Ejemplo n.º 1
0
  def testTotal(self):
    """Test for the Total counter type."""
    total = counters._TotalCounter('mytotal', 'Description')
    sampler = total.get_sampler()
    sampler2 = total.get_sampler()

    self.assertEqual(0, sampler())

    total.increment()
    self.assertEqual(1, sampler())

    total.increment(4)
    self.assertEqual(5, sampler())

    total.decrement()
    self.assertEqual(4, sampler())

    total.decrement(5)
    self.assertEqual(-1, sampler())
    self.assertEqual(-1, sampler2())
Ejemplo n.º 2
0
  def testManagerAndMeter(self):
    manager = counters._CounterManager()
    total = counters._TotalCounter('test.mytotal', 'Example total counter')
    delta = counters._DeltaCounter('test.mydelta', 'Example delta counter')
    manager.register(total)
    manager.register(delta)

    # Test that counters are accessible from manager object via dot notation.
    self.assertIs(manager.test.mytotal, total)
    self.assertIs(manager.test.mydelta, delta)

    # Test for namespace errors when registering a counter with the manager.
    badcounter = counters._RateCounter('test', 'Bad namespace')
    with self.assertRaises(KeyError):
      manager.register(badcounter)

    badcounter = counters._RateCounter('test.mydelta.rate', 'Existing counter')
    with self.assertRaises(KeyError):
      manager.register(badcounter)

    # Test basic functionality of meter class in conjunction with a meter.
    meter = counters.Meter(manager.test)

    total.increment()
    total.increment(5)
    delta.increment(6)

    x = meter.sample()
    self.assertEqual(6, x.test.mytotal)
    self.assertEqual(6, x.test.mydelta)

    total.increment(5)
    delta.increment(6)
    x = meter.sample()
    self.assertEqual(11, x.test.mytotal)
    self.assertEqual(6, x.test.mydelta)

    # Test that namespace selection using a meter has the appropriate behavior.

    d = meter.describe()
    self.assertEqual(d.test.mytotal, 'Example total counter')
Ejemplo n.º 3
0
  def testHealthReport(self):
    """Verify the health report generation and retrieval."""

    # Test constants
    cluster_name = 'test'
    interval = MetricInterval('testint', 60)
    group_key = Metric.EncodeGroupKey(cluster_name, interval)
    num_machines = 5
    num_samples = TREND_SAMPLE_SIZE + 1

    # Outer variables
    fake_time = 0
    def fake_time_func():
      return fake_time
    managers = []
    criteria_list = []
    criteria_called = [0, 0]

    # Test criteria #1
    def _deltaCriteria(totals, deltas):
      criteria_called[0] += 1
      alerts = []
      warnings = []
      if len(totals['machine_data'].keys()) != len(deltas['machine_data'].keys()):
        alerts.append('CLUSTER')

      warnings = [m for m, v in deltas['machine_data'].iteritems() if v > 3]
      return alerts, warnings

    # Test criteria #2
    def _rateCriteria(rates):
      criteria_called[1] += 1

      warnings = []
      for m, v in rates['machine_data'].iteritems():
        m_int = int(m[len('machine'):])
        if v == m_int / interval.length:
          warnings.append(m)

      return [], warnings

    def _OnGetReport(repeat, report):
      # Verify that the criteria were actually executed.
      for i in criteria_called:
        self.assertEqual(num_samples, i)

      # Verify that the criteria generated the expected warnings.
      self.assertEqual(len(report.alerts), num_machines)
      self.assertFalse('deltaCrit:CLUSTER' in report.alerts)

      for i in range(1, num_machines + 1):
        m_name = 'machine%d' % i
        self.assertTrue(('rateCrit:' + m_name) in report.warnings)
        self.assertTrue(('rateCrit:' + m_name) in report.alerts)

        if i > 3:
          self.assertTrue(('deltaCrit:' + m_name) in report.warnings)
        else:
          self.assertFalse(('deltaCrit:' + m_name) in report.warnings)

      if repeat:
        # Repeat the call to GetHealthReport to verify that criteria are only
        # run when the report is generated.
        HealthReport.GetHealthReport(self._client, cluster_name, interval, num_samples * interval.length,
                                     partial(_OnGetReport, False), managers[0], criteria_list)
      else:
        self.stop()


    def _OnMetricsUploaded():
      # Create a criteria list and request a health report based on those criteria.
      criteria_list.append(HealthCriteria('deltaCrit',
                                          'Description',
                                          _deltaCriteria,
                                          [managers[0].aggtest.total, managers[0].aggtest.delta],
                                          0))
      criteria_list.append(HealthCriteria('rateCrit',
                                          'Description',
                                          _rateCriteria,
                                          [managers[0].aggtest.rate],
                                          5))

