Ejemplo n.º 1
0
 def denoised(self,
              noise_level,
              noise_size,
              smoothing_size=None,
              threshold=None):
     image = self.noisy_image(noise_level)
     return bandpass(image, noise_size, smoothing_size, threshold)
Ejemplo n.º 2
0
def preprocess(raw_image, noise_size=None, smoothing_size=None, threshold=None):
    if noise_size is not None:
        image = bandpass(raw_image, noise_size, smoothing_size, threshold)
        # Coerce the image into integer type. Rescale to fill dynamic range.
        if np.issubdtype(raw_image.dtype, np.integer):
            dtype = raw_image.dtype
        else:
            dtype = np.uint8
        scale_factor = scalefactor_to_gamut(image, dtype)
        image = scale_to_gamut(image, dtype, scale_factor)
    elif np.issubdtype(raw_image.dtype, np.integer):
        # Do nothing when image is already of integer type
        scale_factor = 1.
        image = raw_image
    else:
        # Coerce the image into uint8 type. Rescale to fill dynamic range.
        scale_factor = scalefactor_to_gamut(raw_image, np.uint8)
        image = scale_to_gamut(raw_image, np.uint8, scale_factor)
    try:
        frame_no = raw_image.frame_no
    except AttributeError:
        frame_no = None
    return Frame(image, frame_no,
                 metadata=dict(scale_factor=scale_factor))
Ejemplo n.º 3
0
from __future__ import division
import nose
from numpy.testing.utils import assert_allclose
from trackpy.preprocessing import (bandpass, legacy_bandpass,
                                   legacy_bandpass_fftw)
from trackpy.artificial import gen_nonoverlapping_locations, draw_spots
from trackpy.tests.common import StrictTestCase


pos = gen_nonoverlapping_locations((512, 512), 200, 20)
frame = draw_spots((512, 512), pos, 20, noise_level=100)
margin = 11
bp_scipy = bandpass(frame, 3, 11)[margin:-margin, margin:-margin]


def test_legacy_bandpass():
    lbp_numpy = legacy_bandpass(frame, 3, 11)[margin:-margin, margin:-margin]
    assert_allclose(lbp_numpy, bp_scipy, atol=1.1)


def test_legacy_bandpass_fftw():
    try:
        import pyfftw
    except ImportError:
        raise nose.SkipTest("pyfftw not installed. Skipping.")
    lbp_fftw = legacy_bandpass_fftw(frame, 3, 11)[margin:-margin, margin:-margin]
    assert_allclose(lbp_fftw, bp_scipy, atol=1.1)

if __name__ == '__main__':
    import nose
    nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'],
Ejemplo n.º 4
0
 def setUp(self):
     pos = gen_nonoverlapping_locations((512, 512), 200, 20)
     self.frame = draw_spots((512, 512), pos, 20, noise_level=100)
     self.margin = 11
     self.bp_scipy = bandpass(self.frame, 2, 11)[self.margin:-self.margin,
                                                 self.margin:-self.margin]
Ejemplo n.º 5
0
def locate(raw_image, diameter, minmass=100., maxsize=None, separation=None,
           noise_size=1, smoothing_size=None, threshold=1, invert=False,
           percentile=64, topn=None, preprocess=True, max_iterations=10,
           filter_before=True, filter_after=True,
           characterize=True, engine='auto'):
    """Locate Gaussian-like blobs of a given approximate size.

    Preprocess the image by performing a band pass and a threshold.
    Locate all peaks of brightness, characterize the neighborhoods of the peaks
    and take only those with given total brightnesss ("mass"). Finally,
    refine the positions of each peak.

    Parameters
    ----------
    image : image array (any dimensions)
    diameter : feature size in px
    minmass : minimum integrated brightness
        Default is 100, but a good value is often much higher. This is a
        crucial parameter for elminating spurrious features.
    maxsize : maximum radius-of-gyration of brightness, default None
    separation : feature separation, in pixels
        Default is the feature diameter + 1.
    noise_size : width of Gaussian blurring kernel, in pixels
        Default is 1.
    smoothing_size : size of boxcar smoothing, in pixels
        Default is the same is feature separation.
    threshold : Clip bandpass result below this value.
        Default 1; use 8 for 16-bit images.
    invert : Set to True if features are darker than background. False by
        default.
    percentile : Features must have a peak brighter than pixels in this
        percentile. This helps eliminate spurrious peaks.
    topn : Return only the N brightest features above minmass.
        If None (default), return all features above minmass.

