Example #1
0
    def __init__(self, i, mu1, mu2, sigma1, sigma2, phi, color):
        OWPlotItem.__init__(self)
        self.outer_box = QGraphicsPolygonItem(self)
        self.inner_box = QGraphicsPolygonItem(self)

        self.i = i
        self.mu1 = mu1
        self.mu2 = mu2
        self.sigma1 = sigma1
        self.sigma2 = sigma2
        self.phi = phi

        self.twosigmapolygon = QPolygonF([
            QPointF(i, mu1 - sigma1), QPointF(i, mu1 + sigma1),
            QPointF(i + 1, mu2 + sigma2), QPointF(i + 1, mu2 - sigma2),
            QPointF(i, mu1 - sigma1)
        ])

        self.sigmapolygon = QPolygonF([
            QPointF(i, mu1 - .5 * sigma1), QPointF(i, mu1 + .5 * sigma1),
            QPointF(i + 1, mu2 + .5 * sigma2), QPointF(i + 1, mu2 - .5 * sigma2),
            QPointF(i, mu1 - .5 * sigma1)
        ])

        if isinstance(color, tuple):
            color = QColor(*color)
        color.setAlphaF(.3)
        self.outer_box.setBrush(color)
        self.outer_box.setPen(QColor(0, 0, 0, 0))
        self.inner_box.setBrush(color)
        self.inner_box.setPen(color)
Example #2
0
    def __updatePen(self):
        self.prepareGeometryChange()
        self.__boundingRect = None
        if self.__dynamic:
            if self.__dynamicEnabled:
                color = QColor(0, 150, 0, 150)
            else:
                color = QColor(150, 0, 0, 150)

            normal = QPen(QBrush(color), 2.0)
            hover = QPen(QBrush(color.darker(120)), 2.1)
        else:
            normal = QPen(QBrush(QColor("#9CACB4")), 2.0)
            hover = QPen(QBrush(QColor("#7D7D7D")), 2.1)

        if self.__state & LinkItem.Empty:
            pen_style = Qt.DashLine
        else:
            pen_style = Qt.SolidLine

        normal.setStyle(pen_style)
        hover.setStyle(pen_style)

        if self.hover:
            pen = hover
        else:
            pen = normal

        self.curveItem.setPen(pen)
Example #3
0
 def toggle_node_color_reg(self):
     """Update the node color for regression trees"""
     def_color = QColor(192, 192, 255)
     if self.regression_colors == self.COL_DEFAULT:
         brush = QBrush(def_color.lighter(100))
         for node in self.scene.nodes():
             node.backgroundBrush = brush
     elif self.regression_colors == self.COL_INSTANCE:
         max_insts = len(self.model.instances)
         for node in self.scene.nodes():
             node.backgroundBrush = QBrush(def_color.lighter(
                 120 - 20 * len(node.node_inst.subset) / max_insts))
     elif self.regression_colors == self.COL_MEAN:
         minv = np.nanmin(self.dataset.Y)
         maxv = np.nanmax(self.dataset.Y)
         fact = 1 / (maxv - minv) if minv != maxv else 1
         colors = self.scene.colors
         for node in self.scene.nodes():
             node.backgroundBrush = QBrush(
                 colors[fact * (node.node_inst.value[0] - minv)])
     else:
         nodes = list(self.scene.nodes())
         variances = [node.node_inst.value[1] for node in nodes]
         max_var = max(variances)
         for node, var in zip(nodes, variances):
             node.backgroundBrush = QBrush(def_color.lighter(
                 120 - 20 * var / max_var))
     self.scene.update()
Example #4
0
 def update_profiles_color(self, selection):
     color = QColor(self.color)
     alpha = LinePlotStyle.UNSELECTED_LINE_ALPHA if not selection \
         else LinePlotStyle.UNSELECTED_LINE_ALPHA_SEL
     color.setAlpha(alpha)
     x, y = self.profiles.getData()
     self.profiles.setData(x=x, y=y, pen=self.make_pen(color))
Example #5
0
    def make_color_legend(self):
        color_index = self.get_color_index()
        if color_index == -1:
            return
        color_var = self.domain[color_index]
        use_shape = self.get_shape_index() == color_index
        if color_var.is_discrete:
            if not self.legend:
                self.create_legend()
            palette = self.discrete_palette
            for i, value in enumerate(color_var.values):
                color = QColor(*palette.getRGB(i))
                brush = color.lighter(self.DarkerValue)
                self.legend.addItem(
                    ScatterPlotItem(
                        pen=color, brush=brush, size=10,
                        symbol=self.CurveSymbols[i] if use_shape else "o"),
                    escape(value))
        else:
            legend = self.color_legend = LegendItem()
            legend.setParentItem(self.plot_widget.getViewBox())
            legend.restoreAnchor(self.__color_legend_anchor)

            label = PaletteItemSample(self.continuous_palette, self.scale)
            legend.addItem(label, "")
            legend.setGeometry(label.boundingRect())
Example #6
0
    def make_color_legend(self):
        if self.attr_color is None:
            return
        use_shape = self.attr_shape == self.get_color()
        if self.attr_color.is_discrete:
            if not self.legend:
                self.create_legend()
            palette = self.discrete_palette
            for i, value in enumerate(self._get_values(self.attr_color)):
                color = QColor(*palette.getRGB(i))
                pen = _make_pen(color.darker(self.DarkerValue), 1.5)
                color.setAlpha(self.alpha_value if self.subset_indices is None else 255)
                brush = QBrush(color)
                self.legend.addItem(
                    ScatterPlotItem(
                        pen=pen, brush=brush, size=10,
                        symbol=self.CurveSymbols[i] if use_shape else "o"),
                    escape(value))
        else:
            legend = self.color_legend = LegendItem()
            legend.setParentItem(self.plot_widget.getViewBox())
            legend.restoreAnchor(self.__color_legend_anchor)

            label = PaletteItemSample(self.continuous_palette, self.scale)
            legend.addItem(label, "")
            legend.setGeometry(label.boundingRect())
Example #7
0
 def toggle_node_color_reg(self):
     """Update the node color for regression trees"""
     def_color = QColor(192, 192, 255)
     if self.regression_colors == self.COL_DEFAULT:
         brush = QBrush(def_color.lighter(100))
         for node in self.scene.nodes():
             node.backgroundBrush = brush
     elif self.regression_colors == self.COL_INSTANCE:
         max_insts = len(self.tree_adapter.get_instances_in_nodes(
             [self.tree_adapter.root]))
         for node in self.scene.nodes():
             node_insts = len(self.tree_adapter.get_instances_in_nodes(
                 [node.node_inst]))
             node.backgroundBrush = QBrush(def_color.lighter(
                 120 - 20 * node_insts / max_insts))
     elif self.regression_colors == self.COL_MEAN:
         minv = np.nanmin(self.dataset.Y)
         maxv = np.nanmax(self.dataset.Y)
         fact = 1 / (maxv - minv) if minv != maxv else 1
         colors = self.scene.colors
         for node in self.scene.nodes():
             node_mean = self.tree_adapter.get_distribution(node.node_inst)[0][0]
             node.backgroundBrush = QBrush(colors[fact * (node_mean - minv)])
     else:
         nodes = list(self.scene.nodes())
         variances = [self.tree_adapter.get_distribution(node.node_inst)[0][1]
                      for node in nodes]
         max_var = max(variances)
         for node, var in zip(nodes, variances):
             node.backgroundBrush = QBrush(def_color.lighter(
                 120 - 20 * var / max_var))
     self.scene.update()
Example #8
0
    def _get_same_colors(self, subset):
        """
        Return the same pen for all points while the brush color depends
        upon whether the point is in the subset or not

        Args:
            subset (np.ndarray): a bool array indicating whether a data point
                is in the subset or not (e.g. in the 'Data Subset' signal
                in the Scatter plot and similar widgets);

        Returns:
            (tuple): a list of pens and list of brushes
        """
        color = self.plot_widget.palette().color(OWPalette.Data)
        pen = [_make_pen(color, 1.5) for _ in range(self.n_shown)]
        if subset is not None:
            brush = np.where(
                subset,
                *(QBrush(QColor(*col))
                  for col in (self.COLOR_SUBSET, self.COLOR_NOT_SUBSET)))
        else:
            color = QColor(*self.COLOR_DEFAULT)
            color.setAlpha(self.alpha_value)
            brush = [QBrush(color) for _ in range(self.n_shown)]
        return pen, brush
Example #9
0
 def _get_range_curve(self):
     color = QColor(self.color)
     color.setAlpha(LinePlotStyle.RANGE_ALPHA)
     bottom, top = nanmin(self.y_data, axis=0), nanmax(self.y_data, axis=0)
     return pg.FillBetweenItem(
         pg.PlotDataItem(x=self.x_data, y=bottom),
         pg.PlotDataItem(x=self.x_data, y=top), brush=color
     )
Example #10
0
        def add_points():
            nonlocal cur, image_token
            if image_token != self._image_token:
                return
            batch = visible[cur:cur + self.N_POINTS_PER_ITER]

            batch_lat = lat[batch]
            batch_lon = lon[batch]

            x, y = self.Projection.latlon_to_easting_northing(batch_lat, batch_lon)
            x, y = self.Projection.easting_northing_to_pixel(x, y, zoom, origin, map_pane_pos)

            if self._jittering:
                dx, dy = self._jittering_offsets[batch].T
                x, y = x + dx, y + dy

            colors = (self._colorgen.getRGB(self._scaled_color_values[batch]).tolist()
                      if self._color_attr else
                      repeat((0xff, 0, 0)))
            sizes = self._size_coef * \
                (self._sizes[batch] if self._size_attr else np.tile(10, len(batch)))

            for x, y, is_selected, size, color, _in_subset in \
                    zip(x, y, selected[batch], sizes, colors, in_subset[batch]):

                pensize2, selpensize2 = (.35, 1.5) if size >= 5 else (.15, .7)
                pensize2 *= self._size_coef
                selpensize2 *= self._size_coef

                size2 = size / 2
                if is_selected:
                    painter.setPen(QPen(QBrush(Qt.green), 2 * selpensize2))
                    painter.drawEllipse(x - size2 - selpensize2,
                                        y - size2 - selpensize2,
                                        size + selpensize2,
                                        size + selpensize2)
                color = QColor(*color)
                color.setAlpha(self._opacity)
                painter.setBrush(QBrush(color) if _in_subset else Qt.NoBrush)
                painter.setPen(QPen(QBrush(color.darker(180)), 2 * pensize2))
                painter.drawEllipse(x - size2 - pensize2,
                                    y - size2 - pensize2,
                                    size + pensize2,
                                    size + pensize2)

            im.save(self._overlay_image_path, 'PNG')
            self.evalJS('markersImageLayer.setUrl("{}#{}"); 0;'
                        .format(self.toFileURL(self._overlay_image_path),
                                np.random.random()))

            cur += self.N_POINTS_PER_ITER
            if cur < len(visible):
                QTimer.singleShot(10, add_points)
                self._owwidget.progressBarAdvance(100 / n_iters, None)
            else:
                self._owwidget.progressBarFinished(None)
Example #11
0
 def _update_shape_legend(self, labels):
     self.shape_legend.clear()
     if labels is None or self.scatterplot_item is None:
         return
     color = QColor(0, 0, 0)
     color.setAlpha(self.alpha_value)
     for label, symbol in zip(labels, self.CurveSymbols):
         self.shape_legend.addItem(
             ScatterPlotItem(pen=color, brush=color, size=10, symbol=symbol),
             escape(label))
Example #12
0
 def setWidgetCategory(self, desc):
     """
     Set the widget category.
     """
     self.category_description = desc
     if desc and desc.background:
         background = NAMED_COLORS.get(desc.background, desc.background)
         color = QColor(background)
         if color.isValid():
             self.setColor(color)
Example #13
0
 def make_shape_legend(self):
     if self.attr_shape is None or self.attr_shape == self.get_color():
         return
     if not self.legend:
         self.create_legend()
     color = QColor(0, 0, 0)
     color.setAlpha(self.alpha_value)
     for i, value in enumerate(self._get_values(self.attr_shape)):
         self.legend.addItem(
             ScatterPlotItem(pen=color, brush=color, size=10,
                             symbol=self.CurveSymbols[i]), escape(value))
Example #14
0
def refresh_integral_markings(dis, markings_list, curveplot):
    for m in markings_list:
        if m in curveplot.markings:
            curveplot.remove_marking(m)
    markings_list.clear()

    def add_marking(a):
        markings_list.append(a)
        curveplot.add_marking(a)

    for di in dis:

        if di is None:
            continue  # nothing to draw

        color = QColor(di.get("color", "red"))

        for el in di["draw"]:

            if el[0] == "curve":
                bs_x, bs_ys, penargs = el[1]
                curve = pg.PlotCurveItem()
                curve.setPen(pg.mkPen(color=QColor(color), **penargs))
                curve.setZValue(10)
                curve.setData(x=bs_x, y=bs_ys[0])
                add_marking(curve)

            elif el[0] == "fill":
                (x1, ys1), (x2, ys2) = el[1]
                phigh = pg.PlotCurveItem(x1, ys1[0], pen=None)
                plow = pg.PlotCurveItem(x2, ys2[0], pen=None)
                color = QColor(color)
                color.setAlphaF(0.5)
                cc = pg.mkBrush(color)
                pfill = pg.FillBetweenItem(plow, phigh, brush=cc)
                pfill.setZValue(9)
                add_marking(pfill)

            elif el[0] == "line":
                (x1, y1), (x2, y2) = el[1]
                line = pg.PlotCurveItem()
                line.setPen(pg.mkPen(color=QColor(color), width=4))
                line.setZValue(10)
                line.setData(x=[x1[0], x2[0]], y=[y1[0], y2[0]])
                add_marking(line)

            elif el[0] == "dot":
                (x, ys) = el[1]
                dot = pg.ScatterPlotItem(x=x, y=ys[0])
                dot.setPen(pg.mkPen(color=QColor(color), width=5))
                dot.setZValue(10)
                add_marking(dot)
Example #15
0
    def draw_distributions(self):
        """Draw distributions with discrete attributes"""
        if not (self.show_distributions and self.data is not None and self.domain.has_discrete_class):
            return
        class_count = len(self.domain.class_var.values)
        class_ = self.domain.class_var

        # we create a hash table of possible class values (happens only if we have a discrete class)
        if self.domain_contingencies is None:
            self.domain_contingencies = dict(
                zip([attr for attr in self.domain if attr.is_discrete],
                    get_contingencies(self.data, skipContinuous=True)))
            self.domain_contingencies[class_] = get_contingency(self.data, class_, class_)

        max_count = max([contingency.max() for contingency in self.domain_contingencies.values()] or [1])
        sorted_class_values = get_variable_values_sorted(self.domain.class_var)

        for axis_idx, attr_idx in enumerate(self.attribute_indices):
            attr = self.domain[attr_idx]
            if attr.is_discrete:
                continue

            contingency = self.domain_contingencies[attr]
            attr_len = len(attr.values)

            # we create a hash table of variable values and their indices
            sorted_variable_values = get_variable_values_sorted(attr)