      HealthReport.GetHealthReport(self._client, cluster_name, interval, num_samples * interval.length,
                                   partial(_OnGetReport, True), managers[0], criteria_list)



    with util.Barrier(_OnMetricsUploaded) as b:
      # Generate metrics.
      for m in range(1, num_machines + 1):
        cm = counters._CounterManager()
        cm.register(counters._TotalCounter('aggtest.total', 'Test Total'))
        cm.register(counters._DeltaCounter('aggtest.delta', 'Test Delta'))
        cm.register(counters._RateCounter('aggtest.rate', 'Test Rate', time_func=fake_time_func))
        cm.register(counters._AverageCounter('aggtest.avg', 'Test Average'))

        fake_time = 0
        meter = counters.Meter(cm)
        managers.append(cm)
        for s in range(num_samples):
          cm.aggtest.total.increment(m)
          cm.aggtest.delta.increment(m)
          cm.aggtest.rate.increment(m)
          cm.aggtest.avg.add(m)
          cm.aggtest.avg.add(m)
          fake_time += interval.length
          sample = json.dumps(meter.sample())
          metric = Metric.Create(group_key, 'machine%d' % m, fake_time, sample)
          metric.Update(self._client, b.Callback())
Ejemplo n.º 4
0
  def testEmptyHealthReport(self):
    """Verify the health reports with no data are properly saved to the db.
    """

    # Test constants
    cluster_name = 'test'
    interval = MetricInterval('testint', 60)
    group_key = Metric.EncodeGroupKey(cluster_name, interval)
    num_machines = 5
    num_samples = TREND_SAMPLE_SIZE + 1

    # Outer variables
    managers = []
    criteria_list = []
    criteria_called = [0]

    # Test criteria #1
    def _blankCriteria():
      criteria_called[0] += 1
      return [], []

    def _OnDirectQuery(reports):
      self.assertEqual(len(reports), num_samples)
      self.stop()

    def _OnGetReport(report):
      # Verify that the criteria were actually executed.
      for i in criteria_called:
        self.assertEqual(num_samples, i)

      # Verify that the criteria generated the expected warnings.
      self.assertEqual(len(report.alerts), 0)
      self.assertEqual(len(report.warnings), 0)
      HealthReport.QueryTimespan(self._client, group_key, interval.length, interval.length * num_samples,
                                 _OnDirectQuery)


    def _OnMetricsUploaded():
      # Create a criteria list and request a health report based on those criteria.
      criteria_list.append(HealthCriteria('blankCrit',
                                          'Description',
                                          _blankCriteria,
                                          [],
                                          0))

      HealthReport.GetHealthReport(self._client, cluster_name, interval, num_samples * interval.length,
                                   _OnGetReport, managers[0], criteria_list)


    with util.Barrier(_OnMetricsUploaded) as b:
      # Generate metrics.
      for m in range(1, num_machines + 1):
        cm = counters._CounterManager()
        cm.register(counters._TotalCounter('aggtest.total', 'Test Total'))

        fake_time = 0
        meter = counters.Meter(cm)
        managers.append(cm)
        for s in range(num_samples):
          fake_time += interval.length
          sample = json.dumps(meter.sample())
          metric = Metric.Create(group_key, 'machine%d' % m, fake_time, sample)
          metric.Update(self._client, b.Callback())
Ejemplo n.º 5
0
    def testHealthReport(self):
        """Verify the health report generation and retrieval."""

        # Test constants
        cluster_name = 'test'
        interval = MetricInterval('testint', 60)
        group_key = Metric.EncodeGroupKey(cluster_name, interval)
        num_machines = 5
        num_samples = TREND_SAMPLE_SIZE + 1

        # Outer variables
        fake_time = 0

        def fake_time_func():
            return fake_time

        managers = []
        criteria_list = []
        criteria_called = [0, 0]

        # Test criteria #1
        def _deltaCriteria(totals, deltas):
            criteria_called[0] += 1
            alerts = []
            warnings = []
            if len(totals['machine_data'].keys()) != len(
                    deltas['machine_data'].keys()):
                alerts.append('CLUSTER')

            warnings = [
                m for m, v in deltas['machine_data'].iteritems() if v > 3
            ]
            return alerts, warnings