    Returns
    -------
    DataFrame([x, y, mass, size, ecc, signal])
        where mass means total integrated brightness of the blob,
        size means the radius of gyration of its Gaussian-like profile,
        and ecc is its eccentricity (1 is circular).

    Other Parameters
    ----------------
    preprocess : Set to False to turn out bandpass preprocessing.
    max_iterations : integer
        max number of loops to refine the center of mass, default 10
    filter_before : boolean
        Use minmass (and maxsize, if set) to eliminate spurrious features
        based on their estimated mass and size before refining position.
        True by default for performance.
    filter_after : boolean
        Use final characterizations of mass and size to elminate spurrious
        features. True by default.
    characterize : boolean
        Compute "extras": eccentricity, signal, ep. True by default.
    engine : {'auto', 'python', 'numba'}

    See Also
    --------
    batch : performs location on many images in batch

    Notes
    -----
    This is an implementation of the Crocker-Grier centroid-finding algorithm.
    [1]_

    References
    ----------
    .. [1] Crocker, J.C., Grier, D.G. http://dx.doi.org/10.1006/jcis.1996.0217

    """

    # Validate parameters and set defaults.
    if not diameter & 1:
        raise ValueError("Feature diameter must be an odd number. Round up.")
    if not separation:
        separation = int(diameter) + 1
    radius = int(diameter)//2
    if smoothing_size is None:
        smoothing_size = diameter
    raw_image = np.squeeze(raw_image)
    shape = raw_image.shape
    # Check whether the image looks suspiciously like a color image.
    if 3 in shape or 4 in shape:
        dim = raw_image.ndim
        warnings.warn("I am interpreting the image as {0}-dimensional. "
                      "If it is actually a {1}-dimensional color image, "
                      "convert it to grayscale first.".format(dim, dim-1))
    if preprocess:
        if invert:
            # It is tempting to do this in place, but if it is called multiple
            # times on the same image, chaos reigns.
            max_value = np.iinfo(raw_image.dtype).max
            raw_image = raw_image ^ max_value
        image = bandpass(raw_image, noise_size, smoothing_size, threshold)
    else:
        image = raw_image.copy()
    # Coerce the image into integer type. Rescale to fill dynamic range.
    if np.issubdtype(raw_image.dtype, np.integer):
        dtype = raw_image.dtype
    else:
        dtype = np.int8
    image = scale_to_gamut(image, dtype)

    # Set up a DataFrame for the final results.
    if image.ndim < 4:
        coord_columns = ['x', 'y', 'z'][:image.ndim]
    else:
        coord_columns = map(lambda i: 'x' + str(i), range(image.ndim))
    char_columns = ['mass']
    if characterize:
        char_columns += ['size', 'ecc', 'signal']
    columns = coord_columns + char_columns
    # The 'ep' column is joined on at the end, so we need this...
    if characterize:
        all_columns = columns + ['ep']
    else:
        all_columns = columns

    # Find local maxima.
    coords = local_maxima(image, radius, separation, percentile)
    count_maxima = coords.shape[0]

    if count_maxima == 0:
        return DataFrame(columns=all_columns)

    # Proactively filter based on estimated mass/size before
    # refining positions.
    if filter_before:
        approx_mass = np.empty(count_maxima)  # initialize to avoid appending
        for i in range(count_maxima):
            approx_mass[i] = estimate_mass(image, radius, coords[i])
        condition = approx_mass > minmass
        if maxsize is not None:
            approx_size = np.empty(count_maxima)
            for i in range(count_maxima):
                approx_size[i] = estimate_size(image, radius, coords[i],
                                               approx_mass[i])
            condition &= approx_size < maxsize
        coords = coords[condition]
    count_qualified = coords.shape[0]

    if count_qualified == 0:
        warnings.warn("No maxima survived mass- and size-based prefiltering.")
        return DataFrame(columns=all_columns)

    # Refine their locations and characterize mass, size, etc.
    refined_coords = refine(raw_image, image, radius, coords, max_iterations,
                            engine, characterize)