            # create bar curve
            for j in range(attr_len):
                attribute_value = sorted_variable_values[j]
                value_count = contingency[:, attribute_value]

                for i in range(class_count):
                    class_value = sorted_class_values[i]

                    color = QColor(*self.colors[i])
                    color.setAlpha(self.alpha_value)

                    width = float(value_count[class_value] * 0.5) / float(max_count)
                    y_off = float(1.0 + 2.0 * j) / float(2 * attr_len)
                    height = 0.7 / float(class_count * attr_len)

                    y_low_bottom = y_off + float(class_count * height) / 2.0 - i * height
                    curve = PolygonCurve(QPen(color),
                                         QBrush(color),
                                         xData=[axis_idx, axis_idx + width,
                                                axis_idx + width, axis_idx],
                                         yData=[y_low_bottom, y_low_bottom, y_low_bottom - height,
                                                y_low_bottom - height],
                                         tooltip=attr.name)
                    curve.attach(self)
    def test_colors_continuous_nan(self):
        self.master.is_continuous_color = lambda: True
        graph = self.graph

        d = np.arange(10, dtype=float) % 2
        d[4] = np.nan
        self.master.get_color_data = lambda: d
        graph.reset_graph()
        pens = graph.scatterplot_item.data["pen"]
        brushes = graph.scatterplot_item.data["brush"]
        nan_color = QColor(*NAN_GREY)
        self.assertEqual(pens[4].color().hue(), nan_color.hue())
        self.assertEqual(brushes[4].color().hue(), nan_color.hue())
Example #17
0
 def _update_colored_legend(self, legend, labels, symbols):
     if self.scatterplot_item is None or not self.palette:
         return
     if isinstance(symbols, str):
         symbols = itertools.repeat(symbols, times=len(labels))
     for i, (label, symbol) in enumerate(zip(labels, symbols)):
         color = QColor(*self.palette.getRGB(i))
         pen = _make_pen(color.darker(self.DarkerValue), 1.5)
         color.setAlpha(255 if self.subset_is_shown else self.alpha_value)
         brush = QBrush(color)
         legend.addItem(
             ScatterPlotItem(pen=pen, brush=brush, size=10, symbol=symbol),
             escape(label))
Example #18
0
    def __init__(self, parent=None, line=None, **kwargs):
        Annotation.__init__(self, parent, **kwargs)
        self.setFlag(QGraphicsItem.ItemIsMovable)
        self.setFlag(QGraphicsItem.ItemIsSelectable)

        self.setFocusPolicy(Qt.ClickFocus)

        if line is None:
            line = QLineF(0, 0, 20, 0)

        self.__line = line
        self.__color = QColor(Qt.red)
        self.__arrowItem = ArrowItem(self)
        self.__arrowItem.setLine(line)
        self.__arrowItem.setBrush(self.__color)
        self.__arrowItem.setPen(QPen(Qt.NoPen))
        self.__arrowItem.setArrowStyle(ArrowItem.Concave)
        self.__arrowItem.setLineWidth(5)

        self.__shadow = QGraphicsDropShadowEffect(blurRadius=5, offset=QPointF(1.0, 2.0))

        self.__arrowItem.setGraphicsEffect(self.__shadow)
        self.__shadow.setEnabled(True)

        self.__autoAdjustGeometry = True
Example #19
0
 def setColor(self, color):
     """
     Set arrow brush color.
     """
     if self.__color != color:
         self.__color = QColor(color)
         self.__updateStyleState()
Example #20
0
    def _setup_plot(self):
        self.plot.clear()

        points = self.ca
        variables = self.selected_vars()
        colors = colorpalette.ColorPaletteGenerator(len(variables))

        p_axes = self._p_axes()

        if len(variables) == 2:
            row_points = self.ca.row_factors[:, p_axes]
            col_points = self.ca.col_factors[:, p_axes]
            points = [row_points, col_points]
        else:
            points = self.ca.row_factors[:, p_axes]
            counts = [len(var.values) for var in variables]
            range_indices = numpy.cumsum([0] + counts)
            ranges = zip(range_indices, range_indices[1:])
            points = [points[s:e] for s, e in ranges]

        for i, (v, points) in enumerate(zip(variables, points)):
            color_outline = colors[i]
            color_outline.setAlpha(200)
            color = QColor(color_outline)
            color.setAlpha(120)
            item = ScatterPlotItem(
                x=points[:, 0], y=points[:, 1], brush=QBrush(color),
                pen=pg.mkPen(color_outline.darker(120), width=1.5),
                size=numpy.full((points.shape[0],), 10.1),
            )
            self.plot.addItem(item)

            for name, point in zip(v.values, points):
                item = pg.TextItem(name, anchor=(0.5, 0))
                self.plot.addItem(item)
                item.setPos(point[0], point[1])

        inertia = self.ca.inertia_of_axis()
        inertia = 100 * inertia / numpy.sum(inertia)

        ax = self.plot.getAxis("bottom")
        ax.setLabel("Component {} ({:.1f}%)"
                    .format(p_axes[0] + 1, inertia[p_axes[0]]))
        ax = self.plot.getAxis("left")
        ax.setLabel("Component {} ({:.1f}%)"
                    .format(p_axes[1] + 1, inertia[p_axes[1]]))
Example #21
0
def saturated(color, factor=150):
    """Return a saturated color.
    """
    h = color.hsvHueF()
    s = color.hsvSaturationF()
    v = color.valueF()
    a = color.alphaF()
    s = factor * s / 100.0
    s = max(min(1.0, s), 0.0)
    return QColor.fromHsvF(h, s, v, a).convertTo(color.spec())
Example #22
0
    def setColor(self, color):
        """
        Set the color of the shadow.
        """
        if not isinstance(color, QColor):
            color = QColor(color)

        if self.__color != color:
            self.__color = QColor(color)
            self.__updatePixmap()
Example #23
0
    def __init__(self, parent=None, color=QColor(), radius=5,
                 **kwargs):
        QWidget.__init__(self, parent, **kwargs)
        self.setAttribute(Qt.WA_TransparentForMouseEvents, True)
        self.setAttribute(Qt.WA_NoChildEventsForParent, True)
        self.setFocusPolicy(Qt.NoFocus)

        self.__color = QColor(color)
        self.__radius = radius

        self.__widget = None
        self.__widgetParent = None
        self.__updatePixmap()
Example #24
0
 def set_number_of_colors(self, number_of_colors=0):
     """Change the palette if there are palettes for different number of
        colors. Else, just copy colors as numpy array"""
     self.number_of_colors = number_of_colors
     if isinstance(self.rgb_colors, dict):
         number_of_colors = max(3, number_of_colors)
         if number_of_colors not in self.rgb_colors:
             try:
                 number_of_colors = min([n for n in self.rgb_colors
                                         if n >= number_of_colors])
             except ValueError:
                 raise ValueError("Not enough colors")
         rgb_colors = self.rgb_colors[number_of_colors]
     elif number_of_colors <= len(self.rgb_colors):
         rgb_colors = self.rgb_colors
     else:
         rgb_colors = []
         for i in range(self.number_of_colors):
             col = QColor()
             col.setHsv(360 / number_of_colors * i, 255, 255)
             rgb_colors.append(col.getRgb()[:3])
     self.rgb_array = np.vstack((rgb_colors, [NAN_GREY]))
Example #25
0
    def __init__(self, parent=None, line=None, **kwargs):
        Annotation.__init__(self, parent, **kwargs)
        self.setFlag(QGraphicsItem.ItemIsMovable)
        self.setFlag(QGraphicsItem.ItemIsSelectable)

        self.setFocusPolicy(Qt.ClickFocus)

        if line is None:
            line = QLineF(0, 0, 20, 0)

        self.__line = QLineF(line)
        self.__color = QColor(Qt.red)
        # An item with the same shape as this arrow, stacked behind this
        # item as a source for QGraphicsDropShadowEffect. Cannot attach
        # the effect to this item directly as QGraphicsEffect makes the item
        # non devicePixelRatio aware.
        self.__arrowShadowBase = ArrowItem(self, line=line)
        self.__arrowShadowBase.setPen(Qt.NoPen)  # no pen -> slightly thinner
        self.__arrowShadowBase.setBrush(QBrush(self.__color))
        self.__arrowShadowBase.setArrowStyle(ArrowItem.Concave)
        self.__arrowShadowBase.setLineWidth(5)

        self.__shadow = QGraphicsDropShadowEffect(
            blurRadius=5, offset=QPointF(1.0, 2.0),
        )

        self.__arrowShadowBase.setGraphicsEffect(self.__shadow)
        self.__shadow.setEnabled(True)

        # The 'real' shape item
        self.__arrowItem = ArrowItem(self, line=line)
        self.__arrowItem.setBrush(self.__color)
        self.__arrowItem.setPen(QPen(self.__color))
        self.__arrowItem.setArrowStyle(ArrowItem.Concave)
        self.__arrowItem.setLineWidth(5)

        self.__autoAdjustGeometry = True
Example #26
0
class TableModel(AbstractSortTableModel):
    """
    An adapter for using Orange.data.Table within Qt's Item View Framework.

    :param Orange.data.Table sourcedata: Source data table.
    :param QObject parent:
    """
    #: Orange.data.Value for the index.
    ValueRole = gui.TableValueRole  # next(gui.OrangeUserRole)
    #: Orange.data.Value of the row's class.
    ClassValueRole = gui.TableClassValueRole  # next(gui.OrangeUserRole)
    #: Orange.data.Variable of the column.
    VariableRole = gui.TableVariable  # next(gui.OrangeUserRole)
    #: Basic statistics of the column
    VariableStatsRole = next(gui.OrangeUserRole)
    #: The column's role (position) in the domain.
    #: One of Attribute, ClassVar or Meta
    DomainRole = next(gui.OrangeUserRole)

    #: Column domain roles
    ClassVar, Meta, Attribute = range(3)

    #: Default background color for domain roles
    ColorForRole = {
        ClassVar: QColor(160, 160, 160),
        Meta: QColor(220, 220, 200),
        Attribute: None,
    }

    #: Standard column descriptor
    Column = namedtuple(
        "Column", ["var", "role", "background", "format"])
    #: Basket column descriptor (i.e. sparse X/Y/metas/ compressed into
    #: a single column).
    Basket = namedtuple(
        "Basket", ["vars", "role", "background", "density", "format"])

    # The class uses the same names (X_density etc) as Table
    # pylint: disable=invalid-name
    def __init__(self, sourcedata, parent=None):
        super().__init__(parent)
        self.source = sourcedata
        self.domain = domain = sourcedata.domain

        self.X_density = sourcedata.X_density()
        self.Y_density = sourcedata.Y_density()
        self.M_density = sourcedata.metas_density()

        def format_sparse(vars, datagetter, instance):
            data = datagetter(instance)
            return ", ".join("{}={}".format(vars[i].name, vars[i].repr_val(v))
                             for i, v in zip(data.indices, data.data))

        def format_sparse_bool(vars, datagetter, instance):
            data = datagetter(instance)
            return ", ".join(vars[i].name for i in data.indices)

        def format_dense(var, instance):
            return str(instance[var])

        def make_basket_formater(vars, density, role):
            formater = (format_sparse if density == Storage.SPARSE
                        else format_sparse_bool)
            if role == TableModel.Attribute:
                getter = operator.attrgetter("sparse_x")
            elif role == TableModel.ClassVar:
                getter = operator.attrgetter("sparse_y")
            elif role == TableModel.Meta:
                getter = operator.attrgetter("sparse_metas")
            return partial(formater, vars, getter)

        def make_basket(vars, density, role):
            return TableModel.Basket(
                vars, TableModel.Attribute, self.ColorForRole[role], density,
                make_basket_formater(vars, density, role)
            )

        def make_column(var, role):
            return TableModel.Column(
                var, role, self.ColorForRole[role],
                partial(format_dense, var)
            )

        columns = []

        if self.Y_density != Storage.DENSE and domain.class_vars:
            coldesc = make_basket(domain.class_vars, self.Y_density,
                                  TableModel.ClassVar)
            columns.append(coldesc)
        else:
            columns += [make_column(var, TableModel.ClassVar)
                        for var in domain.class_vars]

        if self.M_density != Storage.DENSE and domain.metas:
            coldesc = make_basket(domain.metas, self.M_density,
                                  TableModel.Meta)
            columns.append(coldesc)
        else:
            columns += [make_column(var, TableModel.Meta)
                        for var in domain.metas]

        if self.X_density != Storage.DENSE and domain.attributes:
            coldesc = make_basket(domain.attributes, self.X_density,
                                  TableModel.Attribute)
            columns.append(coldesc)
        else:
            columns += [make_column(var, TableModel.Attribute)
                        for var in domain.attributes]

        #: list of all domain variables (class_vars + metas + attrs)
        self.vars = domain.class_vars + domain.metas + domain.attributes
        self.columns = columns

        #: A list of all unique attribute labels (in all variables)
        self._labels = sorted(
            reduce(operator.ior,
                   [set(var.attributes) for var in self.vars],
                   set()))

        @lru_cache(maxsize=1000)
        def row_instance(index):
            return self.source[int(index)]
        self._row_instance = row_instance

        # column basic statistics (VariableStatsRole), computed when
        # first needed.
        self.__stats = None
        self.__rowCount = sourcedata.approx_len()
        self.__columnCount = len(self.columns)

        if self.__rowCount > (2 ** 31 - 1):
            raise ValueError("len(sourcedata) > 2 ** 31 - 1")

    def sortColumnData(self, column):
        return self._columnSortKeyData(column, TableModel.ValueRole)

    @deprecated('Orange.widgets.utils.itemmodels.TableModel.sortColumnData')
    def columnSortKeyData(self, column, role):
        return self._columnSortKeyData(column, role)

    def _columnSortKeyData(self, column, role):
        """
        Return a sequence of source table objects which can be used as
        `keys` for sorting.

        :param int column: Sort column.
        :param Qt.ItemRole role: Sort item role.