        # Test criteria #2
        def _rateCriteria(rates):
            criteria_called[1] += 1

            warnings = []
            for m, v in rates['machine_data'].iteritems():
                m_int = int(m[len('machine'):])
                if v == m_int / interval.length:
                    warnings.append(m)

            return [], warnings

        def _OnGetReport(repeat, report):
            # Verify that the criteria were actually executed.
            for i in criteria_called:
                self.assertEqual(num_samples, i)

            # Verify that the criteria generated the expected warnings.
            self.assertEqual(len(report.alerts), num_machines)
            self.assertFalse('deltaCrit:CLUSTER' in report.alerts)

            for i in range(1, num_machines + 1):
                m_name = 'machine%d' % i
                self.assertTrue(('rateCrit:' + m_name) in report.warnings)
                self.assertTrue(('rateCrit:' + m_name) in report.alerts)

                if i > 3:
                    self.assertTrue(('deltaCrit:' + m_name) in report.warnings)
                else:
                    self.assertFalse(('deltaCrit:' +
                                      m_name) in report.warnings)

            if repeat:
                # Repeat the call to GetHealthReport to verify that criteria are only
                # run when the report is generated.
                HealthReport.GetHealthReport(self._client, cluster_name,
                                             interval,
                                             num_samples * interval.length,
                                             partial(_OnGetReport, False),
                                             managers[0], criteria_list)
            else:
                self.stop()

        def _OnMetricsUploaded():
            # Create a criteria list and request a health report based on those criteria.
            criteria_list.append(
                HealthCriteria(
                    'deltaCrit', 'Description', _deltaCriteria,
                    [managers[0].aggtest.total, managers[0].aggtest.delta], 0))
            criteria_list.append(
                HealthCriteria('rateCrit', 'Description', _rateCriteria,
                               [managers[0].aggtest.rate], 5))

            HealthReport.GetHealthReport(self._client, cluster_name, interval,
                                         num_samples * interval.length,
                                         partial(_OnGetReport, True),
                                         managers[0], criteria_list)

        with util.Barrier(_OnMetricsUploaded) as b:
            # Generate metrics.
            for m in range(1, num_machines + 1):
                cm = counters._CounterManager()
                cm.register(
                    counters._TotalCounter('aggtest.total', 'Test Total'))
                cm.register(
                    counters._DeltaCounter('aggtest.delta', 'Test Delta'))
                cm.register(
                    counters._RateCounter('aggtest.rate',
                                          'Test Rate',
                                          time_func=fake_time_func))
                cm.register(
                    counters._AverageCounter('aggtest.avg', 'Test Average'))

                fake_time = 0
                meter = counters.Meter(cm)
                managers.append(cm)
                for s in range(num_samples):
                    cm.aggtest.total.increment(m)
                    cm.aggtest.delta.increment(m)
                    cm.aggtest.rate.increment(m)
                    cm.aggtest.avg.add(m)
                    cm.aggtest.avg.add(m)
                    fake_time += interval.length
                    sample = json.dumps(meter.sample())
                    metric = Metric.Create(group_key, 'machine%d' % m,
                                           fake_time, sample)
                    metric.Update(self._client, b.Callback())
Ejemplo n.º 6
0
    def testEmptyHealthReport(self):
        """Verify the health reports with no data are properly saved to the db.
    """

        # Test constants
        cluster_name = 'test'
        interval = MetricInterval('testint', 60)
        group_key = Metric.EncodeGroupKey(cluster_name, interval)
        num_machines = 5
        num_samples = TREND_SAMPLE_SIZE + 1

        # Outer variables
        managers = []
        criteria_list = []
        criteria_called = [0]

        # Test criteria #1
        def _blankCriteria():
            criteria_called[0] += 1
            return [], []

        def _OnDirectQuery(reports):
            self.assertEqual(len(reports), num_samples)
            self.stop()

        def _OnGetReport(report):
            # Verify that the criteria were actually executed.
            for i in criteria_called:
                self.assertEqual(num_samples, i)

            # Verify that the criteria generated the expected warnings.
            self.assertEqual(len(report.alerts), 0)
            self.assertEqual(len(report.warnings), 0)
            HealthReport.QueryTimespan(self._client, group_key,
                                       interval.length,
                                       interval.length * num_samples,
                                       _OnDirectQuery)

        def _OnMetricsUploaded():
            # Create a criteria list and request a health report based on those criteria.
            criteria_list.append(
                HealthCriteria('blankCrit', 'Description', _blankCriteria, [],
                               0))

