s = 0. so that it does NOT rotate to LATTICE" % n
            w.y = physics.cnv(ch, numpy.array(alpha.size * [0.0]))
        else:
            w.y = physics.cnv(ch, alpha)
        wfms.append(w)

    bfieldA = bfieldG / 6.8

    ##ADD field
    bfield = wfm.wave('bfield', 0.0, DL.ss)
    bfield.y = physics.cnv('bfield', bfieldA)
    print "The last value of the bfield voltage is =", bfield.y[-1]
    print
    wfms.append(bfield)

    ##ADD gradient field
    gradient = gradient_wave('gradientfield', 0.0, DL.ss, volt=0.0)
    gradient.follow(bfield)
    wfms.append(gradient)

    buffer = 40.
    s.wait(buffer)

    #~ odtpow = odt.odt_wave('odtpow', cpowend, DL.ss)
    #~ if DIMPLE.odt_t0 > buffer :
    #~ odtpow.appendhold( DIMPLE.odt_t0 - buffer)
    #~ if DIMPLE.odt_pow < 0.:
    #~ odtpow.appendhold( DIMPLE.odt_dt)
    #~ else:
    #~ odtpow.tanhRise( DIMPLE.odt_pow, DIMPLE.odt_dt, DIMPLE.odt_tau, DIMPLE.odt_shift)

    #~ if numpy.absolute(DIMPLE.odt_pow) < 0.0001:
    #~ s.wait( odtpow.dt() )
    #~ s.digichg('odtttl',0)
    #~ s.wait(-odtpow.dt() )

    #~ wfms.append(odtpow)

    # RF sweep
    if DL.rf == 1:
        rfmod = wfm.wave('rfmod', 0., DL.ss)
        rfmod.appendhold(bfield.dt() + DL.rftime)
        rfmod.linear(DL.rfvoltf, DL.rfpulsedt)
        wfms.append(rfmod)

    if DL.round_trip == 1:
        bindex = 0  # Calculate detunings using starting field
    else:
        bindex = -1  # Calculate detunings using field at the end of ramps

    bfieldG = physics.inv('bfield', bfield.y[bindex]) * 6.8
    hfimg0 = -1. * (100.0 + 163.7 - 1.414 * bfieldG)

    # Find bindex for braggkill time
    bindex_BK = math.floor(-DL.braggkilltime / bfield.ss)
    bfieldG_BK = physics.inv('bfield', bfield.y[-1 - bindex_BK]) * 6.8
    hfimg0_BK = -1. * (100.0 + 163.7 - 1.414 * bfieldG_BK)
    DL.braggkill_hfimg = hfimg0_BK - DL.braggkill_hfimg
    print "\n...Braggkill hfimg modification:\n"
    print "\tNEW braggkill_hfimg = %.2f MHz" % DL.braggkill_hfimg

    # Find bindex for bragg2kill time
    bindex_B2K = math.floor(-DL.bragg2killtime / bfield.ss)
    bfieldG_B2K = physics.inv('bfield', bfield.y[-1 - bindex_B2K]) * 6.8
    hfimg0_B2K = -1. * (100.0 + 163.7 - 1.414 * bfieldG_B2K)
    DL.bragg2kill_hfimg1 = hfimg0_B2K - DL.bragg2kill_hfimg1
    DL.bragg2kill_hfimg2 = hfimg0_B2K - DL.bragg2kill_hfimg2
    print "\n...Bragg2kill hfimg modification:\n"
    print "\tNEW brag2gkill_hfimg1 = %.2f MHz" % DL.bragg2kill_hfimg1
    print "\tNEW brag2gkill_hfimg2 = %.2f MHz" % DL.bragg2kill_hfimg2

    print "\n...ANDOR:hfimg and hfimg0 will be modified  in report\n"
    print "\tNEW  ANDOR:hfimg  = %.2f MHz" % (hfimg0 - DL.imgdet)
    print "\tNEW  ANDOR:hfimg0 = %.2f MHz\n" % hfimg0
    gen.save_to_report('ANDOR', 'hfimg', hfimg0 - DL.imgdet)
    gen.save_to_report('ANDOR', 'hfimg0', hfimg0)