        """
        coldesc = self.columns[column]
        if isinstance(coldesc, TableModel.Column) \
                and role == TableModel.ValueRole:
            col_data = numpy.asarray(self.source.get_column_view(coldesc.var)[0])

            if coldesc.var.is_continuous:
                # continuous from metas have dtype object; cast it to float
                col_data = col_data.astype(float)
            return col_data
        else:
            return numpy.asarray([self.index(i, column).data(role)
                                  for i in range(self.rowCount())])

    def data(self, index, role,
             # For optimizing out LOAD_GLOBAL byte code instructions in
             # the item role tests.
             _str=str,
             _Qt_DisplayRole=Qt.DisplayRole,
             _Qt_EditRole=Qt.EditRole,
             _Qt_BackgroundRole=Qt.BackgroundRole,
             _ValueRole=ValueRole,
             _ClassValueRole=ClassValueRole,
             _VariableRole=VariableRole,
             _DomainRole=DomainRole,
             _VariableStatsRole=VariableStatsRole,
             # Some cached local precomputed values.
             # All of the above roles we respond to
             _recognizedRoles=frozenset([Qt.DisplayRole,
                                         Qt.EditRole,
                                         Qt.BackgroundRole,
                                         ValueRole,
                                         ClassValueRole,
                                         VariableRole,
                                         DomainRole,
                                         VariableStatsRole])):
        """
        Reimplemented from `QAbstractItemModel.data`
        """
        if role not in _recognizedRoles:
            return None

        row, col = index.row(), index.column()
        if  not 0 <= row <= self.__rowCount:
            return None

        row = self.mapToSourceRows(row)

        try:
            instance = self._row_instance(row)
        except IndexError:
            self.layoutAboutToBeChanged.emit()
            self.beginRemoveRows(self.parent(), row, max(self.rowCount(), row))
            self.__rowCount = min(row, self.__rowCount)
            self.endRemoveRows()
            self.layoutChanged.emit()
            return None
        coldesc = self.columns[col]

        if role == _Qt_DisplayRole:
            return coldesc.format(instance)
        elif role == _Qt_EditRole and isinstance(coldesc, TableModel.Column):
            return instance[coldesc.var]
        elif role == _Qt_BackgroundRole:
            return coldesc.background
        elif role == _ValueRole and isinstance(coldesc, TableModel.Column):
            return instance[coldesc.var]
        elif role == _ClassValueRole:
            try:
                return instance.get_class()
            except TypeError:
                return None
        elif role == _VariableRole and isinstance(coldesc, TableModel.Column):
            return coldesc.var
        elif role == _DomainRole:
            return coldesc.role
        elif role == _VariableStatsRole:
            return self._stats_for_column(col)
        else:
            return None

    def setData(self, index, value, role):
        row = self.mapFromSourceRows(index.row())
        if role == Qt.EditRole:
            try:
                self.source[row, index.column()] = value
            except (TypeError, IndexError):
                return False
            else:
                self.dataChanged.emit(index, index)
                return True
        else:
            return False

    def parent(self, index=QModelIndex()):
        """Reimplemented from `QAbstractTableModel.parent`."""
        return QModelIndex()

    def rowCount(self, parent=QModelIndex()):
        """Reimplemented from `QAbstractTableModel.rowCount`."""
        return 0 if parent.isValid() else self.__rowCount

    def columnCount(self, parent=QModelIndex()):
        """Reimplemented from `QAbstractTableModel.columnCount`."""
        return 0 if parent.isValid() else self.__columnCount

    def headerData(self, section, orientation, role):
        """Reimplemented from `QAbstractTableModel.headerData`."""
        if orientation == Qt.Vertical:
            if role == Qt.DisplayRole:
                return int(self.mapToSourceRows(section) + 1)
            return None

        coldesc = self.columns[section]
        if role == Qt.DisplayRole:
            if isinstance(coldesc, TableModel.Basket):
                return "{...}"
            else:
                return coldesc.var.name
        elif role == Qt.ToolTipRole:
            return self._tooltip(coldesc)
        elif role == TableModel.VariableRole \
                and isinstance(coldesc, TableModel.Column):
            return coldesc.var
        elif role == TableModel.VariableStatsRole:
            return self._stats_for_column(section)
        elif role == TableModel.DomainRole:
            return coldesc.role
        else:
            return None

    def _tooltip(self, coldesc):
        """
        Return an header tool tip text for an `column` descriptor.
        """
        if isinstance(coldesc, TableModel.Basket):
            return None

        labels = self._labels
        variable = coldesc.var
        pairs = [(escape(key), escape(str(variable.attributes[key])))
                 for key in labels if key in variable.attributes]
        tip = "<b>%s</b>" % escape(variable.name)
        tip = "<br/>".join([tip] + ["%s = %s" % pair for pair in pairs])
        return tip

    def _stats_for_column(self, column):
        """
        Return BasicStats for `column` index.
        """
        coldesc = self.columns[column]
        if isinstance(coldesc, TableModel.Basket):
            return None

        if self.__stats is None:
            self.__stats = datacaching.getCached(
                self.source, basic_stats.DomainBasicStats,
                (self.source, True)
            )

        return self.__stats[coldesc.var]
Example #27
0
class DropShadowFrame(QWidget):
    """
    A widget drawing a drop shadow effect around the geometry of
    another widget (works similar to :class:`QFocusFrame`).

    Parameters
    ----------
    parent : :class:`QObject`
        Parent object.
    color : :class:`QColor`
        The color of the drop shadow.
    radius : float
        Shadow radius.

    """
    def __init__(self, parent=None, color=QColor(), radius=5,
                 **kwargs):
        QWidget.__init__(self, parent, **kwargs)
        self.setAttribute(Qt.WA_TransparentForMouseEvents, True)
        self.setAttribute(Qt.WA_NoChildEventsForParent, True)
        self.setFocusPolicy(Qt.NoFocus)

        self.__color = QColor(color)
        self.__radius = radius

        self.__widget = None
        self.__widgetParent = None
        self.__updatePixmap()

    def setColor(self, color):
        """
        Set the color of the shadow.
        """
        if not isinstance(color, QColor):
            color = QColor(color)

        if self.__color != color:
            self.__color = QColor(color)
            self.__updatePixmap()

    def color(self):
        """
        Return the color of the drop shadow.

        By default this is a color from the `palette` (for
        `self.foregroundRole()`)
        """
        if self.__color.isValid():
            return QColor(self.__color)
        else:
            return self.palette().color(self.foregroundRole())

    color_ = Property(QColor, fget=color, fset=setColor, designable=True,
                      doc="Drop shadow color")

    def setRadius(self, radius):
        """
        Set the drop shadow's blur radius.
        """
        if self.__radius != radius:
            self.__radius = radius
            self.__updateGeometry()
            self.__updatePixmap()

    def radius(self):
        """
        Return the shadow blur radius.
        """
        return self.__radius

    radius_ = Property(int, fget=radius, fset=setRadius, designable=True,
                       doc="Drop shadow blur radius.")

    def setWidget(self, widget):
        """
        Set the widget around which to show the shadow.
        """
        if self.__widget:
            self.__widget.removeEventFilter(self)

        self.__widget = widget

        if self.__widget:
            self.__widget.installEventFilter(self)
            # Find the parent for the frame
            # This is the top level window a toolbar or a viewport
            # of a scroll area
            parent = widget.parentWidget()
            while not (isinstance(parent, (QAbstractScrollArea, QToolBar)) or \
                       parent.isWindow()):
                parent = parent.parentWidget()

            if isinstance(parent, QAbstractScrollArea):
                parent = parent.viewport()

            self.__widgetParent = parent
            self.setParent(parent)
            self.stackUnder(widget)
            self.__updateGeometry()
            self.setVisible(widget.isVisible())

    def widget(self):
        """
        Return the widget that was set by `setWidget`.
        """
        return self.__widget

    def paintEvent(self, event):
        # TODO: Use QPainter.drawPixmapFragments on Qt 4.7
        opt = QStyleOption()
        opt.initFrom(self)

        pixmap = self.__shadowPixmap

        shadow_rect = QRectF(opt.rect)
        widget_rect = QRectF(self.widget().geometry())
        widget_rect.moveTo(self.radius_, self.radius_)

        left = top = right = bottom = self.radius_
        pixmap_rect = QRectF(QPointF(0, 0), QSizeF(pixmap.size()))

        # Shadow casting rectangle in the source pixmap.
        pixmap_shadow_rect = pixmap_rect.adjusted(left, top, -right, -bottom)
        source_rects = self.__shadowPixmapFragments(pixmap_rect,
                                                   pixmap_shadow_rect)
        target_rects = self.__shadowPixmapFragments(shadow_rect, widget_rect)

        painter = QPainter(self)
        for source, target in zip(source_rects, target_rects):
            painter.drawPixmap(target, pixmap, source)
        painter.end()

    def eventFilter(self, obj, event):
        etype = event.type()
        if etype == QEvent.Move or etype == QEvent.Resize:
            self.__updateGeometry()
        elif etype == QEvent.Show:
            self.__updateGeometry()
            self.show()
        elif etype == QEvent.Hide:
            self.hide()
        return QWidget.eventFilter(self, obj, event)

    def __updateGeometry(self):
        """
        Update the shadow geometry to fit the widget's changed
        geometry.

        """
        widget = self.__widget
        parent = self.__widgetParent
        radius = self.radius_
        pos = widget.pos()
        if parent != widget.parentWidget():
            pos = widget.parentWidget().mapTo(parent, pos)

        geom = QRect(pos, widget.size())
        geom.adjust(-radius, -radius, radius, radius)
        if geom != self.geometry():
            self.setGeometry(geom)

        # Set the widget mask (punch a hole through to the `widget` instance.
        rect = self.rect()

        mask = QRegion(rect)
        transparent = QRegion(rect.adjusted(radius, radius, -radius, -radius))

        mask = mask.subtracted(transparent)
        self.setMask(mask)

    def __updatePixmap(self):
        """
        Update the cached shadow pixmap.
        """
        rect_size = QSize(50, 50)
        left = top = right = bottom = self.radius_

        # Size of the pixmap.
        pixmap_size = QSize(rect_size.width() + left + right,
                            rect_size.height() + top + bottom)
        shadow_rect = QRect(QPoint(left, top), rect_size)
        pixmap = QPixmap(pixmap_size)
        pixmap.fill(QColor(0, 0, 0, 0))
        rect_fill_color = self.palette().color(QPalette.Window)

        pixmap = render_drop_shadow_frame(
                      pixmap,
                      QRectF(shadow_rect),
                      shadow_color=self.color_,
                      offset=QPointF(0, 0),
                      radius=self.radius_,
                      rect_fill_color=rect_fill_color
                      )

        self.__shadowPixmap = pixmap
        self.update()

    def __shadowPixmapFragments(self, pixmap_rect, shadow_rect):
        """
        Return a list of 8 QRectF fragments for drawing a shadow.
        """
        s_left, s_top, s_right, s_bottom = \
            shadow_rect.left(), shadow_rect.top(), \
            shadow_rect.right(), shadow_rect.bottom()
        s_width, s_height = shadow_rect.width(), shadow_rect.height()
        p_width, p_height = pixmap_rect.width(), pixmap_rect.height()

        top_left = QRectF(0.0, 0.0, s_left, s_top)
        top = QRectF(s_left, 0.0, s_width, s_top)
        top_right = QRectF(s_right, 0.0, p_width - s_width, s_top)
        right = QRectF(s_right, s_top, p_width - s_right, s_height)
        right_bottom = QRectF(shadow_rect.bottomRight(),
                              pixmap_rect.bottomRight())
        bottom = QRectF(shadow_rect.bottomLeft(),
                        pixmap_rect.bottomRight() - \
                        QPointF(p_width - s_right, 0.0))
        bottom_left = QRectF(shadow_rect.bottomLeft() - QPointF(s_left, 0.0),
                             pixmap_rect.bottomLeft() + QPointF(s_left, 0.0))
        left = QRectF(pixmap_rect.topLeft() + QPointF(0.0, s_top),
                      shadow_rect.bottomLeft())
        return [top_left, top, top_right, right, right_bottom,
                bottom, bottom_left, left]
Example #28
0
    def _setup_plot(self):
        def get_minmax(points):
            minmax = [float('inf'),
                      float('-inf'),
                      float('inf'),
                      float('-inf')]
            for pp in points:
                for p in pp:
                    minmax[0] = min(p[0], minmax[0])
                    minmax[1] = max(p[0], minmax[1])
                    minmax[2] = min(p[1], minmax[2])
                    minmax[3] = max(p[1], minmax[3])
            return minmax

        self.plot.clear()
        points = self.ca
        variables = self.selected_vars()
        colors = colorpalette.ColorPaletteGenerator(len(variables))

        p_axes = self._p_axes()

        if points is None:
            return

        if len(variables) == 2:
            row_points = self.ca.row_factors[:, p_axes]
            col_points = self.ca.col_factors[:, p_axes]
            points = [row_points, col_points]
        else:
            points = self.ca.row_factors[:, p_axes]
            counts = [len(var.values) for var in variables]
            range_indices = np.cumsum([0] + counts)
            ranges = zip(range_indices, range_indices[1:])
            points = [points[s:e] for s, e in ranges]

        minmax = get_minmax(points)

        margin = abs(minmax[0] - minmax[1])
        margin = margin * 0.05 if margin > 1e-10 else 1
        self.plot.setXRange(minmax[0] - margin, minmax[1] + margin)
        margin = abs(minmax[2] - minmax[3])
        margin = margin * 0.05 if margin > 1e-10 else 1
        self.plot.setYRange(minmax[2] - margin, minmax[3] + margin)

        for i, (v, points) in enumerate(zip(variables, points)):
            color_outline = colors[i]
            color_outline.setAlpha(200)
            color = QColor(color_outline)
            color.setAlpha(120)
            item = ScatterPlotItem(
                x=points[:, 0], y=points[:, 1], brush=QBrush(color),
                pen=pg.mkPen(color_outline.darker(120), width=1.5),
                size=np.full((points.shape[0],), 10.1),
            )
            self.plot.addItem(item)

            for name, point in zip(v.values, points):
                item = pg.TextItem(name, anchor=(0.5, 0))
                self.plot.addItem(item)
                item.setPos(point[0], point[1])

        inertia = self.ca.inertia_of_axis()
        if np.sum(inertia) == 0:
            inertia = 100 * inertia
        else:
            inertia = 100 * inertia / np.sum(inertia)

        ax = self.plot.getAxis("bottom")
        ax.setLabel("Component {} ({:.1f}%)"
                    .format(p_axes[0] + 1, inertia[p_axes[0]]))
        ax = self.plot.getAxis("left")
        ax.setLabel("Component {} ({:.1f}%)"
                    .format(p_axes[1] + 1, inertia[p_axes[1]]))
Example #29
0
 def changeDiscreteColor(self, item):
     r, g, b = item.rgbColor
     color = QColorDialog.getColor(QColor(r, g, b), self)
     if color.isValid():
         item.setIcon(ColorPixmap(color, 25))
         item.rgbColor = (color.red(), color.green(), color.blue())
Example #30
0
 def to_rgb_tuple(self, color):
     try:
         color = QColor(*color)
     except TypeError:
         color = QColor(color)
     return color.red(), color.green(), color.blue()
Example #31
0
 def __getitem__(self, values):
     if isinstance(values, Number):
         return QColor(*self.getRGB(values))
     return [QColor(*c) for c in self.getRGB(values)]
Example #32
0
 def __getitem__(self, value):
     if isinstance(value, Iterable):
         return [QColor(*c) for c in self.getRGB(value)]
     return QColor(*self.getRGB(value))
 def hoverEnterEvent(self, event):
     super().hoverEnterEvent(event)
     self.setBrush(QBrush(QColor(100, 100, 100)))
     self.update()
 def paintEvent(self, event):
     super().paintEvent(event)
     painter = QPainter(self.viewport())
     painter.setBrush(QColor(100, 100, 100, 100))
     painter.setRenderHints(self.renderHints())
     painter.drawPolygon(self.viewPolygon())
Example #35
0
    def _setup_table_view(self, view, data):
        """Setup the `view` (QTableView) with `data` (Orange.data.Table)
        """
        if data is None:
            view.setModel(None)
            return

        datamodel = RichTableModel(data)

        rowcount = data.approx_len()

        if self.color_by_class and data.domain.has_discrete_class:
            color_schema = [QColor(*c) for c in data.domain.class_var.colors]
        else:
            color_schema = None
        if self.show_distributions:
            view.setItemDelegate(
                gui.TableBarItem(self,
                                 color=self.dist_color,
                                 color_schema=color_schema))
        else:
            view.setItemDelegate(QStyledItemDelegate(self))

