Ejemplo n.º 1
0
def test_Domain_get_ring():
    assert ZZ.has_assoc_Ring is True
    assert QQ.has_assoc_Ring is True
    assert ZZ[x].has_assoc_Ring is True
    assert QQ[x].has_assoc_Ring is True
    assert ZZ[x, y].has_assoc_Ring is True
    assert QQ[x, y].has_assoc_Ring is True
    assert ZZ.frac_field(x).has_assoc_Ring is True
    assert QQ.frac_field(x).has_assoc_Ring is True
    assert ZZ.frac_field(x, y).has_assoc_Ring is True
    assert QQ.frac_field(x, y).has_assoc_Ring is True

    assert EX.has_assoc_Ring is False
    assert RR.has_assoc_Ring is False
    assert ALG.has_assoc_Ring is False

    assert ZZ.get_ring() == ZZ
    assert QQ.get_ring() == ZZ
    assert ZZ[x].get_ring() == ZZ[x]
    assert QQ[x].get_ring() == QQ[x]
    assert ZZ[x, y].get_ring() == ZZ[x, y]
    assert QQ[x, y].get_ring() == QQ[x, y]
    assert ZZ.frac_field(x).get_ring() == ZZ[x]
    assert QQ.frac_field(x).get_ring() == QQ[x]
    assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y]
    assert QQ.frac_field(x, y).get_ring() == QQ[x, y]

    assert EX.get_ring() == EX

    raises(DomainError, lambda: RR.get_ring())
    raises(DomainError, lambda: ALG.get_ring())
Ejemplo n.º 2
0
def test_Domain_get_ring():
    assert ZZ.has_assoc_Ring is True
    assert QQ.has_assoc_Ring is True
    assert ZZ[x].has_assoc_Ring is True
    assert QQ[x].has_assoc_Ring is True
    assert ZZ[x, y].has_assoc_Ring is True
    assert QQ[x, y].has_assoc_Ring is True
    assert ZZ.frac_field(x).has_assoc_Ring is True
    assert QQ.frac_field(x).has_assoc_Ring is True
    assert ZZ.frac_field(x, y).has_assoc_Ring is True
    assert QQ.frac_field(x, y).has_assoc_Ring is True

    assert EX.has_assoc_Ring is False
    assert RR.has_assoc_Ring is False
    assert ALG.has_assoc_Ring is False

    assert ZZ.get_ring() == ZZ
    assert QQ.get_ring() == ZZ
    assert ZZ[x].get_ring() == ZZ[x]
    assert QQ[x].get_ring() == QQ[x]
    assert ZZ[x, y].get_ring() == ZZ[x, y]
    assert QQ[x, y].get_ring() == QQ[x, y]
    assert ZZ.frac_field(x).get_ring() == ZZ[x]
    assert QQ.frac_field(x).get_ring() == QQ[x]
    assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y]
    assert QQ.frac_field(x, y).get_ring() == QQ[x, y]

    assert EX.get_ring() == EX

    assert RR.get_ring() == RR
    # XXX: This should also be like RR
    raises(DomainError, lambda: ALG.get_ring())
Ejemplo n.º 3
0
 def from_sympy(self, a):
     """Convert SymPy's Integer to `dtype`. """
     if a.is_Rational:
         return GMPYRationalType(a.p, a.q)
     elif a.is_Float:
         from sympy.polys.domains import RR
         return GMPYRationalType(*RR.as_integer_ratio(a))
     else:
         raise CoercionFailed("expected `Rational` object, got %s" % a)
Ejemplo n.º 4
0
 def from_sympy(self, a):
     """Convert SymPy's Rational to `dtype`. """
     if a.is_Rational and a.q != 0:
         return a
     elif a.is_Real:
         from sympy.polys.domains import RR
         return SymPyRationalType(*RR.as_integer_ratio(a))
     else:
         raise CoercionFailed("expected `Rational` object, got %s" % a)
Ejemplo n.º 5
0
 def from_sympy(self, a):
     """Convert SymPy's Rational to `dtype`. """
     if a.is_Rational:
         return PythonRational(a.p, a.q)
     elif a.is_Float:
         from sympy.polys.domains import RR
         p, q = RR.to_rational(a)
         return PythonRational(int(p), int(q))
     else:
         raise CoercionFailed("expected `Rational` object, got %s" % a)
Ejemplo n.º 6
0
def test_Domain_get_exact():
    assert EX.get_exact() == EX
    assert ZZ.get_exact() == ZZ
    assert QQ.get_exact() == QQ
    assert RR.get_exact() == QQ
    assert ALG.get_exact() == ALG
    assert ZZ[x].get_exact() == ZZ[x]
    assert QQ[x].get_exact() == QQ[x]
    assert ZZ[x,y].get_exact() == ZZ[x,y]
    assert QQ[x,y].get_exact() == QQ[x,y]
    assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x)
    assert QQ.frac_field(x).get_exact() == QQ.frac_field(x)
    assert ZZ.frac_field(x,y).get_exact() == ZZ.frac_field(x,y)
    assert QQ.frac_field(x,y).get_exact() == QQ.frac_field(x,y)
Ejemplo n.º 7
0
def test_Domain_get_field():
    assert EX.has_assoc_Field == True
    assert ZZ.has_assoc_Field == True
    assert QQ.has_assoc_Field == True
    assert RR.has_assoc_Field == False
    assert ALG.has_assoc_Field == True
    assert ZZ[x].has_assoc_Field == True
    assert QQ[x].has_assoc_Field == True
    assert ZZ[x,y].has_assoc_Field == True
    assert QQ[x,y].has_assoc_Field == True

    assert EX.get_field() == EX
    assert ZZ.get_field() == QQ
    assert QQ.get_field() == QQ
    raises(DomainError, lambda: RR.get_field())
    assert ALG.get_field() == ALG
    assert ZZ[x].get_field() == ZZ.frac_field(x)
    assert QQ[x].get_field() == QQ.frac_field(x)
    assert ZZ[x,y].get_field() == ZZ.frac_field(x,y)
    assert QQ[x,y].get_field() == QQ.frac_field(x,y)
Ejemplo n.º 8
0
def test_Domain_get_field():
    assert EX.has_assoc_Field is True
    assert ZZ.has_assoc_Field is True
    assert QQ.has_assoc_Field is True
    assert RR.has_assoc_Field is True
    assert ALG.has_assoc_Field is True
    assert ZZ[x].has_assoc_Field is True
    assert QQ[x].has_assoc_Field is True
    assert ZZ[x, y].has_assoc_Field is True
    assert QQ[x, y].has_assoc_Field is True

    assert EX.get_field() == EX
    assert ZZ.get_field() == QQ
    assert QQ.get_field() == QQ
    assert RR.get_field() == RR
    assert ALG.get_field() == ALG
    assert ZZ[x].get_field() == ZZ.frac_field(x)
    assert QQ[x].get_field() == QQ.frac_field(x)
    assert ZZ[x, y].get_field() == ZZ.frac_field(x, y)
    assert QQ[x, y].get_field() == QQ.frac_field(x, y)
Ejemplo n.º 9
0
def test_construct_domain():
    assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
    assert construct_domain(
        [1, 2, 3], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])

    assert construct_domain([S(1), S(2), S(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
    assert construct_domain(
        [S(1), S(2), S(3)], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])

