def res(): comp = request.args.get('comp', None) budget = request.args.get('budget', None) print(comp, budget) # Searches for mega pc mega = search_megapc(comp, budget) mega_prd = mega['prd'].encode('ascii', 'ignore').decode('unicode_escape') # Searches for sbs sbs = search_sbs(comp, budget) sbs_prd = sbs['prd'].encode('ascii', 'ignore').decode('unicode_escape') # Search extreme extrme = search_extreme(comp, budget) extrme_prd = extrme['prd'].encode('ascii', 'ignore').decode('unicode_escape') # Search tunisianet tn = search_tunisia(comp, budget) tn_prd = tn['prd'].encode('ascii', 'ignore').decode('unicode_escape') win1 = benchmark(sbs, tn, comp) win2 = benchmark(mega, extrme, comp) final = benchmark(win1, win2, comp) result = {'data': [mega, sbs, extrme, tn], 'win': final} return jsonify(result)
def main(): print "ZCML took %.3f seconds." % measure(load_ftesting_zcml) print "Setup took %.3f seconds." % measure(setup_benchmark) benchmark("Daily calendar view with many recurrent events", daily_view) benchmark("Weekly calendar view with many recurrent events", weekly_view) benchmark("Monthly calendar view with many recurrent events", monthly_view) benchmark("Yearly calendar view with many recurrent events", yearly_view)
def main(): print "ZCML took %.3f seconds." % measure(load_ftesting_zcml) print "Setup took %.3f seconds." % measure(setup_benchmark) benchmark("Daily calendar view with many simple events", daily_view) benchmark("Weekly calendar view with many simple events", weekly_view) benchmark("Monthly calendar view with many simple events", monthly_view) benchmark("Yearly calendar view with many simple events", yearly_view)
def train(training_data, model_path=DEFAULT_DATA_PATH, test_data=None): X_train, y_train = read_train_data(training_data) logging.info("Training on {} examples for {} labels".format(len(X_train), len(set(y_train)))) logging.info("Starting the training") prediction_pipeline.fit(preprocess_pipeline.fit_transform(X_train, y_train), y_train) if test_data != None: X_test, y_test = read_test_data(test_data, y_train) logging.info("Evaluating the model") X_test = preprocess_pipeline.transform(X_test) benchmark(prediction_pipeline, X_train, y_train, X_test, y_test, verbose=2) logging.info("Storing the model to {}".format(model_path)) joblib.dump(prediction_pipeline, model_path)
def main(): print "ZCML took %.3f seconds." % measure(load_ftesting_zcml) print "Setup took %.3f seconds." % measure(setup_benchmark) benchmark("Daily calendar view on the start date.", daily_view_start_date) benchmark("Daily calendar view a year after the start date.", daily_view_in_a_year) benchmark("Daily calendar view ten years after the start date.", daily_view_in_ten_years)
def run_benchmark(function, label): config = BenchmarkConfig( batch_sizes=[2**i for i in range(FLAGS.batches)], device=FLAGS.device, dt=FLAGS.dt, label=label, runs=FLAGS.runs, sequence_length=FLAGS.sequence_length, start=FLAGS.start, stop=FLAGS.stop, step=FLAGS.step, ) collector = partial(collect, label=label) results = benchmark(function, collector, config) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S") filename = f"{timestamp}-{label}.csv" pd.DataFrame(results).to_csv(filename)
'autosklearn-v': AutoSklearnVanillaBenchmark, 'autosklearn-m': AutoSklearnMetaBenchmark, 'autosklearn-e': AutoSklearnEnsBenchmark, 'tpot': TPOTBenchmark, 'recipe': RecipeBenchmark } if model in model_to_bench: model_to_bench[model]().benchmark(dataset_file, output_file, time_limit=time, dataset_test_file=dataset_test_file, config=config) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('input_file', help='Dataset file') parser.add_argument('output_file', help='Benchmark result file') parser.add_argument('-t', '--time', type=int, help='Time budget') parser.add_argument('-m', '--model', help='AutoML Model') parser.add_argument('-te', '--test_file', help='Dataset test file') parser.add_argument('-c', '--config', nargs='*') args = parser.parse_args() benchmark(dataset_file=args.input_file, output_file=args.output_file, time=args.time, model=args.model, dataset_test_file=args.test_file, config=args.config)