    # Filter again, using final ("exact") mass -- and size, if set.
    MASS_COLUMN_INDEX = image.ndim
    SIZE_COLUMN_INDEX = image.ndim + 1
    exact_mass = refined_coords[:, MASS_COLUMN_INDEX]
    if filter_after:
        condition = exact_mass > minmass
        if maxsize is not None:
            exact_size = refined_coords[:, SIZE_COLUMN_INDEX]
            condition &= exact_size < maxsize
        refined_coords = refined_coords[condition]
        exact_mass = exact_mass[condition]  # used below by topn
    count_qualified = refined_coords.shape[0]

    if count_qualified == 0:
        warnings.warn("No maxima survived mass- and size-based filtering.")
        return DataFrame(columns=all_columns)

    if topn is not None and count_qualified > topn:
        if topn == 1:
            # special case for high performance and correct shape
            refined_coords = refined_coords[np.argmax(exact_mass)]
            refined_coords = refined_coords.reshape(1, -1)
        else:
            refined_coords = refined_coords[np.argsort(exact_mass)][-topn:]

    f = DataFrame(refined_coords, columns=columns)

    # Estimate the uncertainty in position using signal (measured in refine)
    # and noise (measured here below).
    if characterize:
        black_level, noise = uncertainty.measure_noise(
            raw_image, diameter, threshold)
        f['signal'] -= black_level
        ep = uncertainty.static_error(f, noise, diameter, noise_size)
        f = f.join(ep)

    # If this is a pims Frame object, it has a frame number.
    # Tag it on; this is helpful for parallelization.
    if hasattr(raw_image, 'frame_no') and raw_image.frame_no is not None:
        f['frame'] = raw_image.frame_no
    return f
Ejemplo n.º 6
0
 def denoised(self, noise_level, noise_size, smoothing_size=None,
              threshold=None):
     image = self.noisy_image(noise_level)
     return bandpass(image, noise_size, smoothing_size, threshold)
Ejemplo n.º 7
0
def locate(raw_image,
           diameter,
           minmass=100.,
           maxsize=None,
           separation=None,
           noise_size=1,
           smoothing_size=None,
           threshold=None,
           invert=False,
           percentile=64,
           topn=None,
           preprocess=True,
           max_iterations=10,
           filter_before=True,
           filter_after=True,
           characterize=True,
           engine='auto'):
    """Locate Gaussian-like blobs of a given approximate size.

    Preprocess the image by performing a band pass and a threshold.
    Locate all peaks of brightness, characterize the neighborhoods of the peaks
    and take only those with given total brightnesss ("mass"). Finally,
    refine the positions of each peak.

    Parameters
    ----------
    image : image array (any dimensions)
    diameter : feature size in px
    minmass : minimum integrated brightness
        Default is 100, but a good value is often much higher. This is a
        crucial parameter for elminating spurrious features.
    maxsize : maximum radius-of-gyration of brightness, default None
    separation : feature separation, in pixels
        Default is the feature diameter + 1.
    noise_size : width of Gaussian blurring kernel, in pixels
        Default is 1.
    smoothing_size : size of boxcar smoothing, in pixels
        Default is the same is feature separation.
    threshold : Clip bandpass result below this value.
        Default None, passed through to bandpass.
    invert : Set to True if features are darker than background. False by
        default.
    percentile : Features must have a peak brighter than pixels in this
        percentile. This helps eliminate spurrious peaks.
    topn : Return only the N brightest features above minmass.
        If None (default), return all features above minmass.

    Returns
    -------
    DataFrame([x, y, mass, size, ecc, signal])
        where mass means total integrated brightness of the blob,
        size means the radius of gyration of its Gaussian-like profile,
        and ecc is its eccentricity (1 is circular).

    Other Parameters
    ----------------
    preprocess : Set to False to turn out bandpass preprocessing.
    max_iterations : integer
        max number of loops to refine the center of mass, default 10
    filter_before : boolean
        Use minmass (and maxsize, if set) to eliminate spurrious features
        based on their estimated mass and size before refining position.
        True by default for performance.
    filter_after : boolean
        Use final characterizations of mass and size to elminate spurrious
        features. True by default.
    characterize : boolean
        Compute "extras": eccentricity, signal, ep. True by default.
    engine : {'auto', 'python', 'numba'}

    See Also
    --------
    batch : performs location on many images in batch

    Notes
    -----
    This is an implementation of the Crocker-Grier centroid-finding algorithm.
    [1]_

    References
    ----------
    .. [1] Crocker, J.C., Grier, D.G. http://dx.doi.org/10.1006/jcis.1996.0217

    """

