Ejemplo n.º 1
0
 def setUp(self):
     # this is required for some strange reason.
     # seems like yices/__init__.py does not get evaluated
     Yices.init()
     self.cfg = Config()
     self.ctx = Context(self.cfg)
     self.param = Parameters()
     self.param.default_params_for_context(self.ctx)
     global bool_t, int_t, real_t
     bool_t = Types.bool_type()
     int_t = Types.int_type()
     real_t = Types.real_type()
 def test_context(self):
     cfg = Config()
     ctx = Context(cfg)
     stat = ctx.status()
     ret = ctx.push()
     ret = ctx.pop()
     ctx.reset_context()
     ret = ctx.enable_option("arith-elim")
     ret = ctx.disable_option("arith-elim")
     stat = ctx.status()
     self.assertEqual(stat, 0)
     ctx.reset_context()
     bool_t = Types.bool_type()
     bvar1 = Terms.new_variable(bool_t)
     with assertRaisesRegex(self, YicesException,
                            'assertion contains a free variable'):
         ctx.assert_formula(bvar1)
     bv_t = Types.bv_type(3)
     bvvar1 = Terms.new_uninterpreted_term(bv_t, 'x')
     bvvar2 = Terms.new_uninterpreted_term(bv_t, 'y')
     bvvar3 = Terms.new_uninterpreted_term(bv_t, 'z')
     fmla1 = Terms.parse_term('(= x (bv-add y z))')
     fmla2 = Terms.parse_term('(bv-gt y 0b000)')
     fmla3 = Terms.parse_term('(bv-gt z 0b000)')
     ctx.assert_formula(fmla1)
     ctx.assert_formulas([fmla1, fmla2, fmla3])
     smt_stat = ctx.check_context(None)
     self.assertEqual(smt_stat, Status.SAT)
     ctx.assert_blocking_clause()
     ctx.stop_search()
     param = Parameters()
     param.default_params_for_context(ctx)
     param.set_param("dyn-ack", "true")
     with assertRaisesRegex(self, YicesException, 'invalid parameter'):
         param.set_param("foo", "bar")
     with assertRaisesRegex(self, YicesException,
                            'value not valid for parameter'):
         param.set_param("dyn-ack", "bar")
     param.dispose()
     ctx.dispose()
    def delgado(self, delegate):

        if not Delegates.has_delegate(delegate):
            notify(f'delgado skipping missing delegate {delegate}\n')
            return

        formulas = make_formulas()

        bound = len(formulas) + 1

        for i in range(1, bound):
            config = Config()
            config.default_config_for_logic("QF_BV")
            context = Context(config)
            terms = truncate(formulas, i)
            context.assert_formulas(terms)
            status = context.check_context()
            notify(f'delgado status = {Status.name(status)} for i = {i}\n')
            self.assertEqual(status, Status.SAT if i < 3 else Status.UNSAT)
            config.dispose()
            context.dispose()


        for i in range(1, bound):
            model = []
            terms = truncate(formulas, i)
            status = Delegates.check_formulas(terms, "QF_BV", delegate, model)
            notify(f'delagdo({delegate}) status = {Status.name(status)} for i = {i}\n')
            self.assertEqual(status, Status.SAT if i < 3 else Status.UNSAT)
            if status is Status.SAT:
                notify(f'delagdo({delegate}) model = {model[0].to_string(80, 100, 0)} for i = {i}\n')
            else:
                self.assertEqual(len(model), 0)