        # Enable/disable view sorting based on data's type
        view.setSortingEnabled(is_sortable(data))
        header = view.horizontalHeader()
        header.setSectionsClickable(is_sortable(data))
        header.setSortIndicatorShown(is_sortable(data))
        header.sortIndicatorChanged.connect(self.update_selection)

        view.setModel(datamodel)

        vheader = view.verticalHeader()
        option = view.viewOptions()
        size = view.style().sizeFromContents(QStyle.CT_ItemViewItem, option,
                                             QSize(20, 20), view)

        vheader.setDefaultSectionSize(size.height() + 2)
        vheader.setMinimumSectionSize(5)
        vheader.setSectionResizeMode(QHeaderView.Fixed)

        # Limit the number of rows displayed in the QTableView
        # (workaround for QTBUG-18490 / QTBUG-28631)
        maxrows = (2**31 - 1) // (vheader.defaultSectionSize() + 2)
        if rowcount > maxrows:
            sliceproxy = TableSliceProxy(parent=view,
                                         rowSlice=slice(0, maxrows))
            sliceproxy.setSourceModel(datamodel)
            # First reset the view (without this the header view retains
            # it's state - at this point invalid/broken)
            view.setModel(None)
            view.setModel(sliceproxy)

        assert view.model().rowCount() <= maxrows
        assert vheader.sectionSize(0) > 1 or datamodel.rowCount() == 0

        # update the header (attribute names)
        self._update_variable_labels(view)

        selmodel = BlockSelectionModel(view.model(),
                                       parent=view,
                                       selectBlocks=not self.select_rows)
        view.setSelectionModel(selmodel)
        view.selectionFinished.connect(self.update_selection)
class ArrowAnnotation(Annotation):
    def __init__(self, parent=None, line=None, **kwargs):
        Annotation.__init__(self, parent, **kwargs)
        self.setFlag(QGraphicsItem.ItemIsMovable)
        self.setFlag(QGraphicsItem.ItemIsSelectable)

        self.setFocusPolicy(Qt.ClickFocus)

        if line is None:
            line = QLineF(0, 0, 20, 0)

        self.__line = QLineF(line)
        self.__color = QColor(Qt.red)
        # An item with the same shape as this arrow, stacked behind this
        # item as a source for QGraphicsDropShadowEffect. Cannot attach
        # the effect to this item directly as QGraphicsEffect makes the item
        # non devicePixelRatio aware.
        self.__arrowShadowBase = ArrowItem(self, line=line)
        self.__arrowShadowBase.setPen(Qt.NoPen)  # no pen -> slightly thinner
        self.__arrowShadowBase.setBrush(QBrush(self.__color))
        self.__arrowShadowBase.setArrowStyle(ArrowItem.Concave)
        self.__arrowShadowBase.setLineWidth(5)

        self.__shadow = QGraphicsDropShadowEffect(
            blurRadius=5,
            offset=QPointF(1.0, 2.0),
        )

        self.__arrowShadowBase.setGraphicsEffect(self.__shadow)
        self.__shadow.setEnabled(True)

        # The 'real' shape item
        self.__arrowItem = ArrowItem(self, line=line)
        self.__arrowItem.setBrush(self.__color)
        self.__arrowItem.setPen(QPen(self.__color))
        self.__arrowItem.setArrowStyle(ArrowItem.Concave)
        self.__arrowItem.setLineWidth(5)

        self.__autoAdjustGeometry = True

    def setAutoAdjustGeometry(self, autoAdjust):
        """
        If set to `True` then the geometry will be adjusted whenever
        the arrow is changed with `setLine`. Otherwise the geometry
        of the item is only updated so the `line` lies within the
        `geometry()` rect (i.e. it only grows). True by default

        """
        self.__autoAdjustGeometry = autoAdjust
        if autoAdjust:
            self.adjustGeometry()

    def autoAdjustGeometry(self):
        """
        Should the geometry of the item be adjusted automatically when
        `setLine` is called.

        """
        return self.__autoAdjustGeometry

    def setLine(self, line):
        """
        Set the arrow base line (a `QLineF` in object coordinates).
        """
        if self.__line != line:
            self.__line = QLineF(line)

            # local item coordinate system
            geom = self.geometry().translated(-self.pos())

            if geom.isNull() and not line.isNull():
                geom = QRectF(0, 0, 1, 1)

            arrow_shape = arrow_path_concave(line, self.lineWidth())
            arrow_rect = arrow_shape.boundingRect()

            if not (geom.contains(arrow_rect)):
                geom = geom.united(arrow_rect)

            if self.__autoAdjustGeometry:
                # Shrink the geometry if required.
                geom = geom.intersected(arrow_rect)

            # topLeft can move changing the local coordinates.
            diff = geom.topLeft()
            line = QLineF(line.p1() - diff, line.p2() - diff)
            self.__arrowItem.setLine(line)
            self.__arrowShadowBase.setLine(line)
            self.__line = line

            # parent item coordinate system
            geom.translate(self.pos())
            self.setGeometry(geom)

    def line(self):
        """
        Return the arrow base line (`QLineF` in object coordinates).
        """
        return QLineF(self.__line)

    def setColor(self, color):
        """
        Set arrow brush color.
        """
        if self.__color != color:
            self.__color = QColor(color)
            self.__updateStyleState()

    def color(self):
        """
        Return the arrow brush color.
        """
        return QColor(self.__color)

    def setLineWidth(self, lineWidth):
        """
        Set the arrow line width.
        """
        self.__arrowItem.setLineWidth(lineWidth)
        self.__arrowShadowBase.setLineWidth(lineWidth)

    def lineWidth(self):
        """
        Return the arrow line width.
        """
        return self.__arrowItem.lineWidth()

    def adjustGeometry(self):
        """
        Adjust the widget geometry to exactly fit the arrow inside
        while preserving the arrow path scene geometry.

        """
        # local system coordinate
        geom = self.geometry().translated(-self.pos())
        line = self.__line

        arrow_rect = self.__arrowItem.shape().boundingRect()

        if geom.isNull() and not line.isNull():
            geom = QRectF(0, 0, 1, 1)

        if not (geom.contains(arrow_rect)):
            geom = geom.united(arrow_rect)

        geom = geom.intersected(arrow_rect)
        diff = geom.topLeft()
        line = QLineF(line.p1() - diff, line.p2() - diff)
        geom.translate(self.pos())
        self.setGeometry(geom)
        self.setLine(line)

    def shape(self):
        arrow_shape = self.__arrowItem.shape()
        return self.mapFromItem(self.__arrowItem, arrow_shape)

    def itemChange(self, change, value):
        if change == QGraphicsItem.ItemSelectedHasChanged:
            self.__updateStyleState()

        return Annotation.itemChange(self, change, value)

    def __updateStyleState(self):
        """
        Update the arrows' brush, pen, ... based on it's state
        """
        if self.isSelected():
            color = self.__color.darker(150)
            pen = QPen(QColor(96, 158, 215), Qt.DashDotLine)
            pen.setWidthF(1.25)
            pen.setCosmetic(True)
            shadow = pen.color().darker(150)
        else:
            color = self.__color
            pen = QPen(color)
            shadow = QColor(63, 63, 63, 180)

        self.__arrowShadowBase.setBrush(color)
        self.__shadow.setColor(shadow)

        self.__arrowItem.setBrush(color)
        self.__arrowItem.setPen(pen)
Example #37
0
class OWBoxPlot(widget.OWWidget):
    """
    Here's how the widget's functions call each other:

    - `set_data` is a signal handler fills the list boxes and calls
    `grouping_changed`.

    - `grouping_changed` handles changes of grouping attribute: it enables or
    disables the box for ordering, orders attributes and calls `attr_changed`.

    - `attr_changed` handles changes of attribute. It recomputes box data by
    calling `compute_box_data`, shows the appropriate display box
    (discrete/continuous) and then calls`layout_changed`

    - `layout_changed` constructs all the elements for the scene (as lists of
    QGraphicsItemGroup) and calls `display_changed`. It is called when the
    attribute or grouping is changed (by attr_changed) and on resize event.

    - `display_changed` puts the elements corresponding to the current display
    settings on the scene. It is called when the elements are reconstructed
    (layout is changed due to selection of attributes or resize event), or
    when the user changes display settings or colors.

    For discrete attributes, the flow is a bit simpler: the elements are not
    constructed in advance (by layout_changed). Instead, layout_changed and
    display_changed call display_changed_disc that draws everything.
    """
    name = "Box Plot"
    description = "Visualize the distribution of feature values in a box plot."
    icon = "icons/BoxPlot.svg"
    priority = 100
    keywords = ["whisker"]

    class Inputs:
        data = Input("Data", Orange.data.Table)

    class Outputs:
        selected_data = Output("Selected Data",
                               Orange.data.Table,
                               default=True)
        annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Orange.data.Table)

    #: Comparison types for continuous variables
    CompareNone, CompareMedians, CompareMeans = 0, 1, 2

    settingsHandler = DomainContextHandler()
    conditions = ContextSetting([])

    attribute = ContextSetting(None)
    order_by_importance = Setting(False)
    group_var = ContextSetting(None)
    show_annotations = Setting(True)
    compare = Setting(CompareMeans)
    stattest = Setting(0)
    sig_threshold = Setting(0.05)
    stretched = Setting(True)
    show_labels = Setting(True)
    sort_freqs = Setting(False)
    auto_commit = Setting(True)

    _sorting_criteria_attrs = {
        CompareNone: "",
        CompareMedians: "median",
        CompareMeans: "mean"
    }

    _pen_axis_tick = QPen(Qt.white, 5)
    _pen_axis = QPen(Qt.darkGray, 3)
    _pen_median = QPen(QBrush(QColor(0xff, 0xff, 0x00)), 2)
    _pen_paramet = QPen(QBrush(QColor(0x33, 0x00, 0xff)), 2)
    _pen_dotted = QPen(QBrush(QColor(0x33, 0x00, 0xff)), 1)
    _pen_dotted.setStyle(Qt.DotLine)
    _post_line_pen = QPen(Qt.lightGray, 2)
    _post_grp_pen = QPen(Qt.lightGray, 4)
    for pen in (_pen_paramet, _pen_median, _pen_dotted, _pen_axis,
                _pen_axis_tick, _post_line_pen, _post_grp_pen):
        pen.setCosmetic(True)
        pen.setCapStyle(Qt.RoundCap)
        pen.setJoinStyle(Qt.RoundJoin)
    _pen_axis_tick.setCapStyle(Qt.FlatCap)

    _box_brush = QBrush(QColor(0x33, 0x88, 0xff, 0xc0))

    _axis_font = QFont()
    _axis_font.setPixelSize(12)
    _label_font = QFont()
    _label_font.setPixelSize(11)
    _attr_brush = QBrush(QColor(0x33, 0x00, 0xff))

    graph_name = "box_scene"

    def __init__(self):
        super().__init__()
        self.stats = []
        self.dataset = None
        self.posthoc_lines = []

        self.label_txts = self.mean_labels = self.boxes = self.labels = \
            self.label_txts_all = self.attr_labels = self.order = []
        self.p = -1.0
        self.scale_x = self.scene_min_x = self.scene_width = 0
        self.label_width = 0

        self.attrs = VariableListModel()
        view = gui.listView(self.controlArea,
                            self,
                            "attribute",
                            box="Variable",
                            model=self.attrs,
                            callback=self.attr_changed)
        view.setMinimumSize(QSize(30, 30))
        # Any other policy than Ignored will let the QListBox's scrollbar
        # set the minimal height (see the penultimate paragraph of
        # http://doc.qt.io/qt-4.8/qabstractscrollarea.html#addScrollBarWidget)
        view.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Ignored)
        gui.separator(view.box, 6, 6)
        self.cb_order = gui.checkBox(
            view.box,
            self,
            "order_by_importance",
            "Order by relevance",
            tooltip="Order by 𝜒² or ANOVA over the subgroups",
            callback=self.apply_sorting)
        self.group_vars = DomainModel(placeholder="None",
                                      separators=False,
                                      valid_types=Orange.data.DiscreteVariable)
        self.group_view = view = gui.listView(self.controlArea,
                                              self,
                                              "group_var",
                                              box="Subgroups",
                                              model=self.group_vars,
                                              callback=self.grouping_changed)
        view.setEnabled(False)
        view.setMinimumSize(QSize(30, 30))
        # See the comment above
        view.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Ignored)

        # TODO: move Compare median/mean to grouping box
        # The vertical size policy is needed to let only the list views expand
        self.display_box = gui.vBox(self.controlArea,
                                    "Display",
                                    sizePolicy=(QSizePolicy.Minimum,
                                                QSizePolicy.Maximum),
                                    addSpace=False)

        gui.checkBox(self.display_box,
                     self,
                     "show_annotations",
                     "Annotate",
                     callback=self.display_changed)
        self.compare_rb = gui.radioButtonsInBox(
            self.display_box,
            self,
            'compare',
            btnLabels=["No comparison", "Compare medians", "Compare means"],
            callback=self.layout_changed)

        # The vertical size policy is needed to let only the list views expand
        self.stretching_box = box = gui.vBox(self.controlArea,
                                             box="Display",
                                             sizePolicy=(QSizePolicy.Minimum,
                                                         QSizePolicy.Fixed))
        self.stretching_box.sizeHint = self.display_box.sizeHint
        gui.checkBox(box,
                     self,
                     'stretched',
                     "Stretch bars",
                     callback=self.display_changed)
        gui.checkBox(box,
                     self,
                     'show_labels',
                     "Show box labels",
                     callback=self.display_changed)
        self.sort_cb = gui.checkBox(box,
                                    self,
                                    'sort_freqs',
                                    "Sort by subgroup frequencies",
                                    callback=self.display_changed)
        gui.rubber(box)

        gui.auto_commit(self.controlArea, self, "auto_commit",
                        "Send Selection", "Send Automatically")

        gui.vBox(self.mainArea, addSpace=True)
        self.box_scene = QGraphicsScene()
        self.box_scene.selectionChanged.connect(self.commit)
        self.box_view = QGraphicsView(self.box_scene)
        self.box_view.setRenderHints(QPainter.Antialiasing
                                     | QPainter.TextAntialiasing
                                     | QPainter.SmoothPixmapTransform)
        self.box_view.viewport().installEventFilter(self)

        self.mainArea.layout().addWidget(self.box_view)

        e = gui.hBox(self.mainArea, addSpace=False)
        self.infot1 = gui.widgetLabel(e, "<center>No test results.</center>")
        self.mainArea.setMinimumWidth(600)

        self.stats = self.dist = self.conts = []
        self.is_continuous = False

        self.update_display_box()

    def sizeHint(self):
        return QSize(100, 500)  # Vertical size is regulated by mainArea

    def eventFilter(self, obj, event):
        if obj is self.box_view.viewport() and \
                event.type() == QEvent.Resize:
            self.layout_changed()

        return super().eventFilter(obj, event)

    def reset_attrs(self, domain):
        self.attrs[:] = [
            var for var in chain(domain.class_vars, domain.metas,
                                 domain.attributes) if var.is_primitive()
        ]