    newANDORhfimg = hfimg0 - DL.imgdet

    # THIS DEFINES THE TIME IT TAKES THE OFFSET LOCK TO SWITCH TO
    # A NEW SETPOINT
    hfimgdelay = 50.  #ms

    # Kill hfimg
    if DL.probekill == 1 or DL.braggkill == 1 or DL.bragg2kill == 1 or DL.lightassist or DL.lightassist_lock:
        analogimg = wfm.wave('analogimg', newANDORhfimg, DL.ss)

        if DL.probekill == 1:
            if (-DL.probekilltime + hfimgdelay) < DL.image:
                analogimg.appendhold(bfield.dt() + DL.probekilltime -
                                     hfimgdelay)
                analogimg.linear(DL.probekill_hfimg, 0.0)
                analogimg.appendhold(hfimgdelay + DL.probekilldt + 3 * DL.ss)

        elif DL.braggkill == 1:
            print "Setting up analogimg for braggkill"
            if (-DL.braggkilltime + hfimgdelay) < DL.image:
                analogimg.appendhold(bfield.dt() + DL.braggkilltime -
                                     hfimgdelay)
                analogimg.linear(DL.braggkill_hfimg, 0.0)
                analogimg.appendhold(hfimgdelay + DL.braggkilldt + 3 * DL.ss)

        elif DL.bragg2kill == 1:
            print "Setting up analogimg for bragg2kill"
            if (-DL.bragg2killtime + hfimgdelay) < DL.image:
                # This sets up the detuning for the first pulse
                analogimg.appendhold(bfield.dt() + DL.bragg2killtime -
                                     hfimgdelay)
                analogimg.linear(DL.bragg2kill_hfimg1, 0.0)
                analogimg.appendhold(hfimgdelay + DL.bragg2killdt + 3 * DL.ss)

                # Then set up the detuning for the second pulse
                analogimg.linear(DL.bragg2kill_hfimg2, 0.0)
                analogimg.appendhold(hfimgdelay + DL.bragg2killdt + 3 * DL.ss)

        elif DL.lightassist == 1 or DL.lightassist_lock:
            analogimg.appendhold(bfield.dt() - hfimgdelay)
            analogimg.linear(DL.lightassist_hfimg, 0.0)
            duration = DL.lightassist_lockdtUP + DL.lightassist_t0 + DL.lightassistdt + DL.lightassist_lockdtDOWN
            analogimg.appendhold(hfimgdelay + duration + 3 * DL.ss)

        analogimg.linear(newANDORhfimg, 0.)
        analogimg.extend(10)
        wfms.append(analogimg)

    #analogimg = bfieldwfm.hfimg_wave('analogimg', ANDOR.hfimg, DL.ss)
    #andorhfimg0 = analogimg.follow(bfield, DL.imgdet)
    #wfms.append(analogimg)

    # If we are doing round trip END, then mirror all the ramps
    # before adding them to the sequence
    if DL.round_trip == 1:
        if DL.round_trip_type == 1:
            maxdt = 0.
            maxi = -1
            for i, w in enumerate(wfms):
                if w.dt() > maxdt:
                    maxdt = w.dt()
                    maxi = i

            maxdt = maxdt + DL.wait_at_top / 2.

            for w in wfms:
                w.extend(maxdt)
                if 'lcr' in w.name:
                    yvals = w.y

                    #Get the reverse of the alpha desired array
                    alpha_mirror = numpy.copy(alpha_desired[::-1])

                    #Add the wait at top part so that it has same length as yvals
                    if alpha_mirror.size > yvals.size:
                        print "Error making mirror ramp for LCR."
                        print "Program will exit."
                        exit(1)
                    alpha_mirror = numpy.append(
                        (yvals.size - alpha_mirror.size) * [alpha_mirror[0]],
                        alpha_mirror)

                    #This is how much the mirror ramp will be advanced
                    N_adv = int(math.floor(DL.lcr_mirror_advance / DL.ss))

                    if N_adv < alpha_mirror.size:
                        alpha_mirror = alpha_mirror[N_adv:]
                        alpha_mirror = numpy.append(
                            alpha_mirror, (yvals.size - alpha_mirror.size) *
                            [alpha_mirror[-1]])
                    else:
                        alpha_mirror = numpy.array(yvals.size *
                                                   [alpha_mirror[-1]])

                    w.y = numpy.concatenate(
                        (yvals, physics.cnv(w.name, alpha_mirror)))
                else:
                    w.mirror()
                w.appendhold(DL.wait_at_end)

