Skip to content

Ronbalt/pylive

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyLive

PyLive is a framework for querying and controlling Ableton Live from a standalone Python script, mediated via Open Sound Control. It is effectively an interface to the Live Control Surfaces paradigm, which means it can do anything that a hardware control surface can do, including:

  • query and modify global parameters such as tempo, volume, pan, quantize, arrangement time
  • query and modify properties of tracks, clips, scenes and devices
  • trigger and stop clips and scenes

It can perform most of the operations described in the LiveOSC OSC API.

If you are looking simply to send MIDI messages to Live, this module is not what you want. Instead, try setting up a virtual MIDI bus and using isobar to generate MIDI sequences.

Requirements

Installation

From PyPi:

pip3 install Cython # needed for pyliblo
pip3 install pylive

Or via git:

git clone https://github.com/ideoforms/pylive.git
cd pylive
python3 setup.py install

To check that pylive is communicating successfully with Ableton Live, try running one of the examples, or run the test suite with:

python3 setup.py test

Alternate installation without liblo

In some environments (particularly Windows), liblo can be a pain to get running. In these scenarios, an alternative backend is provided that uses the pythonosc backend for OSC communications.

If you want to install without liblo support:

  • clone the repo from GitHub
  • remove the install_requires line from setup.py
  • install pylive with python3 setup.py install

You will then need to set an environmental variable specifying the pythonosc backend before running scripts using pylive:

export PYLIVE_BACKEND='pythonosc'
python3 your-script.py

Usage

#------------------------------------------------------------------------
# Basic example of pylive usage: scan a Live set, trigger a clip,
# and modulate some device parameters.
#------------------------------------------------------------------------
import live
import random

#------------------------------------------------------------------------
# Scan the set's contents and set its tempo to 110bpm.
#------------------------------------------------------------------------
set = live.Set()
set.scan(scan_clip_names = True, scan_devices = True)
set.tempo = 110.0

#------------------------------------------------------------------------
# Each Set contains a list of Track objects.
#------------------------------------------------------------------------
track = set.tracks[0]
print("Track name %s" % track.name)

#------------------------------------------------------------------------
# Each Track contains a list of Clip objects.
#------------------------------------------------------------------------
clip = track.clips[0]
print("Clip name %s, length %d beats" % (clip.name, clip.length))
clip.play()

#------------------------------------------------------------------------
# We can determine our internal timing based on Live's timeline using
# Set.wait_for_next_beat(), and trigger clips accordingly.
#------------------------------------------------------------------------
set.wait_for_next_beat()
clip.get_next_clip().play()

#------------------------------------------------------------------------
# Now let's modulate the parameters of a Device object.
#------------------------------------------------------------------------
device = track.devices[0]
parameter = random.choice(device.parameters)
parameter.value = random.uniform(parameter.minimum, parameter.maximum)

Overview

To begin interacting with an Ableton Live set, the typical workflow is as follows. Live should normally be running on localhost, with LiveOSC enabled as a Control Surface.

  • Create a live.Set object.
  • Call set.scan(), which queries Live for an index of tracks, clip statuses, and (optionally) clip names and devices
  • Interact with Live by setting and getting properties on your Set:
    • set.tempo, set.time, set.overdub are global Set properties
    • set.tracks is a list of Track objects
    • set.tracks[N].name, set.tracks[N].mute, are Track properties
    • set.tracks[N].clips is a list of Clip objects (with empty slots containing None)
    • set.tracks[N].devices is a list of Device objects
    • set.tracks[N].devices[M].parameters is a list of Parameter objects

Getters and setters use Python's @property idiom, meaning that accessing set.tempo will query or update your Live set.

If you know that no other processes will interact with Live, set set.caching = True to cache properties such as tempo. This will query the Live set on the first instance, and subsequently return locally-stored values.

For further help, see pydoc live.

Classes

  • Set: Represents a single Ableton Live set in its entirety.
  • Track: A single Live track object. Contains Device and Clip objects. May be a member of a Group.
  • Group: A grouped set of one or more Track objects.
  • Device: An instrument or audio effect residing within a Track. Contains a number of Parameter objects.
  • Parameter: An individual control parameter of a Device, with a fixed range and variable value.

Limitations

Note that pylive is not intended for sending MIDI note events or control messages to a set. For MIDI controls, use a separate module such as mido.

About

Query and control Ableton Live from Python

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%