        for i in range(1, bound):
            model = []
            term = conjoin(formulas, i)
            status = Delegates.check_formula(term, "QF_BV", delegate, model)
            notify(f'delagdo({delegate}) status = {Status.name(status)} for i = {i}\n')
            self.assertEqual(status, Status.SAT if i < 3 else Status.UNSAT)
            if status is Status.SAT:
                notify(f'delagdo({delegate}) model = {model[0].to_string(80, 100, 0)} for i = {i}\n')
            else:
                self.assertEqual(len(model), 0)
 def test_timeout(self):
     cfg = Config()
     cfg.default_config_for_logic('QF_NIA')
     ctx = Context(cfg)
     int_t = Types.int_type()
     [x, y, z] = [
         Terms.new_uninterpreted_term(int_t, id) for id in ['x', 'y', 'z']
     ]
     # x, y, z > 0
     for var in [x, y, z]:
         ctx.assert_formula(Terms.arith_gt0_atom(var))
     # x^3 + y^3 = z3
     [x3, y3, z3] = [Terms.product([var, var, var]) for var in [x, y, z]]
     lhs = Terms.sum([x3, y3])
     eq = Terms.arith_eq_atom(lhs, z3)
     ctx.assert_formula(eq)
     status = ctx.check_context(timeout=1)
     self.assertEqual(status, Status.INTERRUPTED)
     ctx.dispose()
     cfg.dispose()
    def test_dimacs(self):

        formulas = make_formulas()

        bound = len(formulas) + 1

        simplified = [None] * bound

        # first round, don't simplify the CNF
        for i in range(1, bound):
            simplify = False
            filename = f'/tmp/basic{1}.cnf'
            terms = truncate(formulas, i)

            file_ok, status = Dimacs.export_formulas(terms, filename, simplify)

            notify(
                f'Round 1: {file_ok}, {Status.name(status)} = export@{i}({terms}, {filename}, {simplify})\n'
            )

            if file_ok:
                self.assertEqual(os.path.exists(filename), True)
            else:
                self.assertEqual(status in [Status.SAT, Status.UNSAT], True)

            term = Terms.yand(terms)
            file_ok_c, status_c = Dimacs.export_formula(
                term, filename, simplify)

            notify(
                f'Round 1: {file_ok_c}, {Status.name(status_c)} = export@{i}({term}, {filename}, {simplify})\n'
            )

        # second round, simplify the CNF
        for i in range(1, bound):
            simplify = True
            filename = f'/tmp/simplify{i}.cnf'
            terms = truncate(formulas, i)

            file_ok, status = Dimacs.export_formulas(terms, filename, simplify)

            # save the status for later
            simplified[i] = status

            notify(
                f'Round 2: {file_ok}, {Status.name(status)} = export@{i}({terms}, {filename}, {simplify})\n'
            )

            if file_ok:
                self.assertEqual(os.path.exists(filename), True)
            else:
                self.assertEqual(status in [Status.SAT, Status.UNSAT], True)

            term = Terms.yand(terms)
            file_ok_c, status_c = Dimacs.export_formula(
                term, filename, simplify)

            notify(
                f'Round 2: {file_ok_c}, {Status.name(status_c)} = export@{i}({term}, {filename}, {simplify})\n'
            )

            self.assertEqual(status_c, simplified[i])

        # third round check the results
        for i in range(1, bound):
            config = Config()
            config.default_config_for_logic("QF_BV")
            context = Context(config)
            terms = truncate(formulas, i)
            context.assert_formulas(terms)
            status = context.check_context()
            notify(f'Round 3: status = {Status.name(status)} for i = {i}\n')
            self.assertEqual(status, simplified[i])
            config.dispose()
            context.dispose()
Ejemplo n.º 6
0
class TestModels(unittest.TestCase):

    # pylint: disable=W0601

    def setUp(self):
        # this is required for some strange reason.
        # seems like yices/__init__.py does not get evaluated
        Yices.init()
        self.cfg = Config()
        self.ctx = Context(self.cfg)
        self.param = Parameters()
        self.param.default_params_for_context(self.ctx)
        global bool_t, int_t, real_t
        bool_t = Types.bool_type()
        int_t = Types.int_type()
        real_t = Types.real_type()

    def tearDown(self):
        self.cfg.dispose()
        self.ctx.dispose()
        self.param.dispose()
        Yices.exit()

