Ejemplo n.º 1
0
def LDL(matlist, K):
    """
    Performs the LDL decomposition of a hermitian matrix and returns L, D and
    transpose of L. Only applicable to rational entries.

    Examples
    ========

    >>> from sympy.matrices.densesolve import LDL
    >>> from sympy import QQ

    >>> a = [
    ... [QQ(4), QQ(12), QQ(-16)],
    ... [QQ(12), QQ(37), QQ(-43)],
    ... [QQ(-16), QQ(-43), QQ(98)]]
    >>> LDL(a, QQ)
    ([[1, 0, 0], [3, 1, 0], [-4, 5, 1]], [[4, 0, 0], [0, 1, 0], [0, 0, 9]], [[1, 3, -4], [0, 1, 5], [0, 0, 1]])

    """
    new_matlist = copy.deepcopy(matlist)
    nrow = len(new_matlist)
    L, D = eye(nrow, K), eye(nrow, K)
    for i in range(nrow):
        for j in range(i + 1):
            a = K.zero
            for k in range(j):
                a += L[i][k] * L[j][k] * D[k][k]
            if i == j:
                D[j][j] = new_matlist[j][j] - a
            else:
                L[i][j] = (new_matlist[i][j] - a) / D[j][j]
    return L, D, conjugate_transpose(L, K)
Ejemplo n.º 2
0
def LDL(matlist, K):
    """
    Performs the LDL decomposition of a hermitian matrix and returns L, D and
    transpose of L. Only applicable to rational entries.

    Examples
    ========

    >>> from sympy.matrices.densesolve import LDL
    >>> from sympy import QQ

    >>> a = [
    ... [QQ(4), QQ(12), QQ(-16)],
    ... [QQ(12), QQ(37), QQ(-43)],
    ... [QQ(-16), QQ(-43), QQ(98)]]
    >>> LDL(a, QQ)
    ([[1, 0, 0], [3, 1, 0], [-4, 5, 1]], [[4, 0, 0], [0, 1, 0], [0, 0, 9]], [[1, 3, -4], [0, 1, 5], [0, 0, 1]])

    """
    new_matlist = copy.deepcopy(matlist)
    nrow = len(new_matlist)
    L, D = eye(nrow, K), eye(nrow, K)
    for i in range(nrow):
        for j in range(i + 1):
            a = K.zero
            for k in range(j):
                a += L[i][k]*L[j][k]*D[k][k]
            if i == j:
                D[j][j] = new_matlist[j][j] - a
            else:
                L[i][j] = (new_matlist[i][j] - a)/D[j][j]
    return L, D, conjugate_transpose(L, K)
Ejemplo n.º 3
0
def cholesky(matlist, K):
    """
    Performs the cholesky decomposition of a Hermitian matrix and
    returns L and it's conjugate transpose.

    Examples
    ========

    >>> from sympy.matrices.densesolve import cholesky
    >>> from sympy import QQ
    >>> cholesky([[QQ(25), QQ(15), QQ(-5)], [QQ(15), QQ(18), QQ(0)], [QQ(-5), QQ(0), QQ(11)]], QQ)
    ([[5, 0, 0], [3, 3, 0], [-1, 1, 3]], [[5, 3, -1], [0, 3, 1], [0, 0, 3]])

    See Also
    ========

    cholesky_solve
    """
    new_matlist = copy.deepcopy(matlist)
    nrow = len(new_matlist)
    L = eye(nrow, K)
    for i in range(nrow):
        for j in range(i + 1):
            a = K.zero
            for k in range(j):
                a += L[i][k] * L[j][k]
            if i == j:
                L[i][j] = isqrt(new_matlist[i][j] - a)
            else:
                L[i][j] = (new_matlist[i][j] - a) / L[j][j]
    return L, conjugate_transpose(L, K)
Ejemplo n.º 4
0
def cholesky(matlist, K):
    """
    Performs the cholesky decomposition of a Hermitian matrix and
    returns L and it's conjugate transpose.

    Examples
    ========

    >>> from sympy.matrices.densesolve import cholesky
    >>> from sympy import QQ
    >>> cholesky([[QQ(25), QQ(15), QQ(-5)], [QQ(15), QQ(18), QQ(0)], [QQ(-5), QQ(0), QQ(11)]], QQ)
    ([[5, 0, 0], [3, 3, 0], [-1, 1, 3]], [[5, 3, -1], [0, 3, 1], [0, 0, 3]])

    See Also
    ========

    cholesky_solve
    """
    new_matlist = copy.deepcopy(matlist)
    nrow = len(new_matlist)
    L = eye(nrow, K)
    for i in range(nrow):
        for j in range(i + 1):
            a = K.zero
            for k in range(j):
                a += L[i][k]*L[j][k]
            if i == j:
                L[i][j] = int(sqrt(new_matlist[i][j] - a))
            else:
                L[i][j] = (new_matlist[i][j] - a)/L[j][j]
    return L, conjugate_transpose(L, K)