    assert construct_domain([S(1)/2, S(2)]) == (QQ, [QQ(1, 2), QQ(2)])
    assert construct_domain(
        [3.14, 1, S(1)/2]) == (RR, [RR(3.14), RR(1.0), RR(0.5)])

    assert construct_domain(
        [3.14, sqrt(2)], extension=None) == (EX, [EX(3.14), EX(sqrt(2))])
    assert construct_domain(
        [3.14, sqrt(2)], extension=True) == (EX, [EX(3.14), EX(sqrt(2))])

    assert construct_domain(
        [1, sqrt(2)], extension=None) == (EX, [EX(1), EX(sqrt(2))])

    alg = QQ.algebraic_field(sqrt(2))

    assert construct_domain([7, S(1)/2, sqrt(2)], extension=True) == \
        (alg, [alg.convert(7), alg.convert(S(1)/2), alg.convert(sqrt(2))])

    alg = QQ.algebraic_field(sqrt(2) + sqrt(3))

    assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \
        (alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))])

    dom = ZZ[x]

    assert construct_domain([2*x, 3]) == \
        (dom, [dom.convert(2*x), dom.convert(3)])

    dom = ZZ[x, y]

    assert construct_domain([2*x, 3*y]) == \
        (dom, [dom.convert(2*x), dom.convert(3*y)])

    dom = QQ[x]

    assert construct_domain([x/2, 3]) == \
        (dom, [dom.convert(x/2), dom.convert(3)])

    dom = QQ[x, y]

    assert construct_domain([x/2, 3*y]) == \
        (dom, [dom.convert(x/2), dom.convert(3*y)])

    dom = RR[x]

    assert construct_domain([x/2, 3.5]) == \
        (dom, [dom.convert(x/2), dom.convert(3.5)])

    dom = RR[x, y]

    assert construct_domain([x/2, 3.5*y]) == \
        (dom, [dom.convert(x/2), dom.convert(3.5*y)])

    dom = ZZ.frac_field(x)

    assert construct_domain([2/x, 3]) == \
        (dom, [dom.convert(2/x), dom.convert(3)])

    dom = ZZ.frac_field(x, y)

    assert construct_domain([2/x, 3*y]) == \
        (dom, [dom.convert(2/x), dom.convert(3*y)])

    dom = RR.frac_field(x)

    assert construct_domain([2/x, 3.5]) == \
        (dom, [dom.convert(2/x), dom.convert(3.5)])

    dom = RR.frac_field(x, y)

    assert construct_domain([2/x, 3.5*y]) == \
        (dom, [dom.convert(2/x), dom.convert(3.5*y)])

    assert construct_domain(2) == (ZZ, ZZ(2))
    assert construct_domain(S(2)/3) == (QQ, QQ(2, 3))
Ejemplo n.º 10
0
def test_dmp_gcd():
    assert dmp_zz_heu_gcd([[]], [[]], 1, ZZ) == ([[]], [[]], [[]])
    assert dmp_rr_prs_gcd([[]], [[]], 1, ZZ) == ([[]], [[]], [[]])

    assert dmp_zz_heu_gcd([[2]], [[]], 1, ZZ) == ([[2]], [[1]], [[]])
    assert dmp_rr_prs_gcd([[2]], [[]], 1, ZZ) == ([[2]], [[1]], [[]])

    assert dmp_zz_heu_gcd([[-2]], [[]], 1, ZZ) == ([[2]], [[-1]], [[]])
    assert dmp_rr_prs_gcd([[-2]], [[]], 1, ZZ) == ([[2]], [[-1]], [[]])

    assert dmp_zz_heu_gcd([[]], [[-2]], 1, ZZ) == ([[2]], [[]], [[-1]])
    assert dmp_rr_prs_gcd([[]], [[-2]], 1, ZZ) == ([[2]], [[]], [[-1]])

    assert dmp_zz_heu_gcd([[]], [[2], [4]], 1, ZZ) == ([[2], [4]], [[]], [[1]])
    assert dmp_rr_prs_gcd([[]], [[2], [4]], 1, ZZ) == ([[2], [4]], [[]], [[1]])

    assert dmp_zz_heu_gcd([[2], [4]], [[]], 1, ZZ) == ([[2], [4]], [[1]], [[]])
    assert dmp_rr_prs_gcd([[2], [4]], [[]], 1, ZZ) == ([[2], [4]], [[1]], [[]])

    assert dmp_zz_heu_gcd([[2]], [[2]], 1, ZZ) == ([[2]], [[1]], [[1]])
    assert dmp_rr_prs_gcd([[2]], [[2]], 1, ZZ) == ([[2]], [[1]], [[1]])

    assert dmp_zz_heu_gcd([[-2]], [[2]], 1, ZZ) == ([[2]], [[-1]], [[1]])
    assert dmp_rr_prs_gcd([[-2]], [[2]], 1, ZZ) == ([[2]], [[-1]], [[1]])

    assert dmp_zz_heu_gcd([[2]], [[-2]], 1, ZZ) == ([[2]], [[1]], [[-1]])
    assert dmp_rr_prs_gcd([[2]], [[-2]], 1, ZZ) == ([[2]], [[1]], [[-1]])

    assert dmp_zz_heu_gcd([[-2]], [[-2]], 1, ZZ) == ([[2]], [[-1]], [[-1]])
    assert dmp_rr_prs_gcd([[-2]], [[-2]], 1, ZZ) == ([[2]], [[-1]], [[-1]])

    assert dmp_zz_heu_gcd([[1], [2], [1]], [[1]], 1,
                          ZZ) == ([[1]], [[1], [2], [1]], [[1]])
    assert dmp_rr_prs_gcd([[1], [2], [1]], [[1]], 1,
                          ZZ) == ([[1]], [[1], [2], [1]], [[1]])

    assert dmp_zz_heu_gcd([[1], [2], [1]], [[2]], 1,
                          ZZ) == ([[1]], [[1], [2], [1]], [[2]])
    assert dmp_rr_prs_gcd([[1], [2], [1]], [[2]], 1,
                          ZZ) == ([[1]], [[1], [2], [1]], [[2]])

    assert dmp_zz_heu_gcd([[2], [4], [2]], [[2]], 1,
                          ZZ) == ([[2]], [[1], [2], [1]], [[1]])
    assert dmp_rr_prs_gcd([[2], [4], [2]], [[2]], 1,
                          ZZ) == ([[2]], [[1], [2], [1]], [[1]])

    assert dmp_zz_heu_gcd([[2]], [[2], [4], [2]], 1,
                          ZZ) == ([[2]], [[1]], [[1], [2], [1]])
    assert dmp_rr_prs_gcd([[2]], [[2], [4], [2]], 1,
                          ZZ) == ([[2]], [[1]], [[1], [2], [1]])

    assert dmp_zz_heu_gcd([[2], [4], [2]], [[1], [1]], 1,
                          ZZ) == ([[1], [1]], [[2], [2]], [[1]])
    assert dmp_rr_prs_gcd([[2], [4], [2]], [[1], [1]], 1,
                          ZZ) == ([[1], [1]], [[2], [2]], [[1]])

    assert dmp_zz_heu_gcd([[1], [1]], [[2], [4], [2]], 1,
                          ZZ) == ([[1], [1]], [[1]], [[2], [2]])
    assert dmp_rr_prs_gcd([[1], [1]], [[2], [4], [2]], 1,
                          ZZ) == ([[1], [1]], [[1]], [[2], [2]])

