Ejemplo n.º 1
0
def errfuncFIT(pars, qmeas, mimo, caseName, runId):
    q = mimo.run(pars)
    res = q - qmeas
    # only resturn non-nan values
    resnonan = res[~np.isnan(res)]

    mimo.log.log(45, "Parameters now: " + str(pars))
    pylab.plot(q)

    mimo.NS.append(
        stats.get_nash_sutcliffe(
            qmeas[~np.isnan(res)], q[~np.isnan(res)], NoData=np.nan
        )
    )
    mimo.BIAS.append(
        stats.get_bias(qmeas[~np.isnan(res)], q[~np.isnan(res)], NoData=np.nan)
    )
    mimo.CORR.append(
        stats.get_correlation(qmeas[~np.isnan(res)], q[~np.isnan(res)], NoData=np.nan)
    )
    mimo.MABSE.append(
        stats.get_mean_absolute_error(
            qmeas[~np.isnan(res)], q[~np.isnan(res)], NoData=np.nan
        )
    )
    mimo.log.log(45, "NS: " + str(mimo.NS[-1]))
    mimo.log.log(45, "BIAS: " + str(mimo.BIAS[-1]))
    mimo.log.log(45, "CORR: " + str(mimo.CORR[-1]))
    mimo.log.log(45, "MABSE: " + str(mimo.MABSE[-1]))

    pylab.savefig(os.path.join(caseName, runId, str(mimo.ColSim) + "fit.png"))
    return resnonan
Ejemplo n.º 2
0
def errfuncFIT(pars, qmeas, mimo, caseName, runId):
    q = mimo.run(pars)
    res = q - qmeas
    # only resturn non-nan values
    resnonan = res[~np.isnan(res)]

    mimo.log.log(45, "Parameters now: " + str(pars))
    pylab.plot(q)

    mimo.NS.append(
        stats.get_nash_sutcliffe(qmeas[~np.isnan(res)],
                                 q[~np.isnan(res)],
                                 NoData=np.nan))
    mimo.BIAS.append(
        stats.get_bias(qmeas[~np.isnan(res)], q[~np.isnan(res)],
                       NoData=np.nan))
    mimo.CORR.append(
        stats.get_correlation(qmeas[~np.isnan(res)],
                              q[~np.isnan(res)],
                              NoData=np.nan))
    mimo.MABSE.append(
        stats.get_mean_absolute_error(qmeas[~np.isnan(res)],
                                      q[~np.isnan(res)],
                                      NoData=np.nan))
    mimo.log.log(45, "NS: " + str(mimo.NS[-1]))
    mimo.log.log(45, "BIAS: " + str(mimo.BIAS[-1]))
    mimo.log.log(45, "CORR: " + str(mimo.CORR[-1]))
    mimo.log.log(45, "MABSE: " + str(mimo.MABSE[-1]))

    pylab.savefig(os.path.join(caseName, runId, str(mimo.ColSim) + "fit.png"))
    return resnonan
Ejemplo n.º 3
0
def bruteforce(mimo, qmeas, caseName, runId):
    """
    """
    nowpars = mimo.pars
    print nowpars
    i = 0
    results = []

    execstr = "mimo.range[mimo.calibpars[" + str(i) + "]]"
    print "========="
    for i in range(0, len(mimo.calibpars)):
        if i > 0:
            execstr = execstr + ", mimo.range[mimo.calibpars[" + str(i) + "]]"
        print execstr
        for parmult in mimo.range[mimo.calibpars[i]]:
            nowpars[i] = parmult

    exec "combi = itertools.product(" + execstr + ")"

    while 1:
        try:
            thisparset = combi.next()
            print "Parameters:" + str(thisparset)
            q = mimo.run(thisparset)