    # noinspection PyTypeChecker
    @Inputs.data
    def set_data(self, dataset):
        if dataset is not None and (not bool(dataset)
                                    or not len(dataset.domain)):
            dataset = None
        self.closeContext()
        self.dataset = dataset
        self.dist = self.stats = self.conts = []
        self.group_var = None
        self.attribute = None
        if dataset:
            domain = dataset.domain
            self.group_vars.set_domain(domain)
            self.group_view.setEnabled(len(self.group_vars) > 1)
            self.reset_attrs(domain)
            self.select_default_variables(domain)
            self.openContext(self.dataset)
            self.grouping_changed()
        else:
            self.reset_all_data()
        self.commit()

    def select_default_variables(self, domain):
        # visualize first non-class variable, group by class (if present)
        if len(self.attrs) > len(domain.class_vars):
            self.attribute = self.attrs[len(domain.class_vars)]
        elif self.attrs:
            self.attribute = self.attrs[0]

        if domain.class_var and domain.class_var.is_discrete:
            self.group_var = domain.class_var
        else:
            self.group_var = None  # Reset to trigger selection via callback

    def apply_sorting(self):
        def compute_score(attr):
            if attr is group_var:
                return 3
            if attr.is_continuous:
                # One-way ANOVA
                col = data.get_column_view(attr)[0].astype(float)
                groups = (col[group_col == i] for i in range(n_groups))
                groups = (col[~np.isnan(col)] for col in groups)
                groups = [group for group in groups if len(group)]
                p = f_oneway(*groups)[1] if len(groups) > 1 else 2
            else:
                # Chi-square with the given distribution into groups
                # (see degrees of freedom in computation of the p-value)
                if not attr.values or not group_var.values:
                    return 2
                observed = np.array(
                    contingency.get_contingency(data, group_var, attr))
                observed = observed[observed.sum(axis=1) != 0, :]
                observed = observed[:, observed.sum(axis=0) != 0]
                if min(observed.shape) < 2:
                    return 2
                expected = \
                    np.outer(observed.sum(axis=1), observed.sum(axis=0)) / \
                    np.sum(observed)
                p = chisquare(observed.ravel(),
                              f_exp=expected.ravel(),
                              ddof=n_groups - 1)[1]
            if math.isnan(p):
                return 2
            return p

        data = self.dataset
        if data is None:
            return
        domain = data.domain
        attribute = self.attribute
        group_var = self.group_var
        if self.order_by_importance and group_var is not None:
            n_groups = len(group_var.values)
            group_col = data.get_column_view(group_var)[0] if \
                domain.has_continuous_attributes(
                    include_class=True, include_metas=True) else None
            self.attrs.sort(key=compute_score)
        else:
            self.reset_attrs(domain)
        self.attribute = attribute

    def reset_all_data(self):
        self.clear_scene()
        self.infot1.setText("")
        self.attrs.clear()
        self.group_vars.set_domain(None)
        self.group_view.setEnabled(False)
        self.is_continuous = False
        self.update_display_box()

    def grouping_changed(self):
        self.cb_order.setEnabled(self.group_var is not None)
        self.apply_sorting()
        self.attr_changed()

    def select_box_items(self):
        temp_cond = self.conditions.copy()
        for box in self.box_scene.items():
            if isinstance(box, FilterGraphicsRectItem):
                box.setSelected(
                    box.filter.conditions in [c.conditions for c in temp_cond])

    def attr_changed(self):
        self.compute_box_data()
        self.update_display_box()
        self.layout_changed()

        if self.is_continuous:
            heights = 90 if self.show_annotations else 60
            self.box_view.centerOn(self.scene_min_x + self.scene_width / 2,
                                   -30 - len(self.stats) * heights / 2 + 45)
        else:
            self.box_view.centerOn(self.scene_width / 2,
                                   -30 - len(self.boxes) * 40 / 2 + 45)

    def compute_box_data(self):
        attr = self.attribute
        if not attr:
            return
        dataset = self.dataset
        self.is_continuous = attr.is_continuous
        if dataset is None or not self.is_continuous and not attr.values or \
                        self.group_var and not self.group_var.values:
            self.stats = self.dist = self.conts = []
            return
        if self.group_var:
            self.dist = []
            self.conts = contingency.get_contingency(dataset, attr,
                                                     self.group_var)
            if self.is_continuous:
                stats, label_texts = [], []
                for i, cont in enumerate(self.conts):
                    if np.sum(cont[1]):
                        stats.append(BoxData(cont, attr, i, self.group_var))
                        label_texts.append(self.group_var.values[i])
                self.stats = stats
                self.label_txts_all = label_texts
            else:
                self.label_txts_all = \
                    [v for v, c in zip(self.group_var.values, self.conts)
                     if np.sum(c) > 0]
        else:
            self.dist = distribution.get_distribution(dataset, attr)
            self.conts = []
            if self.is_continuous:
                self.stats = [BoxData(self.dist, attr, None)]
            self.label_txts_all = [""]
        self.label_txts = [
            txts for stat, txts in zip(self.stats, self.label_txts_all)
            if stat.n > 0
        ]
        self.stats = [stat for stat in self.stats if stat.n > 0]

    def update_display_box(self):
        if self.is_continuous:
            self.stretching_box.hide()
            self.display_box.show()
            self.compare_rb.setEnabled(self.group_var is not None)
        else:
            self.stretching_box.show()
            self.display_box.hide()
            self.sort_cb.setEnabled(self.group_var is not None)

    def clear_scene(self):
        self.closeContext()
        self.box_scene.clearSelection()
        self.box_scene.clear()
        self.box_view.viewport().update()
        self.attr_labels = []
        self.labels = []
        self.boxes = []
        self.mean_labels = []
        self.posthoc_lines = []
        self.openContext(self.dataset)

    def layout_changed(self):
        attr = self.attribute
        if not attr:
            return
        self.clear_scene()
        if self.dataset is None or len(self.conts) == len(self.dist) == 0:
            return

        if not self.is_continuous:
            return self.display_changed_disc()

        self.mean_labels = [
            self.mean_label(stat, attr, lab)
            for stat, lab in zip(self.stats, self.label_txts)
        ]
        self.draw_axis()
        self.boxes = [self.box_group(stat) for stat in self.stats]
        self.labels = [
            self.label_group(stat, attr, mean_lab)
            for stat, mean_lab in zip(self.stats, self.mean_labels)
        ]
        self.attr_labels = [
            QGraphicsSimpleTextItem(lab) for lab in self.label_txts
        ]
        for it in chain(self.labels, self.attr_labels):
            self.box_scene.addItem(it)
        self.display_changed()

    def display_changed(self):
        if self.dataset is None:
            return

        if not self.is_continuous:
            return self.display_changed_disc()

        self.order = list(range(len(self.stats)))
        criterion = self._sorting_criteria_attrs[self.compare]
        if criterion:
            vals = [getattr(stat, criterion) for stat in self.stats]
            overmax = max((val for val in vals if val is not None), default=0) \
                      + 1
            vals = [val if val is not None else overmax for val in vals]
            self.order = sorted(self.order, key=vals.__getitem__)

        heights = 90 if self.show_annotations else 60

        for row, box_index in enumerate(self.order):
            y = (-len(self.stats) + row) * heights + 10
            for item in self.boxes[box_index]:
                self.box_scene.addItem(item)
                item.setY(y)
            labels = self.labels[box_index]

            if self.show_annotations:
                labels.show()
                labels.setY(y)
            else:
                labels.hide()

            label = self.attr_labels[box_index]
            label.setY(y - 15 - label.boundingRect().height())
            if self.show_annotations:
                label.hide()
            else:
                stat = self.stats[box_index]

                if self.compare == OWBoxPlot.CompareMedians and \
                        stat.median is not None:
                    pos = stat.median + 5 / self.scale_x
                elif self.compare == OWBoxPlot.CompareMeans or stat.q25 is None:
                    pos = stat.mean + 5 / self.scale_x
                else:
                    pos = stat.q25
                label.setX(pos * self.scale_x)
                label.show()

        r = QRectF(self.scene_min_x, -30 - len(self.stats) * heights,
                   self.scene_width,
                   len(self.stats) * heights + 90)
        self.box_scene.setSceneRect(r)

        self.compute_tests()
        self.show_posthoc()
        self.select_box_items()

    def display_changed_disc(self):
        assert not self.is_continuous
        self.clear_scene()
        self.attr_labels = [
            QGraphicsSimpleTextItem(lab) for lab in self.label_txts_all
        ]

        if not self.stretched:
            if self.group_var:
                self.labels = [
                    QGraphicsTextItem("{}".format(int(sum(cont))))
                    for cont in self.conts if np.sum(cont) > 0
                ]
            else:
                self.labels = [QGraphicsTextItem(str(int(sum(self.dist))))]

        self.order = list(range(len(self.attr_labels)))

        self.draw_axis_disc()
        if self.group_var:
            self.boxes = \
                [self.strudel(cont, i) for i, cont in enumerate(self.conts)
                 if np.sum(cont) > 0]
            self.conts = self.conts[np.sum(np.array(self.conts), axis=1) > 0]

            if self.sort_freqs:
                self.order = sorted(
                    self.order, key=(-np.sum(self.conts, axis=1)).__getitem__)
        else:
            self.boxes = [self.strudel(self.dist)]

        for row, box_index in enumerate(self.order):
            y = (-len(self.boxes) + row) * 40 + 10
            box = self.boxes[box_index]
            bars, labels = box[::2], box[1::2]

            self.__draw_group_labels(y, box_index)
            if not self.stretched:
                self.__draw_row_counts(y, box_index)
            if self.show_labels and self.attribute is not self.group_var:
                self.__draw_bar_labels(y, bars, labels)
            self.__draw_bars(y, bars)

        self.box_scene.setSceneRect(-self.label_width - 5,
                                    -30 - len(self.boxes) * 40,
                                    self.scene_width,
                                    len(self.boxes * 40) + 90)
        self.infot1.setText("")
        self.select_box_items()

    def __draw_group_labels(self, y, row):
        """Draw group labels

        Parameters
        ----------
        y: int
            vertical offset of bars
        row: int
            row index
        """
        label = self.attr_labels[row]
        b = label.boundingRect()
        label.setPos(-b.width() - 10, y - b.height() / 2)
        self.box_scene.addItem(label)

    def __draw_row_counts(self, y, row):
        """Draw row counts

        Parameters
        ----------
        y: int
            vertical offset of bars
        row: int
            row index
        """
        assert not self.is_continuous
        label = self.labels[row]
        b = label.boundingRect()
        if self.group_var:
            right = self.scale_x * sum(self.conts[row])
        else:
            right = self.scale_x * sum(self.dist)
        label.setPos(right + 10, y - b.height() / 2)
        self.box_scene.addItem(label)

    def __draw_bar_labels(self, y, bars, labels):
        """Draw bar labels

        Parameters
        ----------
        y: int
            vertical offset of bars
        bars: List[FilterGraphicsRectItem]
            list of bars being drawn
        labels: List[QGraphicsTextItem]
            list of labels for corresponding bars
        """
        label = bar_part = None
        for text_item, bar_part in zip(labels, bars):
            label = self.Label(text_item.toPlainText())
            label.setPos(bar_part.boundingRect().x(),
                         y - label.boundingRect().height() - 8)
            label.setMaxWidth(bar_part.boundingRect().width())
            self.box_scene.addItem(label)

    def __draw_bars(self, y, bars):
        """Draw bars

        Parameters
        ----------
        y: int
            vertical offset of bars

        bars: List[FilterGraphicsRectItem]
            list of bars to draw
        """
        for item in bars:
            item.setPos(0, y)
            self.box_scene.addItem(item)

    # noinspection PyPep8Naming
    def compute_tests(self):
        # The t-test and ANOVA are implemented here since they efficiently use
        # the widget-specific data in self.stats.
        # The non-parametric tests can't do this, so we use statistics.tests
        def stat_ttest():
            d1, d2 = self.stats
            if d1.n == 0 or d2.n == 0:
                return np.nan, np.nan
            pooled_var = d1.var / d1.n + d2.var / d2.n
            df = pooled_var ** 2 / \
                ((d1.var / d1.n) ** 2 / (d1.n - 1) +
                 (d2.var / d2.n) ** 2 / (d2.n - 1))
            if pooled_var == 0:
                return np.nan, np.nan
            t = abs(d1.mean - d2.mean) / math.sqrt(pooled_var)
            p = 2 * (1 - scipy.special.stdtr(df, t))
            return t, p

        # TODO: Check this function
        # noinspection PyPep8Naming
        def stat_ANOVA():
            if any(stat.n == 0 for stat in self.stats):
                return np.nan, np.nan
            n = sum(stat.n for stat in self.stats)
            grand_avg = sum(stat.n * stat.mean for stat in self.stats) / n
            var_between = sum(stat.n * (stat.mean - grand_avg)**2
                              for stat in self.stats)
            df_between = len(self.stats) - 1

            var_within = sum(stat.n * stat.var for stat in self.stats)
            df_within = n - len(self.stats)
            F = (var_between / df_between) / (var_within / df_within)
            p = 1 - scipy.special.fdtr(df_between, df_within, F)
            return F, p

        if self.compare == OWBoxPlot.CompareNone or len(self.stats) < 2:
            t = ""
        elif any(s.n <= 1 for s in self.stats):
            t = "At least one group has just one instance, " \
                "cannot compute significance"
        elif len(self.stats) == 2:
            if self.compare == OWBoxPlot.CompareMedians:
                t = ""
                # z, self.p = tests.wilcoxon_rank_sum(
                #    self.stats[0].dist, self.stats[1].dist)
                # t = "Mann-Whitney's z: %.1f (p=%.3f)" % (z, self.p)
            else:
                t, self.p = stat_ttest()
                t = "Student's t: %.3f (p=%.3f)" % (t, self.p)
        else:
            if self.compare == OWBoxPlot.CompareMedians:
                t = ""
                # U, self.p = -1, -1
                # t = "Kruskal Wallis's U: %.1f (p=%.3f)" % (U, self.p)
            else:
                F, self.p = stat_ANOVA()
                t = "ANOVA: %.3f (p=%.3f)" % (F, self.p)
        self.infot1.setText("<center>%s</center>" % t)

    def mean_label(self, stat, attr, val_name):
        label = QGraphicsItemGroup()
        t = QGraphicsSimpleTextItem(
            "%.*f" % (attr.number_of_decimals + 1, stat.mean), label)
        t.setFont(self._label_font)
        bbox = t.boundingRect()
        w2, h = bbox.width() / 2, bbox.height()
        t.setPos(-w2, -h)
        tpm = QGraphicsSimpleTextItem(
            " \u00b1 " + "%.*f" % (attr.number_of_decimals + 1, stat.dev),
            label)
        tpm.setFont(self._label_font)
        tpm.setPos(w2, -h)
        if val_name:
            vnm = QGraphicsSimpleTextItem(val_name + ": ", label)
            vnm.setFont(self._label_font)
            vnm.setBrush(self._attr_brush)
            vb = vnm.boundingRect()
            label.min_x = -w2 - vb.width()
            vnm.setPos(label.min_x, -h)
        else:
            label.min_x = -w2
        return label

    def draw_axis(self):
        """Draw the horizontal axis and sets self.scale_x"""
        misssing_stats = not self.stats
        stats = self.stats or [BoxData(np.array([[0.], [1.]]), self.attribute)]
        mean_labels = self.mean_labels or [
            self.mean_label(stats[0], self.attribute, "")
        ]
        bottom = min(stat.a_min for stat in stats)
        top = max(stat.a_max for stat in stats)

        first_val, step = compute_scale(bottom, top)
        while bottom <= first_val:
            first_val -= step
        bottom = first_val
        no_ticks = math.ceil((top - first_val) / step) + 1
        top = max(top, first_val + no_ticks * step)

        gbottom = min(bottom, min(stat.mean - stat.dev for stat in stats))
        gtop = max(top, max(stat.mean + stat.dev for stat in stats))

        bv = self.box_view
        viewrect = bv.viewport().rect().adjusted(15, 15, -15, -30)
        self.scale_x = scale_x = viewrect.width() / (gtop - gbottom)