    assert dmp_zz_heu_gcd([[[[1, 2, 1]]]], [[[[2, 2]]]], 3,
                          ZZ) == ([[[[1, 1]]]], [[[[1, 1]]]], [[[[2]]]])
    assert dmp_rr_prs_gcd([[[[1, 2, 1]]]], [[[[2, 2]]]], 3,
                          ZZ) == ([[[[1, 1]]]], [[[[1, 1]]]], [[[[2]]]])

    f, g = [[[[1, 2, 1], [1, 1], []]]], [[[[1, 2, 1]]]]
    h, cff, cfg = [[[[1, 1]]]], [[[[1, 1], [1], []]]], [[[[1, 1]]]]

    assert dmp_zz_heu_gcd(f, g, 3, ZZ) == (h, cff, cfg)
    assert dmp_rr_prs_gcd(f, g, 3, ZZ) == (h, cff, cfg)

    assert dmp_zz_heu_gcd(g, f, 3, ZZ) == (h, cfg, cff)
    assert dmp_rr_prs_gcd(g, f, 3, ZZ) == (h, cfg, cff)

    f, g, h = dmp_fateman_poly_F_1(2, ZZ)
    H, cff, cfg = dmp_zz_heu_gcd(f, g, 2, ZZ)

    assert H == h and dmp_mul(H, cff, 2, ZZ) == f \
                  and dmp_mul(H, cfg, 2, ZZ) == g

    H, cff, cfg = dmp_rr_prs_gcd(f, g, 2, ZZ)

    assert H == h and dmp_mul(H, cff, 2, ZZ) == f \
                  and dmp_mul(H, cfg, 2, ZZ) == g

    f, g, h = dmp_fateman_poly_F_1(4, ZZ)
    H, cff, cfg = dmp_zz_heu_gcd(f, g, 4, ZZ)

    assert H == h and dmp_mul(H, cff, 4, ZZ) == f \
                  and dmp_mul(H, cfg, 4, ZZ) == g

    f, g, h = dmp_fateman_poly_F_1(6, ZZ)
    H, cff, cfg = dmp_zz_heu_gcd(f, g, 6, ZZ)

    assert H == h and dmp_mul(H, cff, 6, ZZ) == f \
                  and dmp_mul(H, cfg, 6, ZZ) == g

    f, g, h = dmp_fateman_poly_F_1(8, ZZ)

    H, cff, cfg = dmp_zz_heu_gcd(f, g, 8, ZZ)

    assert H == h and dmp_mul(H, cff, 8, ZZ) == f \
                  and dmp_mul(H, cfg, 8, ZZ) == g

    f, g, h = dmp_fateman_poly_F_2(2, ZZ)
    H, cff, cfg = dmp_zz_heu_gcd(f, g, 2, ZZ)

    assert H == h and dmp_mul(H, cff, 2, ZZ) == f \
                  and dmp_mul(H, cfg, 2, ZZ) == g

    H, cff, cfg = dmp_rr_prs_gcd(f, g, 2, ZZ)

    assert H == h and dmp_mul(H, cff, 2, ZZ) == f \
                  and dmp_mul(H, cfg, 2, ZZ) == g

    f, g, h = dmp_fateman_poly_F_3(2, ZZ)
    H, cff, cfg = dmp_zz_heu_gcd(f, g, 2, ZZ)

    assert H == h and dmp_mul(H, cff, 2, ZZ) == f \
                  and dmp_mul(H, cfg, 2, ZZ) == g

    H, cff, cfg = dmp_rr_prs_gcd(f, g, 2, ZZ)

    assert H == h and dmp_mul(H, cff, 2, ZZ) == f \
                  and dmp_mul(H, cfg, 2, ZZ) == g

    f, g, h = dmp_fateman_poly_F_3(4, ZZ)
    H, cff, cfg = dmp_inner_gcd(f, g, 4, ZZ)

    assert H == h and dmp_mul(H, cff, 4, ZZ) == f \
                  and dmp_mul(H, cfg, 4, ZZ) == g

    f = [[QQ(1, 2)], [QQ(1)], [QQ(1, 2)]]
    g = [[QQ(1, 2)], [QQ(1, 2)]]

    h = [[QQ(1)], [QQ(1)]]

    assert dmp_qq_heu_gcd(f, g, 1, QQ) == (h, g, [[QQ(1, 2)]])
    assert dmp_ff_prs_gcd(f, g, 1, QQ) == (h, g, [[QQ(1, 2)]])

    f = [[RR(2.1), RR(-2.2), RR(2.1)], []]
    g = [[RR(1.0)], [], [], []]

    assert dmp_ff_prs_gcd(f, g, 1, RR) == \
        ([[RR(1.0)], []], [[RR(2.1), RR(-2.2), RR(2.1)]], [[RR(1.0)], [], []])
Ejemplo n.º 11
0
def test_dmp_factor_list():
    assert dmp_factor_list([[]], 1, ZZ) == (ZZ(0), [])
    assert dmp_factor_list([[]], 1, QQ) == (QQ(0), [])
    assert dmp_factor_list([[]], 1, ZZ['y']) == (DMP([], ZZ), [])
    assert dmp_factor_list([[]], 1, QQ['y']) == (DMP([], QQ), [])

    assert dmp_factor_list_include([[]], 1, ZZ) == [([[]], 1)]

    assert dmp_factor_list([[ZZ(7)]], 1, ZZ) == (ZZ(7), [])
    assert dmp_factor_list([[QQ(1, 7)]], 1, QQ) == (QQ(1, 7), [])
    assert dmp_factor_list([[DMP([ZZ(7)], ZZ)]], 1, ZZ['y']) == (DMP([ZZ(7)],
                                                                     ZZ), [])
    assert dmp_factor_list([[DMP([QQ(1, 7)], QQ)]], 1,
                           QQ['y']) == (DMP([QQ(1, 7)], QQ), [])

    assert dmp_factor_list_include([[ZZ(7)]], 1, ZZ) == [([[ZZ(7)]], 1)]

    f, g = [ZZ(1), ZZ(2), ZZ(1)], [ZZ(1), ZZ(1)]

    assert dmp_factor_list(dmp_nest(f, 200, ZZ), 200, ZZ) == \
        (ZZ(1), [(dmp_nest(g, 200, ZZ), 2)])

    assert dmp_factor_list(dmp_raise(f, 200, 0, ZZ), 200, ZZ) == \
        (ZZ(1), [(dmp_raise(g, 200, 0, ZZ), 2)])

    assert dmp_factor_list([ZZ(1),ZZ(2),ZZ(1)], 0, ZZ) == \
        (ZZ(1), [([ZZ(1), ZZ(1)], 2)])
    assert dmp_factor_list([QQ(1,2),QQ(1),QQ(1,2)], 0, QQ) == \
        (QQ(1,2), [([QQ(1),QQ(1)], 2)])

    assert dmp_factor_list([[ZZ(1)],[ZZ(2)],[ZZ(1)]], 1, ZZ) == \
        (ZZ(1), [([[ZZ(1)], [ZZ(1)]], 2)])
    assert dmp_factor_list([[QQ(1,2)],[QQ(1)],[QQ(1,2)]], 1, QQ) == \
        (QQ(1,2), [([[QQ(1)],[QQ(1)]], 2)])

    f = [[ZZ(4), ZZ(0)], [ZZ(4), ZZ(0), ZZ(0)], []]