    N_adv = int(math.floor(alpha_advance / DL.ss))

    alpha_desired = numpy.copy(alpha)

    for wavefm in wfms:
        print "%s dt = %f" % (wavefm.name, wavefm.dt())

    duration = s.analogwfm_add(DL.ss, wfms)

    if DL.image < DIGEXTENSION:
        s.wait(duration)
    else:
        print "...DL.image = %f  >= %.2f  Digital seq extension will be used." % (
            DL.image, DIGEXTENSION)
        s.wait(DL.image)

    ### Prepare the parts of the ramps that are going to be used to mock
    ### the conditions for the noatoms shot
    ### 1. get dt = [noatoms] ms from the end of the lattice ramps.
    if 'manta' in DL.camera:
        noatomsdt = MANTA.noatoms
    else:
        noatomsdt = ANDOR.noatoms
    noatomswfms = []
    for wavefm in wfms:
        cp = copy.deepcopy(wavefm)
        cp.idnum = time.time() * 100
        cp.retain_last(DL.bgRetainDT)
        noatomswfms.append(cp)

    ### Figure out when to turn interlock back on, using alpha information
    #~ if duration > DL.t0 + DL.dt:
    #~ s.wait(-DL.lattice_interlock_time)
    #~ if DL.use_lattice_interlock == 1:
    #~ s.digichg('latticeinterlockbypass',0)
    #~ else:
    #~ s.digichg('latticeinterlockbypass',1)
    #~ s.wait( DL.lattice_interlock_time)

    #########################################
    ## OTHER TTL EVENTS: probekill, braggkill, rf, quick2
    #########################################
    # Braggkill
    if DL.braggkill == 1:
        print "Using Bragg Kill"
        s.wait(DL.braggkilltime)
        s = manta.OpenShutterBragg(s, DL.shutterdelay)
        s.digichg('bragg', 1)
        s.wait(DL.braggkilldt)
        s.digichg('brshutter', 1)  # to close shutter
        s.digichg('bragg', 0)

        s.wait(-DL.braggkilldt)
        s.wait(-DL.braggkilltime)

    if DL.bragg2kill == 1:
        print "Using Bragg 2 Kill"
        tcur = s.tcur
        s.wait(DL.bragg2killtime)
        s = manta.OpenShutterBragg(s, DL.shutterdelay)
        s.digichg('bragg', 1)
        s.wait(DL.bragg2killdt)
        s.digichg('brshutter', 1)  # to close shutter
        s.digichg('bragg', 0)

        s.wait(hfimgdelay + 3 * DL.ss)
        s = manta.OpenShutterBragg(s, DL.shutterdelay)
        s.digichg('bragg', 1)
        s.wait(DL.bragg2killdt)
        s.digichg('brshutter', 1)  # to close shutter
        s.digichg('bragg', 0)

        # Revert to current time after pulses have been added in the past
        s.tcur = tcur

    # Probe Kill
    if DL.probekill == 1:
        s.wait(DL.probekilltime)

        s.wait(-10)
        s.digichg('prshutter', 0)
        s.wait(10)
        s.digichg('probe', 1)
        s.wait(DL.probekilldt)
        s.digichg('probe', 0)

        s.digichg('prshutter', 1)
        s.wait(-DL.probekilltime)

    # Pulse RF
    if DL.rf == 1:
        s.wait(DL.rftime)
        s.digichg('rfttl', 1)
        s.wait(DL.rfpulsedt)
        s.digichg('rfttl', 0)
        s.wait(-DL.rfpulsedt)
        s.wait(-DL.rftime)

    # QUICK2
    if DL.quick2 == 1:
        s.wait(DL.quick2time)
        s.digichg('quick2', 1)
        s.wait(-DL.quick2time)