    def test_bool_models(self):
        b1 = define_const('b1', bool_t)
        b2 = define_const('b2', bool_t)
        b3 = define_const('b3', bool_t)
        b_fml1 = Terms.parse_term('(or b1 b2 b3)')
        self.ctx.assert_formula(b_fml1)
        self.assertEqual(self.ctx.check_context(self.param), Status.SAT)
        b_mdl1 = Model.from_context(self.ctx, 1)
        self.assertNotEqual(b_mdl1, None)
        bval1 = b_mdl1.get_bool_value(b1)
        bval2 = b_mdl1.get_bool_value(b2)
        bval3 = b_mdl1.get_bool_value(b3)
        self.assertEqual(bval1, False)
        self.assertEqual(bval2, False)
        self.assertEqual(bval3, True)
        b_fmla2 = Terms.parse_term('(not b3)')
        self.ctx.assert_formula(b_fmla2)
        self.assertEqual(self.ctx.check_context(self.param), Status.SAT)
        b_mdl1 = Model.from_context(self.ctx, 1)
        self.assertNotEqual(b_mdl1, None)
        bval1 = b_mdl1.get_bool_value(b1)
        bval2 = b_mdl1.get_bool_value(b2)
        bval3 = b_mdl1.get_bool_value(b3)
        val1 = b_mdl1.get_value(b1)
        val2 = b_mdl1.get_value(b2)
        val3 = b_mdl1.get_value(b3)
        self.assertEqual(bval1, False)
        self.assertEqual(bval2, True)
        self.assertEqual(bval3, False)
        self.assertEqual(bval1, val1)
        self.assertEqual(bval2, val2)
        self.assertEqual(bval3, val3)

    def test_int_models(self):
        ''' int32, int64 '''
        i1 = define_const('i1', int_t)
        i2 = define_const('i2', int_t)
        assert_formula('(> i1 3)', self.ctx)
        assert_formula('(< i2 i1)', self.ctx)
        self.assertEqual(self.ctx.check_context(self.param), Status.SAT)
        mdl = Model.from_context(self.ctx, 1)
        i32v1 = mdl.get_integer_value(i1)
        i32v2 = mdl.get_integer_value(i2)
        self.assertEqual(i32v1, 4)
        self.assertEqual(i32v2, 3)
        mdl.print_to_fd(1)
        mdl.print_to_fd(1, 80, 100, 0)
        mdlstr = mdl.to_string(80, 100, 0)
        self.assertEqual(mdlstr, '(= i1 4)\n(= i2 3)')

    def test_rat_models(self):
        ''' rational32, rational64, double '''
        r1 = define_const('r1', real_t)
        r2 = define_const('r2', real_t)
        assert_formula('(> r1 3)', self.ctx)
        assert_formula('(< r1 4)', self.ctx)
        assert_formula('(< (- r1 r2) 0)', self.ctx)
        self.assertEqual(self.ctx.check_context(self.param), Status.SAT)
        mdl = Model.from_context(self.ctx, 1)
        v1 = mdl.get_fraction_value(r1)
        v2 = mdl.get_fraction_value(r2)
        # r1 = 7/2, r2 = 4/1
        self.assertEqual(v1.numerator, 7)
        self.assertEqual(v1.denominator, 2)
        self.assertEqual(v2.numerator, 4)
        self.assertEqual(v2.denominator, 1)
        rdoub1 = mdl.get_float_value(r1)
        rdoub2 = mdl.get_float_value(r2)
        self.assertEqual(rdoub1, 3.5)
        self.assertEqual(rdoub2, 4.0)
        val1 = mdl.get_value(r1)
        val2 = mdl.get_value(r2)
        self.assertEqual(val1, 3.5)
        self.assertEqual(val2, 4.0)