    assert dmp_factor_list(f, 1, ZZ) == \
        (ZZ(4), [([[ZZ(1),ZZ(0)]], 1),
                 ([[ZZ(1)],[]], 1),
                 ([[ZZ(1)],[ZZ(1),ZZ(0)]], 1)])

    assert dmp_factor_list_include(f, 1, ZZ) == \
        [([[ZZ(4),ZZ(0)]], 1),
         ([[ZZ(1)],[]], 1),
         ([[ZZ(1)],[ZZ(1),ZZ(0)]], 1)]

    f = [[QQ(1, 2), QQ(0)], [QQ(1, 2), QQ(0), QQ(0)], []]

    assert dmp_factor_list(f, 1, QQ) == \
        (QQ(1,2), [([[QQ(1),QQ(0)]], 1),
                   ([[QQ(1)],[]], 1),
                   ([[QQ(1)],[QQ(1),QQ(0)]], 1)])

    f = [[RR(2.0)], [], [-RR(8.0), RR(0.0), RR(0.0)]]

    assert dmp_factor_list(f, 1, RR) == \
        (RR(2.0), [([[RR(1.0)],[-RR(2.0),RR(0.0)]], 1),
                   ([[RR(1.0)],[ RR(2.0),RR(0.0)]], 1)])

    f = [[DMP([ZZ(4), ZZ(0)], ZZ)], [DMP([ZZ(4), ZZ(0), ZZ(0)], ZZ)],
         [DMP([], ZZ)]]

    assert dmp_factor_list(f, 1, ZZ['y']) == \
        (DMP([ZZ(4)],ZZ), [([[DMP([ZZ(1),ZZ(0)],ZZ)]], 1),
                           ([[DMP([ZZ(1)],ZZ)],[]], 1),
                           ([[DMP([ZZ(1)],ZZ)],[DMP([ZZ(1),ZZ(0)],ZZ)]], 1)])

    f = [[DMP([QQ(1, 2), QQ(0)], ZZ)],
         [DMP([QQ(1, 2), QQ(0), QQ(0)], ZZ)], [DMP([], ZZ)]]

    assert dmp_factor_list(f, 1, QQ['y']) == \
        (DMP([QQ(1,2)],QQ), [([[DMP([QQ(1),QQ(0)],QQ)]], 1),
                             ([[DMP([QQ(1)],QQ)],[]], 1),
                             ([[DMP([QQ(1)],QQ)],[DMP([QQ(1),QQ(0)],QQ)]], 1)])

    K = FF(2)

    raises(DomainError, "dmp_factor_list([[K(1)],[],[K(1),K(0),K(0)]], 1, K)")
    raises(DomainError, "dmp_factor_list([[EX(sin(1))]], 1, EX)")
Ejemplo n.º 12
0
def test_Domain_unify():
    F3 = GF(3)

    assert unify(F3, F3) == F3
    assert unify(F3, ZZ) == ZZ
    assert unify(F3, QQ) == QQ
    assert unify(F3, ALG) == ALG
    assert unify(F3, RR) == RR
    assert unify(F3, CC) == CC
    assert unify(F3, ZZ[x]) == ZZ[x]
    assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(F3, EX) == EX

    assert unify(ZZ, F3) == ZZ
    assert unify(ZZ, ZZ) == ZZ
    assert unify(ZZ, QQ) == QQ
    assert unify(ZZ, ALG) == ALG
    assert unify(ZZ, RR) == RR
    assert unify(ZZ, CC) == CC
    assert unify(ZZ, ZZ[x]) == ZZ[x]
    assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ, EX) == EX

    assert unify(QQ, F3) == QQ
    assert unify(QQ, ZZ) == QQ
    assert unify(QQ, QQ) == QQ
    assert unify(QQ, ALG) == ALG
    assert unify(QQ, RR) == RR
    assert unify(QQ, CC) == CC
    assert unify(QQ, ZZ[x]) == QQ[x]
    assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ, EX) == EX

    assert unify(RR, F3) == RR
    assert unify(RR, ZZ) == RR
    assert unify(RR, QQ) == RR
    assert unify(RR, ALG) == RR
    assert unify(RR, RR) == RR
    assert unify(RR, CC) == CC
    assert unify(RR, ZZ[x]) == RR[x]
    assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x)
    assert unify(RR, EX) == EX
    assert RR[x].unify(ZZ.frac_field(y)) == RR.frac_field(x, y)

    assert unify(CC, F3) == CC
    assert unify(CC, ZZ) == CC
    assert unify(CC, QQ) == CC
    assert unify(CC, ALG) == CC
    assert unify(CC, RR) == CC
    assert unify(CC, CC) == CC
    assert unify(CC, ZZ[x]) == CC[x]
    assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x)
    assert unify(CC, EX) == EX

    assert unify(ZZ[x], F3) == ZZ[x]
    assert unify(ZZ[x], ZZ) == ZZ[x]
    assert unify(ZZ[x], QQ) == QQ[x]
    assert unify(ZZ[x], ALG) == ALG[x]
    assert unify(ZZ[x], RR) == RR[x]
    assert unify(ZZ[x], CC) == CC[x]
    assert unify(ZZ[x], ZZ[x]) == ZZ[x]
    assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ[x], EX) == EX

    assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
    assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x)
    assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x)
    assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), EX) == EX

    assert unify(EX, F3) == EX
    assert unify(EX, ZZ) == EX
    assert unify(EX, QQ) == EX
    assert unify(EX, ALG) == EX
    assert unify(EX, RR) == EX
    assert unify(EX, CC) == EX
    assert unify(EX, ZZ[x]) == EX
    assert unify(EX, ZZ.frac_field(x)) == EX
    assert unify(EX, EX) == EX
Ejemplo n.º 13
0
def test_dmp_factor_list():
    R, x, y = ring("x,y", ZZ)
    assert R.dmp_factor_list(0) == (ZZ(0), [])
    assert R.dmp_factor_list(7) == (7, [])

    R, x, y = ring("x,y", QQ)
    assert R.dmp_factor_list(0) == (QQ(0), [])
    assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), [])

    Rt, t = ring("t", ZZ)
    R, x, y = ring("x,y", Rt)
    assert R.dmp_factor_list(0) == (0, [])
    assert R.dmp_factor_list(7) == (ZZ(7), [])

    Rt, t = ring("t", QQ)
    R, x, y = ring("x,y", Rt)
    assert R.dmp_factor_list(0) == (0, [])
    assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), [])

    R, x, y = ring("x,y", ZZ)
    assert R.dmp_factor_list_include(0) == [(0, 1)]
    assert R.dmp_factor_list_include(7) == [(7, 1)]

    R, X = xring("x:200", ZZ)

    f, g = X[0]**2 + 2 * X[0] + 1, X[0] + 1
    assert R.dmp_factor_list(f) == (1, [(g, 2)])

    f, g = X[-1]**2 + 2 * X[-1] + 1, X[-1] + 1
    assert R.dmp_factor_list(f) == (1, [(g, 2)])

    R, x = ring("x", ZZ)
    assert R.dmp_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)])
    R, x = ring("x", QQ)
    assert R.dmp_factor_list(QQ(1, 2) * x**2 + x + QQ(1, 2)) == (QQ(1, 2),
                                                                 [(x + 1, 2)])

    R, x, y = ring("x,y", ZZ)
    assert R.dmp_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)])
    R, x, y = ring("x,y", QQ)
    assert R.dmp_factor_list(QQ(1, 2) * x**2 + x + QQ(1, 2)) == (QQ(1, 2),
                                                                 [(x + 1, 2)])