            HealthReport.GetHealthReport(self._client, cluster_name, interval,
                                         num_samples * interval.length,
                                         _OnGetReport, managers[0],
                                         criteria_list)

        with util.Barrier(_OnMetricsUploaded) as b:
            # Generate metrics.
            for m in range(1, num_machines + 1):
                cm = counters._CounterManager()
                cm.register(
                    counters._TotalCounter('aggtest.total', 'Test Total'))

                fake_time = 0
                meter = counters.Meter(cm)
                managers.append(cm)
                for s in range(num_samples):
                    fake_time += interval.length
                    sample = json.dumps(meter.sample())
                    metric = Metric.Create(group_key, 'machine%d' % m,
                                           fake_time, sample)
                    metric.Update(self._client, b.Callback())
Ejemplo n.º 7
0
  def testMetricsAggregator(self):
    """Test metrics aggregation with data from multiple machines"""
    num_machines = 5
    num_samples = 15
    sample_duration = 60.0
    group_key = 'agg_test_group_key'
    fake_time = 0
    managers = []

    def fake_time_func():
      return fake_time

    def _OnAggregation(aggregator):
      base_sum = sum(range(1, num_machines + 1))
      base_avg = base_sum / num_machines

      agg_total = aggregator.counter_data['aggtest.total']
      agg_delta = aggregator.counter_data['aggtest.delta']
      agg_rate = aggregator.counter_data['aggtest.rate']
      agg_avg = aggregator.counter_data['aggtest.avg']
      for s in range(num_samples):
        # Check timestamp values
        for cd in aggregator.counter_data.itervalues():
          self.assertEqual(cd.cluster_total[s][0], sample_duration * (s + 1))
          self.assertEqual(cd.cluster_avg[s][0], sample_duration * (s + 1))

        # Check aggregate total
        self.assertEqual(agg_total.cluster_total[s][1], base_sum * (s + 1))
        self.assertEqual(agg_total.cluster_avg[s][1], base_avg * (s + 1))

        # Check aggregate delta
        self.assertEqual(agg_delta.cluster_total[s][1], base_sum)
        self.assertEqual(agg_delta.cluster_avg[s][1], base_avg)

        # Check aggregate rate
        self.assertEqual(agg_rate.cluster_total[s][1], base_sum / sample_duration)
        self.assertEqual(agg_rate.cluster_avg[s][1], base_avg / sample_duration)

        # Check aggregate avg
        self.assertEqual(agg_avg.cluster_total[s][1], base_sum)
        self.assertEqual(agg_avg.cluster_avg[s][1], base_avg)

        for m in range(1, num_machines + 1):
          machine_name = 'machine%d' % m

          # Check per-machine total
          mtotal = agg_total.machine_data[machine_name]
          self.assertEqual(mtotal[s][1], m * (s + 1))

          # Check per-machine delta
          mdelta = agg_delta.machine_data[machine_name]
          self.assertEqual(mdelta[s][1], m)

          # Check per-machine rate
          mrate = agg_rate.machine_data[machine_name]
          self.assertEqual(mrate[s][1], m / sample_duration)

          # Check per-machine avg
          mavg = agg_avg.machine_data[machine_name]
          self.assertEqual(mavg[s][1], m)

      self.stop()


    def _OnMetricsUploaded():
      AggregatedMetric.CreateAggregateForTimespan(self._client, group_key, 0, sample_duration * num_samples,
                                                  managers[0], _OnAggregation)

    with util.Barrier(_OnMetricsUploaded) as b:
      for m in range(1, num_machines + 1):
        cm = counters._CounterManager()
        cm.register(counters._TotalCounter('aggtest.total', 'Test Total'))
        cm.register(counters._DeltaCounter('aggtest.delta', 'Test Delta'))
        cm.register(counters._RateCounter('aggtest.rate', 'Test Rate', time_func=fake_time_func))
        cm.register(counters._AverageCounter('aggtest.avg', 'Test Average'))

        fake_time = 0
        meter = counters.Meter(cm)
        managers.append(cm)
        for s in range(num_samples):
          cm.aggtest.total.increment(m)
          cm.aggtest.delta.increment(m)
          cm.aggtest.rate.increment(m)
          cm.aggtest.avg.add(m)
          cm.aggtest.avg.add(m)
          fake_time += sample_duration
          sample = json.dumps(meter.sample())
          metric = Metric.Create(group_key, 'machine%d' % m, fake_time, sample)
          metric.Update(self._client, b.Callback())