Ejemplo n.º 1
0
def eaSteadyState(toolbox, population, ngen, halloffame=None):
    """The is the steady-state evolutionary algorithm
    """
    _logger.info("Start of evolution")
    
    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit
    
    if halloffame is not None:
        halloffame.update(population)
    
    # Begin the generational process
    for gen in range(ngen):
        _logger.info("Evolving generation %i", gen)
        
        p1, p2 = toolbox.select(population, 2)
        p1 = toolbox.clone(p1)
        p2 = toolbox.clone(p2)
        toolbox.mate(p1, p2)
        child = random.choice([p1, p2])
        toolbox.mutate(child)
        
        child.fitness.values = toolbox.evaluate(child)
        
        if halloffame is not None:
            halloffame.update(child)
        
        # Select the next generation population
        population[:] = toolbox.select(population + [child], len(population))
        
        # Gather all the fitnesses in one list and print the stats
        fits = [ind.fitness.values for ind in population]
        fits_t = zip(*fits)             # Transpose fitnesses for analysis
        
        minimums = map(min, fits_t)
        maximums = map(max, fits_t)
        length = len(population)
        sums = map(sum, fits_t)
        sums2 = [sum(x*x for x in fit) for fit in fits_t]
        means = [sum_ / length for sum_ in sums]
        std_devs = [abs(sum2 / length - mean**2)**0.5 for sum2, mean in zip(sums2, means)]
        
        _logger.debug("Min %s", ", ".join(map(str, minimums)))
        _logger.debug("Max %s", ", ".join(map(str, maximums)))
        _logger.debug("Avg %s", ", ".join(map(str, means)))
        _logger.debug("Std %s", ", ".join(map(str, std_devs)))

    _logger.info("End of (successful) evolution")
    return population
Ejemplo n.º 2
0
def eaSimple(toolbox, population, cxpb, mutpb, ngen, halloffame=None):
    """This algorithm reproduce the simplest evolutionary algorithm as
    presented in chapter 7 of Back, Fogel and Michalewicz,
    "Evolutionary Computation 1 : Basic Algorithms and Operators", 2000.
    It uses :math:`\lambda = \kappa = \mu` and goes as follow.
    It first initializes the population (:math:`P(0)`) by evaluating
    every individual presenting an invalid fitness. Then, it enters the
    evolution loop that begins by the selection of the :math:`P(g+1)`
    population. Then the crossover operator is applied on a proportion of
    :math:`P(g+1)` according to the *cxpb* probability, the resulting and the
    untouched individuals are placed in :math:`P'(g+1)`. Thereafter, a
    proportion of :math:`P'(g+1)`, determined by *mutpb*, is 
    mutated and placed in :math:`P''(g+1)`, the untouched individuals are
    transfered :math:`P''(g+1)`. Finally, those new individuals are evaluated
    and the evolution loop continues until *ngen* generations are completed.
    Briefly, the operators are applied in the following order ::
    
        evaluate(population)
        for i in range(ngen):
            offsprings = select(population)
            offsprings = mate(offsprings)
            offsprings = mutate(offsprings)
            evaluate(offsprings)
            population = offsprings
    
    """
    _logger.info("Start of evolution")

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    _logger.debug("Evaluated %i individuals", len(invalid_ind))

    if halloffame is not None:
        halloffame.update(population)

    # Begin the generational process
    for gen in range(ngen):
        _logger.info("Evolving generation %i", gen)
        
        # Select the next generation individuals
        offsprings = toolbox.select(population, n=len(population))
        # Clone the selected individuals
        offsprings = map(toolbox.clone, offsprings)

        # Apply crossover and mutation on the offsprings
        for ind1, ind2 in zip(offsprings[::2], offsprings[1::2]):
            if random.random() < cxpb:
                toolbox.mate(ind1, ind2)
                del ind1.fitness.values
                del ind2.fitness.values

        for ind in offsprings:
            if random.random() < mutpb:
                toolbox.mutate(ind)
                del ind.fitness.values

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offsprings if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        _logger.debug("Evaluated %i individuals", len(invalid_ind))

        if halloffame is not None:
            halloffame.update(offsprings)
            
        # The population is entirely replaced by the offsprings
        population[:] = offsprings

        print toolbox.info(population)

    _logger.info("End of (successful) evolution")
    return population
Ejemplo n.º 3
0
def eaSimpleMany(toolbox, population, cxpb, mutpb, ngen, halloffame=None):
    """
    This algorithm is based on the Simple algorithm above, but designed
    to return as many perfect individuals as possible, given an upper bound.
    """
    _logger.info("Start of evolution")

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    _logger.debug("Evaluated %i individuals", len(invalid_ind))

    if halloffame is not None:
        halloffame.update(population)

    perfect = set()

    # Begin the generational process
    for gen in range(ngen):
        _logger.info("Evolving generation %i", gen)
        
        # Select the next generation individuals
        offsprings = toolbox.select(population, n=len(population))
        # Clone the selected individuals
        offsprings = map(toolbox.clone, offsprings)

        # Apply crossover and mutation on the offsprings
        for ind1, ind2 in zip(offsprings[::2], offsprings[1::2]):
            if random.random() < cxpb:
                toolbox.mate(ind1, ind2)
                del ind1.fitness.values
                del ind2.fitness.values

        for ind in offsprings:
            if random.random() < mutpb:
                toolbox.mutate(ind)
                del ind.fitness.values