    R, x, y = ring("x,y", ZZ)
    f = 4 * x**2 * y + 4 * x * y**2

    assert R.dmp_factor_list(f) == \
        (4, [(y, 1),
             (x, 1),
             (x + y, 1)])

    assert R.dmp_factor_list_include(f) == \
        [(4*y, 1),
         (x, 1),
         (x + y, 1)]

    R, x, y = ring("x,y", QQ)
    f = QQ(1, 2) * x**2 * y + QQ(1, 2) * x * y**2

    assert R.dmp_factor_list(f) == \
        (QQ(1,2), [(y, 1),
                   (x, 1),
                   (x + y, 1)])

    R, x, y = ring("x,y", RR)
    f = 2.0 * x**2 - 8.0 * y**2

    assert R.dmp_factor_list(f) == \
        (RR(2.0), [(1.0*x - 2.0*y, 1),
                   (1.0*x + 2.0*y, 1)])

    f = 6.7225336055071 * x**2 * y**2 - 10.6463972754741 * x * y - 0.33469524022264
    coeff, factors = R.dmp_factor_list(f)
    assert coeff == RR(1.0) and len(factors) == 1 and factors[0][0].almosteq(
        f, 1e-10) and factors[0][1] == 1

    Rt, t = ring("t", ZZ)
    R, x, y = ring("x,y", Rt)
    f = 4 * t * x**2 + 4 * t**2 * x

    assert R.dmp_factor_list(f) == \
        (4, [(t, 1),
             (x, 1),
             (x + t, 1)])

    Rt, t = ring("t", QQ)
    R, x, y = ring("x,y", Rt)
    f = QQ(1, 2) * t * x**2 + QQ(1, 2) * t**2 * x

    assert R.dmp_factor_list(f) == \
        (QQ(1, 2), [(t, 1),
                    (x, 1),
                    (x + t, 1)])

    R, x, y = ring("x,y", FF(2))
    raises(NotImplementedError, lambda: R.dmp_factor_list(x**2 + y**2))

    R, x, y = ring("x,y", EX)
    raises(DomainError, lambda: R.dmp_factor_list(EX(sin(1))))
Ejemplo n.º 14
0
def test_dup_factor_list():
    R, x = ring("x", ZZ)
    assert R.dup_factor_list(0) == (0, [])
    assert R.dup_factor_list(7) == (7, [])

    R, x = ring("x", QQ)
    assert R.dup_factor_list(0) == (0, [])
    assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), [])

    R, x = ring("x", ZZ['t'])
    assert R.dup_factor_list(0) == (0, [])
    assert R.dup_factor_list(7) == (7, [])

    R, x = ring("x", QQ['t'])
    assert R.dup_factor_list(0) == (0, [])
    assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), [])

    R, x = ring("x", ZZ)
    assert R.dup_factor_list_include(0) == [(0, 1)]
    assert R.dup_factor_list_include(7) == [(7, 1)]

    assert R.dup_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)])
    assert R.dup_factor_list_include(x**2 + 2 * x + 1) == [(x + 1, 2)]

    R, x = ring("x", QQ)
    assert R.dup_factor_list(QQ(1, 2) * x**2 + x + QQ(1, 2)) == (QQ(1, 2),
                                                                 [(x + 1, 2)])

    R, x = ring("x", FF(2))
    assert R.dup_factor_list(x**2 + 1) == (1, [(x + 1, 2)])

    R, x = ring("x", RR)
    assert R.dup_factor_list(1.0 * x**2 + 2.0 * x + 1.0) == (1.0, [
        (1.0 * x + 1.0, 2)
    ])
    assert R.dup_factor_list(2.0 * x**2 + 4.0 * x + 2.0) == (2.0, [
        (1.0 * x + 1.0, 2)
    ])

    f = 6.7225336055071 * x**2 - 10.6463972754741 * x - 0.33469524022264
    coeff, factors = R.dup_factor_list(f)
    assert coeff == RR(1.0) and len(factors) == 1 and factors[0][0].almosteq(
        f, 1e-10) and factors[0][1] == 1

    Rt, t = ring("t", ZZ)
    R, x = ring("x", Rt)

    f = 4 * t * x**2 + 4 * t**2 * x

    assert R.dup_factor_list(f) == \
        (4, [(t, 1),
             (x, 1),
             (x + t, 1)])

    Rt, t = ring("t", QQ)
    R, x = ring("x", Rt)

    f = QQ(1, 2) * t * x**2 + QQ(1, 2) * t**2 * x

    assert R.dup_factor_list(f) == \
        (QQ(1, 2), [(t, 1),
                    (x, 1),
                    (x + t, 1)])

    R, x = ring("x", QQ.algebraic_field(I))

    def anp(element):
        return ANP(element, [QQ(1), QQ(0), QQ(1)], QQ)

    f = anp([QQ(1, 1)]) * x**4 + anp([QQ(2, 1)]) * x**2

    assert R.dup_factor_list(f) == \
        (anp([QQ(1, 1)]), [(anp([QQ(1, 1)])*x, 2),
                           (anp([QQ(1, 1)])*x**2 + anp([])*x + anp([QQ(2, 1)]), 1)])

    R, x = ring("x", EX)
    raises(DomainError, lambda: R.dup_factor_list(EX(sin(1))))
Ejemplo n.º 15
0
def test_RealField_from_sympy():
    assert RR.convert(S.Zero) == RR.dtype(0)
    assert RR.convert(S(0.0)) == RR.dtype(0.0)
    assert RR.convert(S.One) == RR.dtype(1)
    assert RR.convert(S(1.0)) == RR.dtype(1.0)
    assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf())
Ejemplo n.º 16
0
def test_issue_18278():
    assert str(RR(2).parent()) == 'RR'
    assert str(CC(2).parent()) == 'CC'
Ejemplo n.º 17
0
def test_construct_domain():

    assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
    assert construct_domain([1, 2, 3],
                            field=True) == (QQ, [QQ(1), QQ(2),
                                                 QQ(3)])

    assert construct_domain([S.One, S(2), S(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
    assert construct_domain([S.One, S(2), S(3)],
                            field=True) == (QQ, [QQ(1), QQ(2),
                                                 QQ(3)])

    assert construct_domain([S.Half, S(2)]) == (QQ, [QQ(1, 2), QQ(2)])
    result = construct_domain([3.14, 1, S.Half])
    assert isinstance(result[0], RealField)
    assert result[1] == [RR(3.14), RR(1.0), RR(0.5)]

    result = construct_domain([3.14, I, S.Half])
    assert isinstance(result[0], ComplexField)
    assert result[1] == [CC(3.14), CC(1.0j), CC(0.5)]

    assert construct_domain([1.0 + I]) == (CC, [CC(1.0, 1.0)])
    assert construct_domain([2.0 + 3.0 * I]) == (CC, [CC(2.0, 3.0)])

    assert construct_domain([1, I]) == (ZZ_I, [ZZ_I(1, 0), ZZ_I(0, 1)])
    assert construct_domain([1,
                             I / 2]) == (QQ_I, [QQ_I(1, 0),
                                                QQ_I(0, S.Half)])

    assert construct_domain([3.14, sqrt(2)],
                            extension=None) == (EX, [EX(3.14),
                                                     EX(sqrt(2))])
    assert construct_domain([3.14, sqrt(2)],
                            extension=True) == (EX, [EX(3.14),
                                                     EX(sqrt(2))])