    def test_bv_models(self):
        bv_t = Types.bv_type(3)
        bv1 = define_const('bv1', bv_t)
        bv2 = define_const('bv2', bv_t)
        bv3 = define_const('bv3', bv_t)
        fmla1 = Terms.parse_term('(= bv1 (bv-add bv2 bv3))')
        fmla2 = Terms.parse_term('(bv-gt bv2 0b000)')
        fmla3 = Terms.parse_term('(bv-gt bv3 0b000)')
        self.ctx.assert_formula(fmla1)
        self.ctx.assert_formulas([fmla1, fmla2, fmla3])
        self.assertEqual(self.ctx.check_context(self.param), Status.SAT)
        mdl1 = Model.from_context(self.ctx, 1)
        val1 = mdl1.get_value(bv1)
        self.assertEqual(val1[0], 0)
        self.assertEqual(val1[1], 0)
        self.assertEqual(val1[2], 0)
        val2 = mdl1.get_value(bv2)
        self.assertEqual(val2[0], 0)
        self.assertEqual(val2[1], 0)
        self.assertEqual(val2[2], 1)
        val3 = mdl1.get_value(bv3)
        self.assertEqual(val3[0], 0)
        self.assertEqual(val3[1], 0)
        self.assertEqual(val3[2], 1)
        mdl1.dispose()

    def test_tuple_models(self):
        tup_t = Types.new_tuple_type([bool_t, real_t, int_t])
        t1 = define_const('t1', tup_t)
        assert_formula(
            '(ite (select t1 1) (< (select t1 2) (select t1 3)) (> (select t1 2) (select t1 3)))',
            self.ctx)
        self.assertEqual(self.ctx.check_context(self.param), Status.SAT)
        mdl = Model.from_context(self.ctx, 1)
        mdlstr = mdl.to_string(80, 100, 0)
        self.assertEqual(mdlstr, '(= t1 (mk-tuple false 1 0))')
        val = mdl.get_value(t1)
        self.assertEqual(val[0], False)
        self.assertEqual(val[1], 1)
        self.assertEqual(val[2], 0)

    def test_model_from_map(self):
        bv_t = Types.bv_type(8)
        i1 = define_const('i1', int_t)
        r1 = define_const('r1', real_t)
        bv1 = define_const('bv1', bv_t)
        iconst1 = Terms.integer(42)
        rconst1 = Terms.rational(13, 131)
        bvconst1 = Terms.bvconst_integer(8, 134)
        mapping = {i1: iconst1, r1: rconst1, bv1: bvconst1}
        mdl = Model.from_map(mapping)
        mdlstr = mdl.to_string(80, 100, 0)
        self.assertEqual(mdlstr,
                         '(= i1 42)\n(= r1 13/131)\n(= bv1 0b10000110)')
        mdl.dispose()

    def test_implicant(self):
        i1 = define_const('i1', int_t)
        assert_formula('(and (> i1 2) (< i1 8) (/= i1 4))', self.ctx)
        self.assertEqual(self.ctx.check_context(self.param), Status.SAT)
        mdl = Model.from_context(self.ctx, 1)
        mdlstr = mdl.to_string(80, 100, 0)
        self.assertEqual(mdlstr, '(= i1 7)')
        fml = Terms.parse_term('(>= i1 3)')
        tarray = mdl.implicant_for_formula(fml)
        self.assertEqual(len(tarray), 1)
        implstr = Terms.to_string(tarray[0], 200, 10, 0)
        self.assertEqual(implstr, '(>= (+ -3 i1) 0)')
        fml2 = Terms.parse_term('(<= i1 9)')
        tarray2 = mdl.implicant_for_formulas([fml, fml2])
        self.assertEqual(len(tarray2), 2)
        implstr2 = Terms.to_string(tarray2[0], 200, 10, 0)
        self.assertEqual(implstr2, '(>= (+ -3 i1) 0)')
        implstr3 = Terms.to_string(tarray2[1], 200, 10, 0)
        self.assertEqual(implstr3, '(>= (+ 9 (* -1 i1)) 0)')

    def test_scalar_models(self):
        scalar_t = Types.new_scalar_type(10)
        sc1 = define_const('sc1', scalar_t)
        sc2 = define_const('sc2', scalar_t)
        sc3 = define_const('sc3', scalar_t)
        assert_formula('(/= sc1 sc2)', self.ctx)
        assert_formula('(/= sc1 sc3)', self.ctx)
        self.assertEqual(self.ctx.check_context(self.param), Status.SAT)
        mdl = Model.from_context(self.ctx, 1)
        val1 = mdl.get_scalar_value(sc1)
        val2 = mdl.get_scalar_value(sc2)
        val3 = mdl.get_scalar_value(sc3)
        self.assertEqual(val1, 9)
        self.assertEqual(val2, 8)
        self.assertEqual(val3, 8)
        self.assertEqual(Terms.is_scalar(sc1), True)
        sc1val = mdl.get_value_as_term(sc1)
        self.assertEqual(Terms.is_scalar(sc1val), True)
        self.assertEqual(mdl.get_value(sc1), sc1val)

