Ejemplo n.º 1
0
def drdpsiN_of_r(a,simul):
    print "++++++++++++++++++++++++++++"
    print "GENERATING PSI"
    print "++++++++++++++++++++++++++++"

    
    q95=simul.inputs.Miller_q
    kappa90=simul.inputs.Miller_kappa
    RBar=simul.RBar
    BBar=simul.BBar
    #rescale q_profile to fit whatever q95 we have in the simulation
    scale_q=q95/3.5
    scale_kappa=kappa90/1.58
    #actual profile has q95~3.5
    
    kappay=scale_kappa*numpy.array([1.23,1.37,1.58])
    kappax=numpy.array([0,0.5,0.9])
    deg=2
    #in what follows, rho=r/a
    kappa_rho=func_polyfit(kappax,kappay,deg) #kappa(rho)
    dkappadrho=func_polyfit_derivative(kappax,kappay,deg) #dkappadrho(rho) 

    #generate the integrated B_T as function of minor radius of eliptical cross-section
    BT_r=lambda x: simul.BBar*1.0/simul.inputs.RHat(0.0) #should be B_T(r), here taken as constant and at theta=0
    dBTdr=lambda x: 0 #dBTdr(r)
    #calculate radial derivative of toroidal flux Psi_T (assumes small theta dependence in B)
    dPsiTdr=toroidal_flux_derivative(a,kappa_rho,dkappadrho,BT_r,dBTdr)

    #calculate q profile
    q_rho=func_q(1.0,3.5*scale_q,0.6,1.6*scale_q) #q(rho)
    q_r=lambda r:q_rho(r/a) #q(rho=r/a)

    if Verbose:
        plotNum = 1

        numRows = 1
        numCols = 4
        fig = plt.figure()
        xp=numpy.linspace(0,1)
        ax = fig.add_subplot(numRows, numCols, plotNum); plotNum += 1
        ax.plot(xp, q_rho(xp))
        ax = fig.add_subplot(numRows, numCols, plotNum); plotNum += 1
        ax.plot(xp, kappa_rho(xp))
        ax = fig.add_subplot(numRows, numCols, plotNum); plotNum += 1
        ax.plot(xp, dPsiTdr(xp))

    #calculate psi(r)
    psi_r=func_psi(q_r,dPsiTdr) #psi(r), will be in the same units as BBar and RBar
    
    psiAHat=psi_r(a)/(BBar*RBar**2) #translates to/from unitless psi to psi_N

    simul.inputs.changevar("physicsParameters","psiAHat",psiAHat)
    simul.inputs.read(simul.input_filename)
    #print  drdPsiN_at_psiN_one(q_r,dPsiTdr,psi_r,a)

    if Verbose:
        print drdPsiN_at_psiN_one(q_r,dPsiTdr,psi_r,a)[0]
        ax = fig.add_subplot(numRows, numCols, plotNum); plotNum += 1
        xr=numpy.linspace(0.1,0.7)
        psi_array=[psi_r(xxx) for xxx in xr]
        ax.plot(xr,psi_array)
        plt.show()

    return drdPsiN_at_psiN_one(q_r,dPsiTdr,psi_r,a)[0]
Ejemplo n.º 2
0
def psi_pedestal_width(deltar, q, dPsiTdr, psi, r_ped):
    drdpsi = drdPsiN_at_psiN_one(q, dPsiTdr, psi, r_ped)[0]
    return deltar / drdpsi


if __name__ == "__main__":
    y = numpy.array([1.23, 1.37, 1.6])
    x = numpy.array([0, 0.5, 0.9])
    # flat profile
    # y=numpy.array([1.73,1.73,1.73])
    # x=numpy.array([0,0.5,0.9])
    deg = 2
    kappa = func_polyfit(x, y, deg)
    dkappadrho = func_polyfit_derivative(x, y, deg)
    q_of_rho = func_q(1.0, 3.5, 0.6, 1.6)

    # flat profile
    # q=func_q(3.5,3.5,0.6,3.5)
    # does not actually matter in psiN since its normalized away
    # would matter if we calculated psi(r)
    BT = lambda x: 2.93  # Value for the average BT, taken from BBar in T for JETLike profile
    dBTdr = lambda x: 0

    N = 100
    rmin = 0
    rmax = 0.7
    q = lambda r: q_of_rho(r / rmax)
    dPsiTdr = toroidal_flux_derivative(rmax, kappa, dkappadrho, BT, dBTdr)
    psi = func_psi(q, dPsiTdr)
    r = numpy.linspace(rmin, rmax, N)