    assert construct_domain([1, sqrt(2)],
                            extension=None) == (EX, [EX(1), EX(sqrt(2))])

    assert construct_domain([x, sqrt(x)]) == (EX, [EX(x), EX(sqrt(x))])
    assert construct_domain([x, sqrt(x), sqrt(y)
                             ]) == (EX, [EX(x),
                                         EX(sqrt(x)),
                                         EX(sqrt(y))])

    alg = QQ.algebraic_field(sqrt(2))

    assert construct_domain([7, S.Half, sqrt(2)], extension=True) == \
        (alg, [alg.convert(7), alg.convert(S.Half), alg.convert(sqrt(2))])

    alg = QQ.algebraic_field(sqrt(2) + sqrt(3))

    assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \
        (alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))])

    dom = ZZ[x]

    assert construct_domain([2*x, 3]) == \
        (dom, [dom.convert(2*x), dom.convert(3)])

    dom = ZZ[x, y]

    assert construct_domain([2*x, 3*y]) == \
        (dom, [dom.convert(2*x), dom.convert(3*y)])

    dom = QQ[x]

    assert construct_domain([x/2, 3]) == \
        (dom, [dom.convert(x/2), dom.convert(3)])

    dom = QQ[x, y]

    assert construct_domain([x/2, 3*y]) == \
        (dom, [dom.convert(x/2), dom.convert(3*y)])

    dom = ZZ_I[x]

    assert construct_domain([2*x, I]) == \
        (dom, [dom.convert(2*x), dom.convert(I)])

    dom = ZZ_I[x, y]

    assert construct_domain([2*x, I*y]) == \
        (dom, [dom.convert(2*x), dom.convert(I*y)])

    dom = QQ_I[x]

    assert construct_domain([x/2, I]) == \
        (dom, [dom.convert(x/2), dom.convert(I)])

    dom = QQ_I[x, y]

    assert construct_domain([x/2, I*y]) == \
        (dom, [dom.convert(x/2), dom.convert(I*y)])

    dom = RR[x]

    assert construct_domain([x/2, 3.5]) == \
        (dom, [dom.convert(x/2), dom.convert(3.5)])

    dom = RR[x, y]

    assert construct_domain([x/2, 3.5*y]) == \
        (dom, [dom.convert(x/2), dom.convert(3.5*y)])

    dom = CC[x]

    assert construct_domain([I*x/2, 3.5]) == \
        (dom, [dom.convert(I*x/2), dom.convert(3.5)])

    dom = CC[x, y]

    assert construct_domain([I*x/2, 3.5*y]) == \
        (dom, [dom.convert(I*x/2), dom.convert(3.5*y)])

    dom = CC[x]

    assert construct_domain([x/2, I*3.5]) == \
        (dom, [dom.convert(x/2), dom.convert(I*3.5)])

    dom = CC[x, y]

    assert construct_domain([x/2, I*3.5*y]) == \
        (dom, [dom.convert(x/2), dom.convert(I*3.5*y)])

    dom = ZZ.frac_field(x)

    assert construct_domain([2/x, 3]) == \
        (dom, [dom.convert(2/x), dom.convert(3)])

    dom = ZZ.frac_field(x, y)

    assert construct_domain([2/x, 3*y]) == \
        (dom, [dom.convert(2/x), dom.convert(3*y)])

    dom = RR.frac_field(x)

    assert construct_domain([2/x, 3.5]) == \
        (dom, [dom.convert(2/x), dom.convert(3.5)])

    dom = RR.frac_field(x, y)

    assert construct_domain([2/x, 3.5*y]) == \
        (dom, [dom.convert(2/x), dom.convert(3.5*y)])

    dom = RealField(prec=336)[x]

    assert construct_domain([pi.evalf(100)*x]) == \
        (dom, [dom.convert(pi.evalf(100)*x)])

    assert construct_domain(2) == (ZZ, ZZ(2))
    assert construct_domain(S(2) / 3) == (QQ, QQ(2, 3))
    assert construct_domain(Rational(2, 3)) == (QQ, QQ(2, 3))

    assert construct_domain({}) == (ZZ, {})
Ejemplo n.º 18
0
def test_construct_domain():
    assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
    assert construct_domain([1, 2, 3],
                            field=True) == (QQ, [QQ(1), QQ(2),
                                                 QQ(3)])

    assert construct_domain([S(1), S(2), S(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
    assert construct_domain([S(1), S(2), S(3)],
                            field=True) == (QQ, [QQ(1), QQ(2),
                                                 QQ(3)])

    assert construct_domain([S(1) / 2, S(2)]) == (QQ, [QQ(1, 2), QQ(2)])
    assert construct_domain([3.14, 1,
                             S(1) / 2]) == (RR, [RR(3.14),
                                                 RR(1.0),
                                                 RR(0.5)])

    assert construct_domain([3.14, sqrt(2)],
                            extension=None) == (EX, [EX(3.14),
                                                     EX(sqrt(2))])
    assert construct_domain([3.14, sqrt(2)],
                            extension=True) == (EX, [EX(3.14),
                                                     EX(sqrt(2))])

    assert construct_domain([1, sqrt(2)],
                            extension=None) == (EX, [EX(1), EX(sqrt(2))])

    alg = QQ.algebraic_field(sqrt(2))

    assert construct_domain([7, S(1)/2, sqrt(2)], extension=True) == \
        (alg, [alg.convert(7), alg.convert(S(1)/2), alg.convert(sqrt(2))])

    alg = QQ.algebraic_field(sqrt(2) + sqrt(3))

    assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \
        (alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))])

    dom = ZZ[x]

    assert construct_domain([2*x, 3]) == \
        (dom, [dom.convert(2*x), dom.convert(3)])

    dom = ZZ[x, y]

    assert construct_domain([2*x, 3*y]) == \
        (dom, [dom.convert(2*x), dom.convert(3*y)])

    dom = QQ[x]

    assert construct_domain([x/2, 3]) == \
        (dom, [dom.convert(x/2), dom.convert(3)])

    dom = QQ[x, y]

    assert construct_domain([x/2, 3*y]) == \
        (dom, [dom.convert(x/2), dom.convert(3*y)])

    dom = RR[x]

    assert construct_domain([x/2, 3.5]) == \
        (dom, [dom.convert(x/2), dom.convert(3.5)])

    dom = RR[x, y]

    assert construct_domain([x/2, 3.5*y]) == \
        (dom, [dom.convert(x/2), dom.convert(3.5*y)])

    dom = ZZ.frac_field(x)

    assert construct_domain([2/x, 3]) == \
        (dom, [dom.convert(2/x), dom.convert(3)])

    dom = ZZ.frac_field(x, y)

    assert construct_domain([2/x, 3*y]) == \
        (dom, [dom.convert(2/x), dom.convert(3*y)])

    dom = RR.frac_field(x)

    assert construct_domain([2/x, 3.5]) == \
        (dom, [dom.convert(2/x), dom.convert(3.5)])

    dom = RR.frac_field(x, y)

    assert construct_domain([2/x, 3.5*y]) == \
        (dom, [dom.convert(2/x), dom.convert(3.5*y)])

    assert construct_domain(2) == (ZZ, ZZ(2))
    assert construct_domain(S(2) / 3) == (QQ, QQ(2, 3))