    # Light-assisted collisions
    if DL.lightassist == 1 or DL.lightassist_lock:
        s.wait(-DL.lightassist_lockdtUP - DL.lightassist_t0 -
               DL.lightassistdt - DL.lightassist_lockdtDOWN - 3 * DL.ss)

        s.wait(DL.lightassist_lockdtUP + DL.lightassist_t0)
        s.wait(-10)
        s.digichg('prshutter', 0)
        s.wait(10)
        s.digichg('probe', DL.lightassist)
        s.wait(DL.lightassistdt)
        s.digichg('probe', 0)

        s.digichg('prshutter', 1)
        s.wait(DL.lightassist_lockdtDOWN)
        s.wait(3 * DL.ss)
        # After the collisions happen we still need to wait some time
        # for the probe frequency to come back to the desired value
        s.wait(hfimgdelay)

    #########################################
    ## GO BACK IN TIME IF DOING ROUND-TRIP START
    #########################################
    if DL.round_trip == 1:
        if DL.round_trip_type == 0:
            s.wait(-DL.image)
            s.stop_analog()

    #########################################
    ## TURN GREEN OFF BEFORE PICTURES
    #########################################
    if DL.greenoff == 1:
        s.wait(DL.greenoff_t0)
        s.digichg('greenttl1', 0)
        s.digichg('greenttl2', 0)
        s.digichg('greenttl3', 0)
        s.wait(-DL.greenoff_t0)

    #########################################
    ## LATTICE LOCK WITH POSSIBILITY OF RF
    #########################################
    bufferdt = 5.0
    lastIR = y_ir[-1]

    lockwfms = []
    if DL.locksmooth == 1 and DL.lock == 0:
        s.wait(bufferdt)
        for ch in ['ir1pow', 'ir2pow', 'ir3pow']:
            n = filter(str.isdigit, ch)[0]
            w = wfm.wave(ch, lastIR,
                         DL.lockss)  #Start value will be overrriden
            w.tanhRise(DL.lock_Er, DL.lock_dtUP, 0.4, 0.2)
            lockwfms.append(w)
        print "...LOCKING LATTICE TO %f Er" % DL.lock_Er
        print "...lastIR = %.4f" % lastIR
        duration = s.analogwfm_add(DL.lockss, lockwfms)
        print "...duration = %.2f" % duration
        s.wait(duration)
        #~ if DL.lockrf:
        #~ s.digichg('rfttl',1)
        #~ s.wait(DL.rfpulsedt)
        #~ s.digichg('rfttl',0)
        #~ s.wait(0.036)
    #else:
    #    s.wait(bufferdt)

    lockwfmscopy = []
    for wavefm in lockwfms:
        cp = copy.deepcopy(wavefm)
        cp.idnum = time.time() * 100 + 1e3 * numpy.random.randint(0, 1e8)
        lockwfmscopy.append(cp)

    #########################################
    ## IMAGING AT LOW FIELD
    #########################################
    if DL.lowfieldimg == 1:
        s.wait(DL.lowfieldimg_t0)
        s.digichg('field', 0)
        s.wait(-DL.lowfieldimg_t0)

    #########################################
    ## TTL RELEASE FROM ODT and LATTICE
    #########################################
    #INDICATE WHICH CHANNELS ARE TO BE CONSIDERED FOR THE BACKGROUND
    bg = [
        'odtttl', 'irttl1', 'irttl2', 'irttl3', 'greenttl1', 'greenttl2',
        'greenttl3'
    ]
    bgdictPRETOF = {}
    for ch in bg:
        bgdictPRETOF[ch] = s.digistatus(ch)
    bgdictPRETOF['tof'] = DL.tof
    print "\nChannel status for pictures: PRE-TOF"
    print bgdictPRETOF
    print

    #RELEASE FROM LATTICE
    if DL.tof <= 0.:
        s.wait(1.0 + ANDOR.exp)
    s.digichg('greenttl1', 0)
    s.digichg('greenttl2', 0)
    s.digichg('greenttl3', 0)
    s.digichg('irttl1', 0)
    s.digichg('irttl2', 0)
    s.digichg('irttl3', 0)
    #RELEASE FROM IR TRAP
    s.digichg('odtttl', 0)
    if DL.tof <= 0.:
        s.wait(-1.0 + ANDOR.exp)

    print "TIME WHEN RELEASED FROM LATTICE = ", s.tcur
    s.wait(DL.tof)

    return s, noatomswfms, lockwfmscopy, bgdictPRETOF