            res = q - qmeas
            # only resturn non-nan values
            resnonan = res[~np.isnan(res)]
            mimo.log.log(45, "Parameters now: " + str(thisparset))
            pylab.plot(q)
            mimo.NS.append(stats.get_nash_sutcliffe(qmeas[~np.isnan(res)], q[~np.isnan(res)], NoData=np.nan))
            mimo.BIAS.append(stats.get_bias(qmeas[~np.isnan(res)], q[~np.isnan(res)], NoData=np.nan))
            mimo.CORR.append(stats.get_correlation(qmeas[~np.isnan(res)], q[~np.isnan(res)], NoData=np.nan))
            mimo.MABSE.append(stats.get_mean_absolute_error(qmeas[~np.isnan(res)], q[~np.isnan(res)], NoData=np.nan))
            mimo.log.log(45, "NS: " + str(mimo.NS[-1]))
            mimo.log.log(45, "BIAS: " + str(mimo.BIAS[-1]))
            mimo.log.log(45, "CORR: " + str(mimo.CORR[-1]))
            mimo.log.log(45, "MABSE: " + str(mimo.MABSE[-1]))
            results.append(
                [
                    thisparset,
                    stats.get_nash_sutcliffe(qmeas[~np.isnan(res)], q[~np.isnan(res)], NoData=np.nan),
                    stats.get_bias(qmeas[~np.isnan(res)], q[~np.isnan(res)], NoData=np.nan),
                ]
            )

            pylab.savefig(os.path.join(caseName, runId, str(mimo.ColSim) + "fit.png"))
            # zz = errfuncFIT(thisparset,qmeas,mimo,caseName,runId)
        except:
            print "Unexpected error:", sys.exc_info()[0]
            break

    return results
Ejemplo n.º 4
0
def bruteforce(mimo, qmeas, caseName, runId):
    """
    """
    nowpars = mimo.pars
    print(nowpars)
    i = 0
    results = []

    execstr = "mimo.range[mimo.calibpars[" + str(i) + "]]"
    print("=========")
    for i in range(0, len(mimo.calibpars)):
        if i > 0:
            execstr = execstr + ", mimo.range[mimo.calibpars[" + str(i) + "]]"
        print(execstr)
        for parmult in mimo.range[mimo.calibpars[i]]:
            nowpars[i] = parmult

    exec("combi = itertools.product(" + execstr + ")")

    while 1:
        try:
            thisparset = next(combi)
            print("Parameters:" + str(thisparset))
            q = mimo.run(thisparset)

            res = q - qmeas
            # only resturn non-nan values
            resnonan = res[~np.isnan(res)]
            mimo.log.log(45, "Parameters now: " + str(thisparset))
            pylab.plot(q)
            mimo.NS.append(
                stats.get_nash_sutcliffe(qmeas[~np.isnan(res)],
                                         q[~np.isnan(res)],
                                         NoData=np.nan))
            mimo.BIAS.append(
                stats.get_bias(qmeas[~np.isnan(res)],
                               q[~np.isnan(res)],
                               NoData=np.nan))
            mimo.CORR.append(
                stats.get_correlation(qmeas[~np.isnan(res)],
                                      q[~np.isnan(res)],
                                      NoData=np.nan))
            mimo.MABSE.append(
                stats.get_mean_absolute_error(qmeas[~np.isnan(res)],
                                              q[~np.isnan(res)],
                                              NoData=np.nan))
            mimo.log.log(45, "NS: " + str(mimo.NS[-1]))
            mimo.log.log(45, "BIAS: " + str(mimo.BIAS[-1]))
            mimo.log.log(45, "CORR: " + str(mimo.CORR[-1]))
            mimo.log.log(45, "MABSE: " + str(mimo.MABSE[-1]))
            results.append([
                thisparset,
                stats.get_nash_sutcliffe(qmeas[~np.isnan(res)],
                                         q[~np.isnan(res)],
                                         NoData=np.nan),
                stats.get_bias(qmeas[~np.isnan(res)],
                               q[~np.isnan(res)],
                               NoData=np.nan),
            ])

            pylab.savefig(
                os.path.join(caseName, runId,
                             str(mimo.ColSim) + "fit.png"))
            # zz = errfuncFIT(thisparset,qmeas,mimo,caseName,runId)
        except:
            print("Unexpected error:", sys.exc_info()[0])
            break

    return results