    assert construct_domain({}) == (ZZ, {})
Ejemplo n.º 19
0
def test_Domain_unify():
    F3 = GF(3)

    assert unify(F3, F3) == F3
    assert unify(F3, ZZ) == ZZ
    assert unify(F3, QQ) == QQ
    assert unify(F3, ALG) == ALG
    assert unify(F3, RR) == RR
    assert unify(F3, CC) == CC
    assert unify(F3, ZZ[x]) == ZZ[x]
    assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(F3, EX) == EX

    assert unify(ZZ, F3) == ZZ
    assert unify(ZZ, ZZ) == ZZ
    assert unify(ZZ, QQ) == QQ
    assert unify(ZZ, ALG) == ALG
    assert unify(ZZ, RR) == RR
    assert unify(ZZ, CC) == CC
    assert unify(ZZ, ZZ[x]) == ZZ[x]
    assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ, EX) == EX

    assert unify(QQ, F3) == QQ
    assert unify(QQ, ZZ) == QQ
    assert unify(QQ, QQ) == QQ
    assert unify(QQ, ALG) == ALG
    assert unify(QQ, RR) == RR
    assert unify(QQ, CC) == CC
    assert unify(QQ, ZZ[x]) == QQ[x]
    assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ, EX) == EX

    assert unify(RR, F3) == RR
    assert unify(RR, ZZ) == RR
    assert unify(RR, QQ) == RR
    assert unify(RR, ALG) == RR
    assert unify(RR, RR) == RR
    assert unify(RR, CC) == CC
    assert unify(RR, ZZ[x]) == RR[x]
    assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x)
    assert unify(RR, EX) == EX
    assert RR[x].unify(ZZ.frac_field(y)) == RR.frac_field(x, y)

    assert unify(CC, F3) == CC
    assert unify(CC, ZZ) == CC
    assert unify(CC, QQ) == CC
    assert unify(CC, ALG) == CC
    assert unify(CC, RR) == CC
    assert unify(CC, CC) == CC
    assert unify(CC, ZZ[x]) == CC[x]
    assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x)
    assert unify(CC, EX) == EX

    assert unify(ZZ[x], F3) == ZZ[x]
    assert unify(ZZ[x], ZZ) == ZZ[x]
    assert unify(ZZ[x], QQ) == QQ[x]
    assert unify(ZZ[x], ALG) == ALG[x]
    assert unify(ZZ[x], RR) == RR[x]
    assert unify(ZZ[x], CC) == CC[x]
    assert unify(ZZ[x], ZZ[x]) == ZZ[x]
    assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ[x], EX) == EX

    assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
    assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x)
    assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x)
    assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), EX) == EX

    assert unify(EX, F3) == EX
    assert unify(EX, ZZ) == EX
    assert unify(EX, QQ) == EX
    assert unify(EX, ALG) == EX
    assert unify(EX, RR) == EX
    assert unify(EX, CC) == EX
    assert unify(EX, ZZ[x]) == EX
    assert unify(EX, ZZ.frac_field(x)) == EX
    assert unify(EX, EX) == EX
Ejemplo n.º 20
0
def test_dup_factor_list():
    assert dup_factor_list([], ZZ) == (ZZ(0), [])
    assert dup_factor_list([], QQ) == (QQ(0), [])
    assert dup_factor_list([], ZZ['y']) == (DMP([], ZZ), [])
    assert dup_factor_list([], QQ['y']) == (DMP([], QQ), [])

    assert dup_factor_list_include([], ZZ) == [([], 1)]

    assert dup_factor_list([ZZ(7)], ZZ) == (ZZ(7), [])
    assert dup_factor_list([QQ(1, 7)], QQ) == (QQ(1, 7), [])
    assert dup_factor_list([DMP([ZZ(7)], ZZ)], ZZ['y']) == (DMP([ZZ(7)],
                                                                ZZ), [])
    assert dup_factor_list([DMP([QQ(1, 7)], QQ)], QQ['y']) == (DMP([QQ(1, 7)],
                                                                   QQ), [])

    assert dup_factor_list_include([ZZ(7)], ZZ) == [([ZZ(7)], 1)]

    assert dup_factor_list([ZZ(1),ZZ(2),ZZ(1)], ZZ) == \
        (ZZ(1), [([ZZ(1), ZZ(1)], 2)])
    assert dup_factor_list([QQ(1,2),QQ(1),QQ(1,2)], QQ) == \
        (QQ(1,2), [([QQ(1),QQ(1)], 2)])

    assert dup_factor_list_include([ZZ(1),ZZ(2),ZZ(1)], ZZ) == \
        [([ZZ(1), ZZ(1)], 2)]

    K = FF(2)

    assert dup_factor_list([K(1),K(0),K(1)], K) == \
        (K(1), [([K(1), K(1)], 2)])

    assert dup_factor_list([RR(1.0),RR(2.0),RR(1.0)], RR) == \
        (RR(1.0), [([RR(1.0),RR(1.0)], 2)])
    assert dup_factor_list([RR(2.0),RR(4.0),RR(2.0)], RR) == \
        (RR(2.0), [([RR(1.0),RR(1.0)], 2)])

    f = [DMP([ZZ(4), ZZ(0)], ZZ), DMP([ZZ(4), ZZ(0), ZZ(0)], ZZ), DMP([], ZZ)]

    assert dup_factor_list(f, ZZ['y']) == \
        (DMP([ZZ(4)],ZZ), [([DMP([ZZ(1),ZZ(0)],ZZ)], 1),
                           ([DMP([ZZ(1)],ZZ),DMP([],ZZ)], 1),
                           ([DMP([ZZ(1)],ZZ),DMP([ZZ(1),ZZ(0)],ZZ)], 1)])

    f = [
        DMP([QQ(1, 2), QQ(0)], ZZ),
        DMP([QQ(1, 2), QQ(0), QQ(0)], ZZ),
        DMP([], ZZ)
    ]

    assert dup_factor_list(f, QQ['y']) == \
        (DMP([QQ(1,2)],QQ), [([DMP([QQ(1),QQ(0)],QQ)], 1),
                             ([DMP([QQ(1)],QQ),DMP([],QQ)], 1),
                             ([DMP([QQ(1)],QQ),DMP([QQ(1),QQ(0)],QQ)], 1)])

    K = QQ.algebraic_field(I)
    h = [QQ(1, 1), QQ(0, 1), QQ(1, 1)]

    f = [
        ANP([QQ(1, 1)], h, QQ),
        ANP([], h, QQ),
        ANP([QQ(2, 1)], h, QQ),
        ANP([], h, QQ),
        ANP([], h, QQ)
    ]

    assert dup_factor_list(f, K) == \
        (ANP([QQ(1,1)], h, QQ), [([ANP([QQ(1,1)], h, QQ), ANP([], h, QQ)], 2),
                                 ([ANP([QQ(1,1)], h, QQ), ANP([], h, QQ), ANP([QQ(2,1)], h, QQ)], 1)])

    raises(DomainError, "dup_factor_list([EX(sin(1))], EX)")
Ejemplo n.º 21
0
def test_RealField_from_sympy():
    assert RR.convert(S(0)) == RR.dtype(0)
    assert RR.convert(S(0.0)) == RR.dtype(0.0)
    assert RR.convert(S(1)) == RR.dtype(1)
    assert RR.convert(S(1.0)) == RR.dtype(1.0)
    assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf())
    assert RR.convert(oo) == RR("+inf")
    assert RR.convert(-oo) == RR("-inf")
    raises(CoercionFailed, lambda: RR.convert(x))
Ejemplo n.º 22
0
def test_construct_domain():
    assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
    assert construct_domain([1, 2, 3], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])