        # In principle we should repeat this until convergence since the new
        # scaling is too conservative. (No chance am I doing this.)
        mlb = min(stat.mean + mean_lab.min_x / scale_x
                  for stat, mean_lab in zip(stats, mean_labels))
        if mlb < gbottom:
            gbottom = mlb
            self.scale_x = scale_x = viewrect.width() / (gtop - gbottom)

        self.scene_min_x = gbottom * scale_x
        self.scene_width = (gtop - gbottom) * scale_x

        val = first_val
        decimals = max(3, 4 - int(math.log10(step)))
        while True:
            l = self.box_scene.addLine(val * scale_x, -1, val * scale_x, 1,
                                       self._pen_axis_tick)
            l.setZValue(100)
            t = self.box_scene.addSimpleText(
                repr(round(val, decimals)) if not misssing_stats else "?",
                self._axis_font)
            t.setFlags(t.flags() | QGraphicsItem.ItemIgnoresTransformations)
            r = t.boundingRect()
            t.setPos(val * scale_x - r.width() / 2, 8)
            if val >= top:
                break
            val += step
        self.box_scene.addLine(bottom * scale_x - 4, 0, top * scale_x + 4, 0,
                               self._pen_axis)

    def draw_axis_disc(self):
        """
        Draw the horizontal axis and sets self.scale_x for discrete attributes
        """
        assert not self.is_continuous
        if self.stretched:
            if not self.attr_labels:
                return
            step = steps = 10
        else:
            if self.group_var:
                max_box = max(float(np.sum(dist)) for dist in self.conts)
            else:
                max_box = float(np.sum(self.dist))
            if max_box == 0:
                self.scale_x = 1
                return
            _, step = compute_scale(0, max_box)
            step = int(step) if step > 1 else 1
            steps = int(math.ceil(max_box / step))
        max_box = step * steps

        bv = self.box_view
        viewrect = bv.viewport().rect().adjusted(15, 15, -15, -30)
        self.scene_width = viewrect.width()

        lab_width = max(lab.boundingRect().width() for lab in self.attr_labels)
        lab_width = max(lab_width, 40)
        lab_width = min(lab_width, self.scene_width / 3)
        self.label_width = lab_width

        right_offset = 0  # offset for the right label
        if not self.stretched and self.labels:
            if self.group_var:
                rows = list(zip(self.conts, self.labels))
            else:
                rows = [(self.dist, self.labels[0])]
            # available space left of the 'group labels'
            available = self.scene_width - lab_width - 10
            scale_x = (available - right_offset) / max_box
            max_right = max(
                sum(dist) * scale_x + 10 + lbl.boundingRect().width()
                for dist, lbl in rows)
            right_offset = max(0, max_right - max_box * scale_x)

        self.scale_x = scale_x = \
            (self.scene_width - lab_width - 10 - right_offset) / max_box

        self.box_scene.addLine(0, 0, max_box * scale_x, 0, self._pen_axis)
        for val in range(0, step * steps + 1, step):
            l = self.box_scene.addLine(val * scale_x, -1, val * scale_x, 1,
                                       self._pen_axis_tick)
            l.setZValue(100)
            t = self.box_scene.addSimpleText(str(val), self._axis_font)
            t.setPos(val * scale_x - t.boundingRect().width() / 2, 8)
        if self.stretched:
            self.scale_x *= 100

    def label_group(self, stat, attr, mean_lab):
        def centered_text(val, pos):
            t = QGraphicsSimpleTextItem(
                "%.*f" % (attr.number_of_decimals + 1, val), labels)
            t.setFont(self._label_font)
            bbox = t.boundingRect()
            t.setPos(pos - bbox.width() / 2, 22)
            return t

        def line(x, down=1):
            QGraphicsLineItem(x, 12 * down, x, 20 * down, labels)

        def move_label(label, frm, to):
            label.setX(to)
            to += t_box.width() / 2
            path = QPainterPath()
            path.lineTo(0, 4)
            path.lineTo(to - frm, 4)
            path.lineTo(to - frm, 8)
            p = QGraphicsPathItem(path)
            p.setPos(frm, 12)
            labels.addToGroup(p)

        labels = QGraphicsItemGroup()

        labels.addToGroup(mean_lab)
        m = stat.mean * self.scale_x
        mean_lab.setPos(m, -22)
        line(m, -1)

        if stat.median is not None:
            msc = stat.median * self.scale_x
            med_t = centered_text(stat.median, msc)
            med_box_width2 = med_t.boundingRect().width() / 2
            line(msc)

        if stat.q25 is not None:
            x = stat.q25 * self.scale_x
            t = centered_text(stat.q25, x)
            t_box = t.boundingRect()
            med_left = msc - med_box_width2
            if x + t_box.width() / 2 >= med_left - 5:
                move_label(t, x, med_left - t_box.width() - 5)
            else:
                line(x)

        if stat.q75 is not None:
            x = stat.q75 * self.scale_x
            t = centered_text(stat.q75, x)
            t_box = t.boundingRect()
            med_right = msc + med_box_width2
            if x - t_box.width() / 2 <= med_right + 5:
                move_label(t, x, med_right + 5)
            else:
                line(x)

        return labels

    def box_group(self, stat, height=20):
        def line(x0, y0, x1, y1, *args):
            return QGraphicsLineItem(x0 * scale_x, y0, x1 * scale_x, y1, *args)

        scale_x = self.scale_x
        box = []
        whisker1 = line(stat.a_min, -1.5, stat.a_min, 1.5)
        whisker2 = line(stat.a_max, -1.5, stat.a_max, 1.5)
        vert_line = line(stat.a_min, 0, stat.a_max, 0)
        mean_line = line(stat.mean, -height / 3, stat.mean, height / 3)
        for it in (whisker1, whisker2, mean_line):
            it.setPen(self._pen_paramet)
        vert_line.setPen(self._pen_dotted)
        var_line = line(stat.mean - stat.dev, 0, stat.mean + stat.dev, 0)
        var_line.setPen(self._pen_paramet)
        box.extend([whisker1, whisker2, vert_line, mean_line, var_line])
        if stat.q25 is not None and stat.q75 is not None:
            mbox = FilterGraphicsRectItem(stat.conditions, stat.q25 * scale_x,
                                          -height / 2,
                                          (stat.q75 - stat.q25) * scale_x,
                                          height)
            mbox.setBrush(self._box_brush)
            mbox.setPen(QPen(Qt.NoPen))
            mbox.setZValue(-200)
            box.append(mbox)

        if stat.median is not None:
            median_line = line(stat.median, -height / 2, stat.median,
                               height / 2)
            median_line.setPen(self._pen_median)
            median_line.setZValue(-150)
            box.append(median_line)

        return box

    def strudel(self, dist, group_val_index=None):
        attr = self.attribute
        ss = np.sum(dist)
        box = []
        if ss < 1e-6:
            cond = [FilterDiscrete(attr, None)]
            if group_val_index is not None:
                cond.append(FilterDiscrete(self.group_var, [group_val_index]))
            box.append(FilterGraphicsRectItem(cond, 0, -10, 1, 10))
        cum = 0
        for i, v in enumerate(dist):
            if v < 1e-6:
                continue
            if self.stretched:
                v /= ss
            v *= self.scale_x
            cond = [FilterDiscrete(attr, [i])]
            if group_val_index is not None:
                cond.append(FilterDiscrete(self.group_var, [group_val_index]))
            rect = FilterGraphicsRectItem(cond, cum + 1, -6, v - 2, 12)
            rect.setBrush(QBrush(QColor(*attr.colors[i])))
            rect.setPen(QPen(Qt.NoPen))
            if self.stretched:
                tooltip = "{}: {:.2f}%".format(attr.values[i],
                                               100 * dist[i] / sum(dist))
            else:
                tooltip = "{}: {}".format(attr.values[i], int(dist[i]))
            rect.setToolTip(tooltip)
            text = QGraphicsTextItem(attr.values[i])
            box.append(rect)
            box.append(text)
            cum += v
        return box

    def commit(self):
        self.conditions = [
            item.filter for item in self.box_scene.selectedItems()
            if item.filter
        ]
        selected, selection = None, []
        if self.conditions:
            selected = Values(self.conditions, conjunction=False)(self.dataset)
            selection = np.in1d(self.dataset.ids,
                                selected.ids,
                                assume_unique=True).nonzero()[0]
        self.Outputs.selected_data.send(selected)
        self.Outputs.annotated_data.send(
            create_annotated_table(self.dataset, selection))

    def show_posthoc(self):
        def line(y0, y1):
            it = self.box_scene.addLine(x, y0, x, y1, self._post_line_pen)
            it.setZValue(-100)
            self.posthoc_lines.append(it)

        while self.posthoc_lines:
            self.box_scene.removeItem(self.posthoc_lines.pop())

        if self.compare == OWBoxPlot.CompareNone or len(self.stats) < 2:
            return

        if self.compare == OWBoxPlot.CompareMedians:
            crit_line = "median"
        else:
            crit_line = "mean"

        xs = []

        height = 90 if self.show_annotations else 60

        y_up = -len(self.stats) * height + 10
        for pos, box_index in enumerate(self.order):
            stat = self.stats[box_index]
            x = getattr(stat, crit_line)
            if x is None:
                continue
            x *= self.scale_x
            xs.append(x * self.scale_x)
            by = y_up + pos * height
            line(by + 12, 3)
            line(by - 12, by - 25)

        used_to = []
        last_to = to = 0
        for frm, frm_x in enumerate(xs[:-1]):
            for to in range(frm + 1, len(xs)):
                if xs[to] - frm_x > 1.5:
                    to -= 1
                    break
            if last_to == to or frm == to:
                continue
            for rowi, used in enumerate(used_to):
                if used < frm:
                    used_to[rowi] = to
                    break
            else:
                rowi = len(used_to)
                used_to.append(to)
            y = -6 - rowi * 6
            it = self.box_scene.addLine(frm_x - 2, y, xs[to] + 2, y,
                                        self._post_grp_pen)
            self.posthoc_lines.append(it)
            last_to = to

    def get_widget_name_extension(self):
        if self.attribute:
            return self.attribute.name

    def send_report(self):
        self.report_plot()
        text = ""
        if self.attribute:
            text += "Box plot for attribute '{}' ".format(self.attribute.name)
        if self.group_var:
            text += "grouped by '{}'".format(self.group_var.name)
        if text:
            self.report_caption(text)

    class Label(QGraphicsSimpleTextItem):
        """Boxplot Label with settable maxWidth"""
        # Minimum width to display label text
        MIN_LABEL_WIDTH = 25

        # padding bellow the text
        PADDING = 3

        __max_width = None

        def maxWidth(self):
            return self.__max_width

        def setMaxWidth(self, max_width):
            self.__max_width = max_width

        def paint(self, painter, option, widget):
            """Overrides QGraphicsSimpleTextItem.paint

            If label text is too long, it is elided
            to fit into the allowed region
            """
            if self.__max_width is None:
                width = option.rect.width()
            else:
                width = self.__max_width

            if width < self.MIN_LABEL_WIDTH:
                # if space is too narrow, no label
                return

            fm = painter.fontMetrics()
            text = fm.elidedText(self.text(), Qt.ElideRight, width)
            painter.drawText(
                option.rect.x(),
                option.rect.y() + self.boundingRect().height() - self.PADDING,
                text)
Example #38
0
class FeatureStatisticsTableModel(AbstractSortTableModel):
    CLASS_VAR, META, ATTRIBUTE = range(3)
    COLOR_FOR_ROLE = {
        CLASS_VAR: QColor(160, 160, 160),
        META: QColor(220, 220, 200),
        ATTRIBUTE: QColor(255, 255, 255),
    }

    HIDDEN_VAR_TYPES = (StringVariable, )

    class Columns(IntEnum):
        ICON, NAME, DISTRIBUTION, CENTER, MEDIAN, DISPERSION, MIN, MAX, \
        MISSING = range(9)

        @property
        def name(self):
            return {
                self.ICON: '',
                self.NAME: 'Name',
                self.DISTRIBUTION: 'Distribution',
                self.CENTER: 'Mean',
                self.MEDIAN: 'Median',
                self.DISPERSION: 'Dispersion',
                self.MIN: 'Min.',
                self.MAX: 'Max.',
                self.MISSING: 'Missing',
            }[self.value]

        @property
        def index(self):
            return self.value

        @classmethod
        def from_index(cls, index):
            return cls(index)

    def __init__(self, data=None, parent=None):
        """

        Parameters
        ----------
        data : Optional[Table]
        parent : Optional[QWidget]

        """
        super().__init__(parent)

        self.table = None  # type: Optional[Table]
        self.domain = None  # type: Optional[Domain]
        self.target_var = None  # type: Optional[Variable]
        self.n_attributes = self.n_instances = 0

        self.__attributes = self.__class_vars = self.__metas = None
        # sets of variables for fast membership tests
        self.__attributes_set = set()
        self.__class_vars_set = set()
        self.__metas_set = set()
        self.__distributions_cache = {}

        no_data = np.array([])
        self._variable_types = self._variable_names = no_data
        self._min = self._max = self._center = self._median = no_data
        self._dispersion = no_data
        self._missing = no_data
        # Clear model initially to set default values
        self.clear()

        self.set_data(data)

    def set_data(self, data):
        if data is None:
            self.clear()
            return

        self.beginResetModel()
        self.table = data
        self.domain = domain = data.domain
        self.target_var = None

        self.__attributes = self.__filter_attributes(domain.attributes,
                                                     self.table.X)
        # We disable pylint warning because the `Y` property squeezes vectors,
        # while we need a 2d array, which `_Y` provides
        self.__class_vars = self.__filter_attributes(domain.class_vars,
                                                     self.table._Y)  # pylint: disable=protected-access
        self.__metas = self.__filter_attributes(domain.metas, self.table.metas)
        self.__attributes_set = set(self.__metas[0])
        self.__class_vars_set = set(self.__class_vars[0])
        self.__metas_set = set(self.__metas[0])
        self.n_attributes = len(self.variables)
        self.n_instances = len(data)

        self.__distributions_cache = {}
        self.__compute_statistics()
        self.endResetModel()

    def clear(self):
        self.beginResetModel()
        self.table = self.domain = self.target_var = None
        self.n_attributes = self.n_instances = 0
        self.__attributes = (np.array([]), np.array([]))
        self.__class_vars = (np.array([]), np.array([]))
        self.__metas = (np.array([]), np.array([]))
        self.__attributes_set = set()
        self.__class_vars_set = set()
        self.__metas_set = set()
        self.__distributions_cache.clear()
        self.endResetModel()