    def test_function_models(self):
        funtype = Types.new_function_type([int_t, bool_t, real_t], real_t)
        ftystr = Types.to_string(funtype, 100, 80, 0)
        Types.print_to_fd(1, funtype, 100, 80, 0)
        self.assertEqual(ftystr, '(-> int bool real real)')
        fun1 = define_const('fun1', funtype)
        b1 = define_const('b1', bool_t)
        i1 = define_const('i1', int_t)
        r1 = define_const('r1', real_t)
        assert_formula(
            '(> (fun1 i1 b1 r1) (fun1 (+ i1 1) (not b1) (- r1 i1)))', self.ctx)
        self.assertEqual(self.ctx.check_context(self.param), Status.SAT)
        mdl = Model.from_context(self.ctx, 1)
        mdlstr = mdl.to_string(80, 100, 0)
        self.assertEqual(
            mdlstr,
            '(= b1 false)\n(= i1 1463)\n(= r1 -579)\n(function fun1\n (type (-> int bool real real))\n (= (fun1 1463 false -579) 1)\n (= (fun1 1464 true -2042) 0)\n (default 2))'
        )
        fun1val = mdl.get_value(fun1)
        self.assertEqual(fun1val((1463, False, -579)), 1)
        self.assertEqual(fun1val((1464, True, -2042)), 0)
        self.assertEqual(fun1val((1462, True, -2041)), 2)

    # pylint: disable=C0103
    def test_model_support(self):
        x = define_const('x', real_t)
        y = define_const('y', real_t)
        z = define_const('z', real_t)
        formula = Terms.parse_term('(> x 0)')
        t0 = Terms.parse_term('(ite (> x 0) (+ x z) y)')
        t1 = Terms.parse_term('(+ (* x z) y)')
        self.ctx.assert_formula(formula)
        self.assertEqual(self.ctx.check_context(), Status.SAT)
        mdl = Model.from_context(self.ctx, 1)
        support = mdl.support_for_term(t0)
        self.assertEqual(len(support), 2)
        self.assertEqual(support[0], x)
        self.assertEqual(support[1], z)
        support = mdl.support_for_terms([t0, t1])
        self.assertEqual(len(support), 3)
        self.assertEqual(support[0], x)
        self.assertEqual(support[1], y)
        self.assertEqual(support[2], z)
Ejemplo n.º 7
0
#not real happy about the indexing going from 0 to 8, but
#isolating access via V could make it easier to go from 1 to 9
def V(vi, vj):
    return X[vi][vj]


#make the constants that we will need
C = {}
for i in range(1, 10):
    C[i] = Terms.integer(i)

one = C[1]
nine = C[9]

config = Config()
config.default_config_for_logic("QF_LIA")

context = Context(config)


# x is between 1 and 9
def between_1_and_9(x):
    return Terms.yand(
        [Terms.arith_leq_atom(one, x),
         Terms.arith_leq_atom(x, nine)])


for i in range(9):
    for j in range(9):
        context.assert_formula(between_1_and_9(V(i, j)))
 def test_config(self):
     cfg = Config()
     # Valid call
     cfg.set_config("mode", "push-pop")
     # Invalid name
     with assertRaisesRegex(self, YicesException, 'invalid parameter'):
         cfg.set_config("baz", "bar")
     # Invalid value
     with assertRaisesRegex(self, YicesException,
                            'value not valid for parameter'):
         cfg.set_config("mode", "bar")
     cfg.default_config_for_logic("QF_UFNIRA")
     cfg.dispose()