    # Validate parameters and set defaults.
    if not diameter & 1:
        raise ValueError("Feature diameter must be an odd number. Round up.")
    if not separation:
        separation = int(diameter) + 1
    radius = int(diameter) // 2
    if smoothing_size is None:
        smoothing_size = diameter
    raw_image = np.squeeze(raw_image)
    shape = raw_image.shape
    # Check whether the image looks suspiciously like a color image.
    if 3 in shape or 4 in shape:
        dim = raw_image.ndim
        warnings.warn("I am interpreting the image as {0}-dimensional. "
                      "If it is actually a {1}-dimensional color image, "
                      "convert it to grayscale first.".format(dim, dim - 1))
    if preprocess:
        if invert:
            # It is tempting to do this in place, but if it is called multiple
            # times on the same image, chaos reigns.
            if np.issubdtype(raw_image.dtype, np.integer):
                max_value = np.iinfo(raw_image.dtype).max
                raw_image = raw_image ^ max_value
            else:
                # To avoid degrading performance, assume gamut is zero to one.
                # Have you ever encountered an image of unnormalized floats?
                raw_image = 1 - raw_image
        image = bandpass(raw_image, noise_size, smoothing_size, threshold)
    else:
        image = raw_image.copy()
    # Coerce the image into integer type. Rescale to fill dynamic range.
    if np.issubdtype(raw_image.dtype, np.integer):
        dtype = raw_image.dtype
    else:
        dtype = np.int8
    image = scale_to_gamut(image, dtype)

    # Set up a DataFrame for the final results.
    if image.ndim < 4:
        coord_columns = ['x', 'y', 'z'][:image.ndim]
    else:
        coord_columns = map(lambda i: 'x' + str(i), range(image.ndim))
    char_columns = ['mass']
    if characterize:
        char_columns += ['size', 'ecc', 'signal']
    columns = coord_columns + char_columns
    # The 'ep' column is joined on at the end, so we need this...
    if characterize:
        all_columns = columns + ['ep']
    else:
        all_columns = columns

    # Find local maxima.
    coords = local_maxima(image, radius, separation, percentile)
    count_maxima = coords.shape[0]

    if count_maxima == 0:
        return DataFrame(columns=all_columns)

    # Proactively filter based on estimated mass/size before
    # refining positions.
    if filter_before:
        approx_mass = np.empty(count_maxima)  # initialize to avoid appending
        for i in range(count_maxima):
            approx_mass[i] = estimate_mass(image, radius, coords[i])
        condition = approx_mass > minmass
        if maxsize is not None:
            approx_size = np.empty(count_maxima)
            for i in range(count_maxima):
                approx_size[i] = estimate_size(image, radius, coords[i],
                                               approx_mass[i])
            condition &= approx_size < maxsize
        coords = coords[condition]
    count_qualified = coords.shape[0]

    if count_qualified == 0:
        warnings.warn("No maxima survived mass- and size-based prefiltering.")
        return DataFrame(columns=all_columns)

    # Refine their locations and characterize mass, size, etc.
    refined_coords = refine(raw_image, image, radius, coords, max_iterations,
                            engine, characterize)

    # Filter again, using final ("exact") mass -- and size, if set.
    MASS_COLUMN_INDEX = image.ndim
    SIZE_COLUMN_INDEX = image.ndim + 1
    exact_mass = refined_coords[:, MASS_COLUMN_INDEX]
    if filter_after:
        condition = exact_mass > minmass
        if maxsize is not None:
            exact_size = refined_coords[:, SIZE_COLUMN_INDEX]
            condition &= exact_size < maxsize
        refined_coords = refined_coords[condition]
        exact_mass = exact_mass[condition]  # used below by topn
    count_qualified = refined_coords.shape[0]

    if count_qualified == 0:
        warnings.warn("No maxima survived mass- and size-based filtering.")
        return DataFrame(columns=all_columns)

    if topn is not None and count_qualified > topn:
        if topn == 1:
            # special case for high performance and correct shape
            refined_coords = refined_coords[np.argmax(exact_mass)]
            refined_coords = refined_coords.reshape(1, -1)
        else:
            refined_coords = refined_coords[np.argsort(exact_mass)][-topn:]

    f = DataFrame(refined_coords, columns=columns)

    # Estimate the uncertainty in position using signal (measured in refine)
    # and noise (measured here below).
    if characterize:
        black_level, noise = uncertainty.measure_noise(raw_image, diameter,
                                                       threshold)
        f['signal'] -= black_level
        ep = uncertainty.static_error(f, noise, diameter, noise_size)
        f = f.join(ep)

    # If this is a pims Frame object, it has a frame number.
    # Tag it on; this is helpful for parallelization.
    if hasattr(raw_image, 'frame_no') and raw_image.frame_no is not None:
        f['frame'] = raw_image.frame_no
    return f