    @property
    def variables(self):
        matrices = [
            self.__attributes[0], self.__class_vars[0], self.__metas[0]
        ]
        if not any(m.size for m in matrices):
            return []
        return np.hstack(matrices)

    @staticmethod
    def _attr_indices(attrs):
        # type: (List) -> Tuple[List[int], List[int], List[int], List[int]]
        """Get the indices of different attribute types eg. discrete."""
        disc_var_idx = [
            i for i, attr in enumerate(attrs)
            if isinstance(attr, DiscreteVariable)
        ]
        cont_var_idx = [
            i for i, attr in enumerate(attrs)
            if isinstance(attr, ContinuousVariable)
            and not isinstance(attr, TimeVariable)
        ]
        time_var_idx = [
            i for i, attr in enumerate(attrs)
            if isinstance(attr, TimeVariable)
        ]
        string_var_idx = [
            i for i, attr in enumerate(attrs)
            if isinstance(attr, StringVariable)
        ]
        return disc_var_idx, cont_var_idx, time_var_idx, string_var_idx

    def __filter_attributes(self, attributes, matrix):
        """Filter out variables which shouldn't be visualized."""
        attributes, matrix = np.asarray(attributes), matrix
        mask = [
            idx for idx, attr in enumerate(attributes)
            if not isinstance(attr, self.HIDDEN_VAR_TYPES)
        ]
        return attributes[mask], matrix[:, mask]

    def __compute_statistics(self):
        # Since data matrices can of mixed sparsity, we need to compute
        # attributes separately for each of them.
        matrices = [self.__attributes, self.__class_vars, self.__metas]
        # Filter out any matrices with size 0
        matrices = list(filter(lambda tup: tup[1].size, matrices))

        self._variable_types = np.array([type(var) for var in self.variables])
        self._variable_names = np.array(
            [var.name.lower() for var in self.variables])
        self._min = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ut.nanmin(x, axis=0),
            continuous_f=lambda x: ut.nanmin(x, axis=0),
            time_f=lambda x: ut.nanmin(x, axis=0),
        )
        self._dispersion = self.__compute_stat(
            matrices,
            discrete_f=_categorical_entropy,
            continuous_f=coefficient_of_variation,
        )
        self._missing = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ut.countnans(x, axis=0),
            continuous_f=lambda x: ut.countnans(x, axis=0),
            string_f=lambda x: (x == StringVariable.Unknown).sum(axis=0),
            time_f=lambda x: ut.countnans(x, axis=0),
            default_val=len(matrices[0]) if matrices else 0)
        self._max = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ut.nanmax(x, axis=0),
            continuous_f=lambda x: ut.nanmax(x, axis=0),
            time_f=lambda x: ut.nanmax(x, axis=0),
        )

        # Since scipy apparently can't do mode on sparse matrices, cast it to
        # dense. This can be very inefficient for large matrices, and should
        # be changed
        def __mode(x, *args, **kwargs):
            if sp.issparse(x):
                x = x.todense(order="C")
            # return ss.mode(x, *args, **kwargs)[0]
            return ut.nanmode(x, *args,
                              **kwargs)[0]  # Temporary replacement for scipy

        self._center = self.__compute_stat(
            matrices,
            discrete_f=None,
            continuous_f=lambda x: ut.nanmean(x, axis=0),
            time_f=lambda x: ut.nanmean(x, axis=0),
        )

        self._median = self.__compute_stat(
            matrices,
            discrete_f=lambda x: __mode(x, axis=0),
            continuous_f=lambda x: ut.nanmedian(x, axis=0),
            time_f=lambda x: ut.nanmedian(x, axis=0),
        )

    def get_statistics_matrix(self, variables=None, return_labels=False):
        """Get the numeric computed statistics in a single matrix. Optionally,
        we can specify for which variables we want the stats. Also, we can get
        the string column names as labels if desired.

        Parameters
        ----------
        variables : Iterable[Union[Variable, int, str]]
            Return statistics for only the variables specified. Accepts all
            formats supported by `domain.index`
        return_labels : bool
            In addition to the statistics matrix, also return string labels for
            the columns of the matrix e.g. 'Mean' or 'Dispersion', as specified
            in `Columns`.

        Returns
        -------
        Union[Tuple[List[str], np.ndarray], np.ndarray]

        """
        if self.table is None:
            return np.atleast_2d([])

        # If a list of variables is given, select only corresponding stats
        # variables can be a list or array, pylint: disable=len-as-condition
        if variables is not None and len(variables) != 0:
            indices = [self.domain.index(var) for var in variables]
        else:
            indices = ...

        matrix = np.vstack((
            self._center[indices],
            self._median[indices],
            self._dispersion[indices],
            self._min[indices],
            self._max[indices],
            self._missing[indices],
        )).T

        # Return string labels for the returned matrix columns e.g. 'Mean',
        # 'Dispersion' if requested
        if return_labels:
            labels = [
                self.Columns.CENTER.name, self.Columns.MEDIAN.name,
                self.Columns.DISPERSION.name, self.Columns.MIN.name,
                self.Columns.MAX.name, self.Columns.MISSING.name
            ]
            return labels, matrix

        return matrix

    def __compute_stat(self,
                       matrices,
                       discrete_f=None,
                       continuous_f=None,
                       time_f=None,
                       string_f=None,
                       default_val=np.nan):
        """Apply functions to appropriate variable types. The default value is
        returned if there is no function defined for specific variable types.
        """
        if not matrices:
            return np.array([])

        results = []
        for variables, x in matrices:
            result = np.full(len(variables), default_val)

            # While the following caching and checks are messy, the indexing
            # turns out to be a bottleneck for large datasets, so a single
            # indexing operation improves performance
            *idxs, str_idx = self._attr_indices(variables)
            for func, idx in zip((discrete_f, continuous_f, time_f), idxs):
                idx = np.array(idx)
                if func and idx.size:
                    x_ = x[:, idx]
                    if x_.size:
                        if not np.issubdtype(x_.dtype, np.number):
                            x_ = x_.astype(np.float64)
                        try:
                            finites = np.isfinite(x_)
                        except TypeError:
                            result[idx] = func(x_)
                        else:
                            mask = np.any(finites, axis=0)
                            if np.any(mask):
                                result[idx[mask]] = func(x_[:, mask])
            if string_f:
                x_ = x[:, str_idx]
                if x_.size:
                    if x_.dtype is not np.object:
                        x_ = x_.astype(np.object)
                    result[str_idx] = string_f(x_)

            results.append(result)

        return np.hstack(results)

    def sortColumnData(self, column):
        """Prepare the arrays with which we will sort the rows. If we want to
        sort based on a single value e.g. the name, return a 1d array.
        Sometimes we may want to sort by multiple criteria, comparing
        continuous variances with discrete entropies makes no sense, so we want
        to group those variable types together.
        """
        # Prepare indices for variable types so we can group them together
        order = [
            ContinuousVariable, TimeVariable, DiscreteVariable, StringVariable
        ]
        mapping = {var: idx for idx, var in enumerate(order)}
        vmapping = np.vectorize(mapping.__getitem__)
        var_types_indices = vmapping(self._variable_types)

        # Store the variable name sorted indices so we can pass a default
        # order when sorting by multiple keys
        # Double argsort is "inverse" argsort:
        # data will be *sorted* by these indices
        var_name_indices = np.argsort(np.argsort(self._variable_names))

        # Prepare vartype indices so ready when needed
        disc_idx, _, time_idx, str_idx = self._attr_indices(self.variables)

        # Sort by: (type)
        if column == self.Columns.ICON:
            return var_types_indices
        # Sort by: (name)
        elif column == self.Columns.NAME:
            # We use `_variable_names` here and not the indices because the
            # last (or single) row is actually sorted and we don't want to sort
            # the indices
            return self._variable_names
        # Sort by: (None)
        elif column == self.Columns.DISTRIBUTION:
            return np.ones_like(var_types_indices)
        # Sort by: (type, center)
        elif column == self.Columns.CENTER:
            # Sorting discrete or string values by mean makes no sense
            vals = np.array(self._center)
            vals[disc_idx] = var_name_indices[disc_idx]
            vals[str_idx] = var_name_indices[str_idx]
            return np.vstack((var_types_indices, np.zeros_like(vals), vals)).T
        # Sort by: (type, median)
        elif column == self.Columns.MEDIAN:
            # Sorting discrete or string values by median makes no sense
            vals = np.array(self._median)
            vals[disc_idx] = var_name_indices[disc_idx]
            vals[str_idx] = var_name_indices[str_idx]
            return np.vstack((var_types_indices, np.zeros_like(vals), vals)).T
        # Sort by: (type, dispersion)
        elif column == self.Columns.DISPERSION:
            # Sort time variables by their dispersion, which is not stored in
            # the dispersion array
            vals = np.array(self._dispersion)
            vals[time_idx] = self._max[time_idx] - self._min[time_idx]
            return np.vstack((var_types_indices, np.zeros_like(vals), vals)).T
        # Sort by: (type, min)
        elif column == self.Columns.MIN:
            # Sorting discrete or string values by min makes no sense
            vals = np.array(self._min)
            vals[disc_idx] = var_name_indices[disc_idx]
            vals[str_idx] = var_name_indices[str_idx]
            return np.vstack((var_types_indices, np.zeros_like(vals), vals)).T
        # Sort by: (type, max)
        elif column == self.Columns.MAX:
            # Sorting discrete or string values by min makes no sense
            vals = np.array(self._max)
            vals[disc_idx] = var_name_indices[disc_idx]
            vals[str_idx] = var_name_indices[str_idx]
            return np.vstack((var_types_indices, np.zeros_like(vals), vals)).T
        # Sort by: (missing)
        elif column == self.Columns.MISSING:
            return self._missing

        return None

    def _sortColumnData(self, column):
        """Allow sorting with 2d arrays."""
        data = np.asarray(self.sortColumnData(column))
        data = data[self.mapToSourceRows(Ellipsis)]

        assert data.ndim <= 2, 'Data should be at most 2-dimensional'
        return data

    def _argsortData(self, data, order):
        if data.ndim == 1:
            if np.issubdtype(data.dtype, np.number):
                if order == Qt.DescendingOrder:
                    data = -data
                indices = np.argsort(data, kind='stable')
                # Always sort NaNs last
                if np.issubdtype(data.dtype, np.number):
                    indices = np.roll(indices, -np.isnan(data).sum())
            else:
                # When not sorting by numbers, we can't do data = -data, but
                # use indices = indices[::-1] instead. This is not stable, but
                # doesn't matter because we use this only for variable names
                # which are guaranteed to be unique
                indices = np.argsort(data)
                if order == Qt.DescendingOrder:
                    indices = indices[::-1]
        else:
            assert np.issubdtype(data.dtype, np.number), \
                'We do not deal with non numeric values in sorting by ' \
                'multiple values'
            if order == Qt.DescendingOrder:
                data[:, -1] = -data[:, -1]

            # In order to make sure NaNs always appear at the end, insert a
            # indicator whether NaN or not. Note that the data array must
            # contain an empty column of zeros at index -2 since inserting an
            # extra column after the fact can result in a MemoryError for data
            # with a large amount of variables
            assert np.all(data[:, -2] == 0), \
                'Add an empty column of zeros at index -2 to accomodate NaNs'
            np.isnan(data[:, -1], out=data[:, -2])

            indices = np.lexsort(np.flip(data.T, axis=0))

        return indices

    def headerData(self, section, orientation, role):
        # type: (int, Qt.Orientation, Qt.ItemDataRole) -> Any
        if orientation == Qt.Horizontal:
            if role == Qt.DisplayRole:
                return self.Columns.from_index(section).name

        return None

    def data(self, index, role):
        # type: (QModelIndex, Qt.ItemDataRole) -> Any
        def background():
            if attribute in self.__attributes_set:
                return self.COLOR_FOR_ROLE[self.ATTRIBUTE]
            if attribute in self.__metas_set:
                return self.COLOR_FOR_ROLE[self.META]
            if attribute in self.__class_vars_set:
                return self.COLOR_FOR_ROLE[self.CLASS_VAR]
            return None

        def text_alignment():
            if column == self.Columns.NAME:
                return Qt.AlignLeft | Qt.AlignVCenter
            return Qt.AlignRight | Qt.AlignVCenter

        def decoration():
            if column == self.Columns.ICON:
                return gui.attributeIconDict[attribute]
            return None

        def display():
            # pylint: disable=too-many-branches
            def format_zeros(str_val):
                """Zeros should be handled separately as they cannot be negative."""
                if float(str_val) == 0:
                    num_decimals = min(self.variables[row].number_of_decimals,
                                       2)
                    str_val = f"{0:.{num_decimals}f}"
                return str_val

            def render_value(value):
                if np.isnan(value):
                    return ""
                if np.isinf(value):
                    return "∞"

                str_val = attribute.str_val(value)
                if attribute.is_continuous and not attribute.is_time:
                    str_val = format_zeros(str_val)

                return str_val

            if column == self.Columns.NAME:
                return attribute.name
            elif column == self.Columns.DISTRIBUTION:
                if isinstance(attribute,
                              (DiscreteVariable, ContinuousVariable)):
                    if row not in self.__distributions_cache:
                        scene = QGraphicsScene(parent=self)
                        histogram = Histogram(
                            data=self.table,
                            variable=attribute,
                            color_attribute=self.target_var,
                            border=(0, 0, 2, 0),
                            border_color='#ccc',
                        )
                        scene.addItem(histogram)
                        self.__distributions_cache[row] = scene
                    return self.__distributions_cache[row]
            elif column == self.Columns.CENTER:
                return render_value(self._center[row])
            elif column == self.Columns.MEDIAN:
                return render_value(self._median[row])
            elif column == self.Columns.DISPERSION:
                if isinstance(attribute, TimeVariable):
                    return format_time_diff(self._min[row], self._max[row])
                elif isinstance(attribute, DiscreteVariable):
                    return "%.3g" % self._dispersion[row]
                else:
                    return render_value(self._dispersion[row])
            elif column == self.Columns.MIN:
                if not isinstance(attribute, DiscreteVariable):
                    return render_value(self._min[row])
            elif column == self.Columns.MAX:
                if not isinstance(attribute, DiscreteVariable):
                    return render_value(self._max[row])
            elif column == self.Columns.MISSING:
                return '%d (%d%%)' % (self._missing[row], 100 *
                                      self._missing[row] / self.n_instances)
            return None

        roles = {
            Qt.BackgroundRole: background,
            Qt.TextAlignmentRole: text_alignment,
            Qt.DecorationRole: decoration,
            Qt.DisplayRole: display
        }

        if not index.isValid() or role not in roles:
            return None

        row, column = self.mapToSourceRows(index.row()), index.column()
        # Make sure we're not out of range
        if not 0 <= row <= self.n_attributes:
            return None

        attribute = self.variables[row]
        return roles[role]()

    def rowCount(self, parent=QModelIndex()):
        return 0 if parent.isValid() else self.n_attributes

    def columnCount(self, parent=QModelIndex()):
        return 0 if parent.isValid() else len(self.Columns)

    def set_target_var(self, variable):
        self.target_var = variable
        self.__distributions_cache.clear()
        start_idx = self.index(0, self.Columns.DISTRIBUTION)
        end_idx = self.index(self.rowCount(), self.Columns.DISTRIBUTION)
        self.dataChanged.emit(start_idx, end_idx)
Example #39
0
def main(argv=None):
    # Allow termination with CTRL + C
    signal.signal(signal.SIGINT, signal.SIG_DFL)
    # Disable pyqtgraph's atexit and QApplication.aboutToQuit cleanup handlers.
    pyqtgraph.setConfigOption("exitCleanup", False)

    if argv is None:
        argv = sys.argv

    usage = "usage: %prog [options] [workflow_file]"
    parser = optparse.OptionParser(usage=usage)

    parser.add_option("--no-discovery",
                      action="store_true",
                      help="Don't run widget discovery "
                      "(use full cache instead)")
    parser.add_option("--force-discovery",
                      action="store_true",
                      help="Force full widget discovery "
                      "(invalidate cache)")
    parser.add_option("--clear-widget-settings",
                      action="store_true",
                      help="Remove stored widget setting")
    parser.add_option("--no-welcome",
                      action="store_true",
                      help="Don't show welcome dialog.")
    parser.add_option("--no-splash",
                      action="store_true",
                      help="Don't show splash screen.")
    parser.add_option("-l",
                      "--log-level",
                      help="Logging level (0, 1, 2, 3, 4)",
                      type="int",
                      default=1)
    parser.add_option("--style",
                      help="QStyle to use",
                      type="str",
                      default=None)
    parser.add_option("--stylesheet",
                      help="Application level CSS style sheet to use",
                      type="str",
                      default=None)
    parser.add_option("--qt",
                      help="Additional arguments for QApplication",
                      type="str",
                      default=None)