    assert construct_domain([S(1), S(2), S(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
    assert construct_domain([S(1), S(2), S(3)], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])

    assert construct_domain([S(1)/2, S(2)]) == (QQ, [QQ(1, 2), QQ(2)])
    result = construct_domain([3.14, 1, S(1)/2])
    assert isinstance(result[0], RealField)
    assert result[1] == [RR(3.14), RR(1.0), RR(0.5)]

    assert construct_domain([3.14, sqrt(2)], extension=None) == (EX, [EX(3.14), EX(sqrt(2))])
    assert construct_domain([3.14, sqrt(2)], extension=True) == (EX, [EX(3.14), EX(sqrt(2))])

    assert construct_domain([1, sqrt(2)], extension=None) == (EX, [EX(1), EX(sqrt(2))])

    assert construct_domain([x, sqrt(x)]) == (EX, [EX(x), EX(sqrt(x))])
    assert construct_domain([x, sqrt(x), sqrt(y)]) == (EX, [EX(x), EX(sqrt(x)), EX(sqrt(y))])

    alg = QQ.algebraic_field(sqrt(2))

    assert construct_domain([7, S(1)/2, sqrt(2)], extension=True) == \
        (alg, [alg.convert(7), alg.convert(S(1)/2), alg.convert(sqrt(2))])

    alg = QQ.algebraic_field(sqrt(2) + sqrt(3))

    assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \
        (alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))])

    dom = ZZ[x]

    assert construct_domain([2*x, 3]) == \
        (dom, [dom.convert(2*x), dom.convert(3)])

    dom = ZZ[x, y]

    assert construct_domain([2*x, 3*y]) == \
        (dom, [dom.convert(2*x), dom.convert(3*y)])

    dom = QQ[x]

    assert construct_domain([x/2, 3]) == \
        (dom, [dom.convert(x/2), dom.convert(3)])

    dom = QQ[x, y]

    assert construct_domain([x/2, 3*y]) == \
        (dom, [dom.convert(x/2), dom.convert(3*y)])

    dom = RR[x]

    assert construct_domain([x/2, 3.5]) == \
        (dom, [dom.convert(x/2), dom.convert(3.5)])

    dom = RR[x, y]

    assert construct_domain([x/2, 3.5*y]) == \
        (dom, [dom.convert(x/2), dom.convert(3.5*y)])

    dom = ZZ.frac_field(x)

    assert construct_domain([2/x, 3]) == \
        (dom, [dom.convert(2/x), dom.convert(3)])

    dom = ZZ.frac_field(x, y)

    assert construct_domain([2/x, 3*y]) == \
        (dom, [dom.convert(2/x), dom.convert(3*y)])

    dom = RR.frac_field(x)

    assert construct_domain([2/x, 3.5]) == \
        (dom, [dom.convert(2/x), dom.convert(3.5)])

    dom = RR.frac_field(x, y)

    assert construct_domain([2/x, 3.5*y]) == \
        (dom, [dom.convert(2/x), dom.convert(3.5*y)])

    dom = RealField(prec=336)[x]

    assert construct_domain([pi.evalf(100)*x]) == \
        (dom, [dom.convert(pi.evalf(100)*x)])

    assert construct_domain(2) == (ZZ, ZZ(2))
    assert construct_domain(S(2)/3) == (QQ, QQ(2, 3))

    assert construct_domain({}) == (ZZ, {})
Ejemplo n.º 23
0
def test_RealField_from_sympy():
    assert RR.convert(S(0)) == RR.dtype(0)
    assert RR.convert(S(0.0)) == RR.dtype(0.0)
    assert RR.convert(S(1)) == RR.dtype(1)
    assert RR.convert(S(1.0)) == RR.dtype(1.0)
    assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf())
    assert RR.convert(oo) == RR("+inf")
    assert RR.convert(-oo) == RR("-inf")
    raises(CoercionFailed, lambda: RR.convert(x))
Ejemplo n.º 24
0
def test_RealDomain_from_sympy():
    RR = RR_mpmath()

    assert RR.convert(S(0)) == RR.dtype(0)
    assert RR.convert(S(0.0)) == RR.dtype(0.0)
    assert RR.convert(S(1)) == RR.dtype(1)
    assert RR.convert(S(1.0)) == RR.dtype(1.0)
    assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf())
    raises(CoercionFailed, lambda: RR.convert(x))
    raises(CoercionFailed, lambda: RR.convert(oo))
    raises(CoercionFailed, lambda: RR.convert(-oo))

    RR = RR_sympy()

    assert RR.convert(S(0)) == RR.dtype(0)
    assert RR.convert(S(0.0)) == RR.dtype(0.0)
    assert RR.convert(S(1)) == RR.dtype(1)
    assert RR.convert(S(1.0)) == RR.dtype(1.0)
    assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf())
    assert RR.n(3, 2) == RR.evalf(3, 2) == Rational(3).n(2)
    raises(CoercionFailed, lambda: RR.convert(x))
    raises(CoercionFailed, lambda: RR.convert(oo))
    raises(CoercionFailed, lambda: RR.convert(-oo))
Ejemplo n.º 25
0
def test_RealDomain_from_sympy():
    RR = RR_mpmath()

    assert RR.convert(S(0)) == RR.dtype(0)
    assert RR.convert(S(0.0)) == RR.dtype(0.0)
    assert RR.convert(S(1)) == RR.dtype(1)
    assert RR.convert(S(1.0)) == RR.dtype(1.0)
    assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf())
    raises(CoercionFailed, "RR.convert(x)")
    raises(CoercionFailed, "RR.convert(oo)")
    raises(CoercionFailed, "RR.convert(-oo)")

    RR = RR_sympy()

    assert RR.convert(S(0)) == RR.dtype(0)
    assert RR.convert(S(0.0)) == RR.dtype(0.0)
    assert RR.convert(S(1)) == RR.dtype(1)
    assert RR.convert(S(1.0)) == RR.dtype(1.0)
    assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf())
    raises(CoercionFailed, "RR.convert(x)")
    raises(CoercionFailed, "RR.convert(oo)")
    raises(CoercionFailed, "RR.convert(-oo)")
Ejemplo n.º 26
0
def test_RealDomain_from_sympy():
    RR = RR_mpmath()

    assert RR.convert(S(0)) == RR.dtype(0)
    assert RR.convert(S(0.0)) == RR.dtype(0.0)
    assert RR.convert(S(1)) == RR.dtype(1)
    assert RR.convert(S(1.0)) == RR.dtype(1.0)
    assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf())
    raises(CoercionFailed, "RR.convert(x)")
    raises(CoercionFailed, "RR.convert(oo)")
    raises(CoercionFailed, "RR.convert(-oo)")

    RR = RR_sympy()

    assert RR.convert(S(0)) == RR.dtype(0)
    assert RR.convert(S(0.0)) == RR.dtype(0.0)
    assert RR.convert(S(1)) == RR.dtype(1)
    assert RR.convert(S(1.0)) == RR.dtype(1.0)
    assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf())
    raises(CoercionFailed, "RR.convert(x)")
    raises(CoercionFailed, "RR.convert(oo)")
    raises(CoercionFailed, "RR.convert(-oo)")