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offsprings if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        _logger.debug("Evaluated %i individuals", len(invalid_ind))

        if halloffame is not None:
            halloffame.update(offsprings)
            
        # The population is entirely replaced by the offsprings
        population[:] = offsprings
        
        for ind in population:
            if ind.fitness.values[0] == toolbox.perfect():
                perfect.add(ind)


        print toolbox.info(population)

    _logger.info("End of (successful) evolution")
    return population
Ejemplo n.º 4
0
def eaMuCommaLambda(toolbox, population, mu, lambda_, cxpb, mutpb, ngen, halloffame=None):
    """This is the :math:`(\mu~,~\lambda)` evolutionary algorithm. First, 
    the individuals having an invalid fitness are evaluated. Then, the
    evolutionary loop begins by producing *lambda* offsprings from the
    population, the offsprings are generated by a crossover, a mutation or a
    reproduction proportionally to the probabilities *cxpb*, *mutpb* and
    1 - (cxpb + mutpb). The offsprings are then evaluated and the next
    generation population is selected **only** from the offsprings. Briefly,
    the operators are applied as following ::
    
        evaluate(population)
        for i in range(ngen):
            offsprings = generate_offsprings(population)
            evaluate(offsprings)
            population = select(offsprings)
    
    .. note::
       Both produced individuals from the crossover are put in the offspring
       pool.
    """
    assert lambda_ >= mu, "lambda must be greater or equal to mu." 
    assert (cxpb + mutpb) <= 1.0, ("The sum of the crossover and mutation"
        "probabilities must be smaller or equal to 1.0.")
        
    _logger.info("Start of evolution")
    evaluations = 0
    
    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    _logger.debug("Evaluated %i individuals", len(invalid_ind))
            
    if halloffame is not None:
        halloffame.update(population)
    
    # Begin the generational process
    for gen in range(ngen):
        _logger.info("Evolving generation %i", gen)
        evaluations = 0

        offsprings = []
        nb_offsprings = 0
        while nb_offsprings < lambda_:
        #for i in xrange(lambda_):
            op_choice = random.random()
            if op_choice < cxpb:            # Apply crossover
                ind1, ind2 = random.sample(population, 2)
                ind1 = toolbox.clone(ind1)
                ind2 = toolbox.clone(ind2)
                toolbox.mate(ind1, ind2)
                del ind1.fitness.values
                del ind2.fitness.values
                offsprings.append(ind1)
                offsprings.append(ind2)
                nb_offsprings += 2
            elif op_choice < cxpb + mutpb:  # Apply mutation
                ind = random.choice(population) # select
                ind = copy.deepcopy(ind) # clone
                toolbox.mutate(ind)
                del ind.fitness.values
                offsprings.append(ind)
                nb_offsprings += 1
            else:                           # Apply reproduction
                offsprings.append(random.choice(population))
                nb_offsprings += 1
        
        # Remove the exedant of offsprings
        if nb_offsprings > lambda_:
            del offsprings[lambda_:]

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offsprings if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        _logger.debug("Evaluated %i individuals", len(invalid_ind))

        if halloffame is not None:
            halloffame.update(offsprings)

        # Select the next generation population
        population[:] = toolbox.select(offsprings, mu)

        # Gather all the fitnesses in one list and print the stats
        fits = [ind.fitness.values for ind in population]

        fits_t = zip(*fits)             # Transpose fitnesses for analysis

        minimums = map(min, fits_t)
        maximums = map(max, fits_t)
        length = len(population)
        sums = map(sum, fits_t)
        sums2 = [sum(x*x for x in fit) for fit in fits_t]
        means = [sum_ / length for sum_ in sums]
        std_devs = [abs(sum2 / length - mean**2)**0.5 for sum2, mean in zip(sums2, means)]

        #_logger.debug("Min %s", ", ".join(map(str, minimums)))
        #_logger.debug("Max %s", ", ".join(map(str, maximums)))
        #_logger.debug("Avg %s", ", ".join(map(str, means)))
        #_logger.debug("Std %s", ", ".join(map(str, std_devs)))

    _logger.info("End of (successful) evolution")
Ejemplo n.º 5
0
# create folder to save results
if not os.path.exists(path_results):
    os.makedirs(path_results)

# create initial population
population = np.array([toolbox.Chromosome() for i in range(POPULATION_SIZE)])
print("ready to go")

# evolutionary algorithm main body
for i in range(EPOCHS + 1):
    # select best individuals to pass to the next generation without any changes
    # elitism technique. hof = hall of fame - best individuals
    hof = toolbox.hall_of_fame(population)
    # select individuals that survive to the next generation
    offspring = toolbox.select(population, len(population) - HOF_NUMBER)
    # perform pairwise crossover operator for survived individuals
    for child1, child2 in zip(offspring[::2], offspring[1::2]):
        # certain probability to change individuals
        if np.random.random() < P_CROSSOVER:
            toolbox.crossover(child1, child2)
            # set fitness to invalid state - means that we need to recalculate it
            child1.fitness_value = -1
            child2.fitness_value = -1
    # mutations for each individual in offspring
    for mutant in offspring:
        # perform mutation with certain probability
        if np.random.random() < P_MUTATION:
            toolbox.mutate(mutant)
            # set fitness value to be invalid - need to be recalculated
            mutant.fitness_value = -1