    (options, args) = parser.parse_args(argv[1:])

    levels = [
        logging.CRITICAL, logging.ERROR, logging.WARN, logging.INFO,
        logging.DEBUG
    ]

    # Fix streams before configuring logging (otherwise it will store
    # and write to the old file descriptors)
    fix_win_pythonw_std_stream()

    # Try to fix macOS automatic window tabbing (Sierra and later)
    fix_macos_nswindow_tabbing()

    logging.basicConfig(
        level=levels[options.log_level],
        handlers=[make_stdout_handler(levels[options.log_level])])
    # set default application configuration
    config_ = config.Config()
    canvasconfig.set_default(config_)
    log.info("Starting 'Orange Canvas' application.")

    qt_argv = argv[:1]

    style = options.style
    defaultstylesheet = "orange.qss"
    fusiontheme = None

    if style is not None:
        if style.startswith("fusion:"):
            qt_argv += ["-style", "fusion"]
            _, _, fusiontheme = style.partition(":")
        else:
            qt_argv += ["-style", style]

    if options.qt is not None:
        qt_argv += shlex.split(options.qt)

    qt_argv += args

    if QT_VERSION >= 0x50600:
        CanvasApplication.setAttribute(Qt.AA_UseHighDpiPixmaps)

    log.debug("Starting CanvasApplicaiton with argv = %r.", qt_argv)
    app = CanvasApplication(qt_argv)
    config_.init()
    if app.style().metaObject().className() == "QFusionStyle":
        if fusiontheme == "breeze-dark":
            app.setPalette(breeze_dark())
            defaultstylesheet = "darkorange.qss"

    palette = app.palette()
    if style is None and palette.color(QPalette.Window).value() < 127:
        log.info("Switching default stylesheet to darkorange")
        defaultstylesheet = "darkorange.qss"

    # Initialize SQL query and execution time logger (in SqlTable)
    sql_level = min(levels[options.log_level], logging.INFO)
    make_sql_logger(sql_level)

    clear_settings_flag = os.path.join(widget_settings_dir(),
                                       "DELETE_ON_START")

    if options.clear_widget_settings or \
            os.path.isfile(clear_settings_flag):
        log.info("Clearing widget settings")
        shutil.rmtree(widget_settings_dir(), ignore_errors=True)

    # Set http_proxy environment variables, after (potentially) clearing settings
    fix_set_proxy_env()

    # Setup file log handler for the select logger list - this is always
    # at least INFO
    level = min(levels[options.log_level], logging.INFO)
    file_handler = logging.FileHandler(filename=os.path.join(
        config.log_dir(), "canvas.log"),
                                       mode="w")
    formatter = logging.Formatter(
        "%(asctime)s:%(levelname)s:%(name)s: %(message)s")
    file_handler.setFormatter(formatter)
    file_handler.setLevel(level)

    stream = TextStream()
    stream_handler = logging.StreamHandler(stream)
    stream_handler.setFormatter(formatter)
    stream_handler.setLevel(level)

    for namespace in ["orangecanvas", "orangewidget", "Orange"]:
        logger = logging.getLogger(namespace)
        logger.setLevel(level)
        logger.addHandler(file_handler)
        logger.addHandler(stream_handler)

    # intercept any QFileOpenEvent requests until the main window is
    # fully initialized.
    # NOTE: The QApplication must have the executable ($0) and filename
    # arguments passed in argv otherwise the FileOpen events are
    # triggered for them (this is done by Cocoa, but QApplicaiton filters
    # them out if passed in argv)

    open_requests = []

    def onrequest(url):
        log.info("Received an file open request %s", url)
        open_requests.append(url)

    app.fileOpenRequest.connect(onrequest)

    settings = QSettings()
    settings.setValue('startup/launch-count',
                      settings.value('startup/launch-count', 0, int) + 1)

    if settings.value("reporting/send-statistics", False, type=bool) \
            and is_release:
        UsageStatistics.set_enabled(True)

    stylesheet = options.stylesheet or defaultstylesheet
    stylesheet_string = None

    if stylesheet != "none":
        if os.path.isfile(stylesheet):
            with open(stylesheet, "r") as f:
                stylesheet_string = f.read()
        else:
            if not os.path.splitext(stylesheet)[1]:
                # no extension
                stylesheet = os.path.extsep.join([stylesheet, "qss"])

            pkg_name = orangecanvas.__name__
            resource = "styles/" + stylesheet

            if pkg_resources.resource_exists(pkg_name, resource):
                stylesheet_string = \
                    pkg_resources.resource_string(pkg_name, resource).decode()

                base = pkg_resources.resource_filename(pkg_name, "styles")

                pattern = re.compile(
                    r"^\s@([a-zA-Z0-9_]+?)\s*:\s*([a-zA-Z0-9_/]+?);\s*$",
                    flags=re.MULTILINE)

                matches = pattern.findall(stylesheet_string)

                for prefix, search_path in matches:
                    QDir.addSearchPath(prefix, os.path.join(base, search_path))
                    log.info("Adding search path %r for prefix, %r",
                             search_path, prefix)

                stylesheet_string = pattern.sub("", stylesheet_string)

            else:
                log.info("%r style sheet not found.", stylesheet)

    # Add the default canvas_icons search path
    dirpath = os.path.abspath(os.path.dirname(orangecanvas.__file__))
    QDir.addSearchPath("canvas_icons", os.path.join(dirpath, "icons"))

    canvas_window = MainWindow()
    canvas_window.setAttribute(Qt.WA_DeleteOnClose)
    canvas_window.setWindowIcon(config.application_icon())
    canvas_window.connect_output_stream(stream)

    # initialize notification server, set to initial canvas
    notif_server = NotificationServer()
    canvas.notification_server_instance = notif_server
    canvas_window.set_notification_server(notif_server)

    if stylesheet_string is not None:
        canvas_window.setStyleSheet(stylesheet_string)

    if not options.force_discovery:
        reg_cache = cache.registry_cache()
    else:
        reg_cache = None

    widget_registry = qt.QtWidgetRegistry()
    widget_discovery = config_.widget_discovery(widget_registry,
                                                cached_descriptions=reg_cache)

    want_splash = \
        settings.value("startup/show-splash-screen", True, type=bool) and \
        not options.no_splash

    if want_splash:
        pm, rect = config.splash_screen()
        splash_screen = SplashScreen(pixmap=pm, textRect=rect)
        splash_screen.setFont(QFont("Helvetica", 12))
        color = QColor("#FFD39F")

        def show_message(message):
            splash_screen.showMessage(message, color=color)

        widget_registry.category_added.connect(show_message)

    log.info("Running widget discovery process.")

    cache_filename = os.path.join(config.cache_dir(), "widget-registry.pck")
    if options.no_discovery:
        with open(cache_filename, "rb") as f:
            widget_registry = pickle.load(f)
        widget_registry = qt.QtWidgetRegistry(widget_registry)
    else:
        if want_splash:
            splash_screen.show()
        widget_discovery.run(config.widgets_entry_points())
        if want_splash:
            splash_screen.hide()
            splash_screen.deleteLater()

        # Store cached descriptions
        cache.save_registry_cache(widget_discovery.cached_descriptions)
        with open(cache_filename, "wb") as f:
            pickle.dump(WidgetRegistry(widget_registry), f)

    set_global_registry(widget_registry)
    canvas_window.set_widget_registry(widget_registry)
    canvas_window.show()
    canvas_window.raise_()

    want_welcome = \
        settings.value("startup/show-welcome-screen", True, type=bool) \
        and not options.no_welcome

    # Process events to make sure the canvas_window layout has
    # a chance to activate (the welcome dialog is modal and will
    # block the event queue, plus we need a chance to receive open file
    # signals when running without a splash screen)
    app.processEvents()

    app.fileOpenRequest.connect(canvas_window.open_scheme_file)

    if args:
        log.info("Loading a scheme from the command line argument %r", args[0])
        canvas_window.load_scheme(args[0])
    elif open_requests:
        log.info("Loading a scheme from an `QFileOpenEvent` for %r",
                 open_requests[-1])
        canvas_window.load_scheme(open_requests[-1].toLocalFile())
    else:
        canvas_window.ask_load_swp_if_exists()
        if want_welcome:
            canvas_window.welcome_dialog()

    # local references prevent destruction
    update_check = check_for_updates()
    send_stat = send_usage_statistics()
    pull_notifs = pull_notifications()

    # Tee stdout and stderr into Output dock
    log_view = canvas_window.output_view()

    stdout = TextStream()
    stdout.stream.connect(log_view.write)
    if sys.stdout:
        stdout.stream.connect(sys.stdout.write)
        stdout.flushed.connect(sys.stdout.flush)

    stderr = TextStream()
    error_writer = log_view.formatted(color=Qt.red)
    stderr.stream.connect(error_writer.write)
    if sys.stderr:
        stderr.stream.connect(sys.stderr.write)
        stderr.flushed.connect(sys.stderr.flush)

    log.info("Entering main event loop.")
    excepthook = ExceptHook(stream=stderr)
    excepthook.handledException.connect(handle_exception)
    try:
        with closing(stdout),\
             closing(stderr),\
             closing(stream), \
             patch('sys.excepthook', excepthook),\
             patch('sys.stderr', stderr),\
             patch('sys.stdout', stdout):
            status = app.exec_()
    except BaseException:
        log.error("Error in main event loop.", exc_info=True)
        status = 42

    del canvas_window
    del update_check
    del send_stat
    del pull_notifs

    app.processEvents()
    app.flush()
    # Collect any cycles before deleting the QApplication instance
    gc.collect()

    del app
    return status
class Node(QGraphicsNode):
    """
    This class provides an interface for all the bells & whistles of the
    Network Explorer.
    """

    BRUSH_DEFAULT = QBrush(QColor('#669'))

    class Pen:
        DEFAULT = QPen(Qt.black, 0)
        SELECTED = QPen(QColor('#dd0000'), 3)
        HIGHLIGHTED = QPen(QColor('#ffaa22'), 3)

    _TOOLTIP = lambda: ''

    def __init__(self, id, view):
        super().__init__(view=view)
        self.id = id
        self.setBrush(Node.BRUSH_DEFAULT)
        self.setPen(Node.Pen.DEFAULT)

        self._is_highlighted = False
        self._tooltip = Node._TOOLTIP

    def setSize(self, size):
        self._radius = radius = size / 2
        self.setRect(-radius, -radius, size, size)

    def setText(self, text):
        if text: self.label.setText(text)
        self.label.setVisible(bool(text))

    def setColor(self, color):
        self.setBrush(QBrush(QColor(color)) if color else Node.BRUSH_DEFAULT)

    def isHighlighted(self):
        return self._is_highlighted

    def setHighlighted(self, highlight):
        self._is_highlighted = highlight
        if not self.isSelected():
            self.itemChange(self.ItemSelectedChange, False)

    def itemChange(self, change, value):
        if change == self.ItemSelectedChange:
            self.setPen(Node.Pen.SELECTED if value else Node.Pen.HIGHLIGHTED
                        if self._is_highlighted else Node.Pen.DEFAULT)
        return super().itemChange(change, value)

    def paint(self, painter, option, widget):
        option.state &= ~QStyle.State_Selected  # We use a custom selection pen
        super().paint(painter, option, widget)

    def setTooltip(self, callback):
        assert not callback or callable(callback)
        self._tooltip = callback or Node._TOOLTIP

    def hoverEnterEvent(self, event):
        self.setToolTip(self._tooltip())

    def hoverLeaveEvent(self, event):
        self.setToolTip('')
Example #41
0
class OWMosaicDisplay(OWWidget):
    name = "Mosaic Display"
    description = "Display data in a mosaic plot."
    icon = "icons/MosaicDisplay.svg"
    priority = 220

    class Inputs:
        data = Input("Data", Table, default=True)
        data_subset = Input("Data Subset", Table)

    class Outputs:
        selected_data = Output("Selected Data", Table, default=True)
        annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Table)

    PEARSON, CLASS_DISTRIBUTION = 0, 1

    settingsHandler = DomainContextHandler()
    use_boxes = Setting(True)
    interior_coloring = Setting(CLASS_DISTRIBUTION)
    variable1 = ContextSetting("", exclude_metas=False)
    variable2 = ContextSetting("", exclude_metas=False)
    variable3 = ContextSetting("", exclude_metas=False)
    variable4 = ContextSetting("", exclude_metas=False)
    variable_color = ContextSetting("", exclude_metas=False)
    selection = ContextSetting(set())

    BAR_WIDTH = 5
    SPACING = 4
    ATTR_NAME_OFFSET = 20
    ATTR_VAL_OFFSET = 3
    BLUE_COLORS = [
        QColor(255, 255, 255),
        QColor(210, 210, 255),
        QColor(110, 110, 255),
        QColor(0, 0, 255)
    ]
    RED_COLORS = [
        QColor(255, 255, 255),
        QColor(255, 200, 200),
        QColor(255, 100, 100),
        QColor(255, 0, 0)
    ]

    vizrank = SettingProvider(MosaicVizRank)

    graph_name = "canvas"

    class Warning(OWWidget.Warning):
        incompatible_subset = Msg("Data subset is incompatible with Data")
        no_valid_data = Msg("No valid data")
        no_cont_selection_sql = \
            Msg("Selection of numeric features on SQL is not supported")

    def __init__(self):
        super().__init__()

        self.data = None
        self.discrete_data = None
        self.unprocessed_subset_data = None
        self.subset_data = None

        self.color_data = None

        self.areas = []

        self.canvas = QGraphicsScene()
        self.canvas_view = ViewWithPress(self.canvas,
                                         handler=self.clear_selection)
        self.mainArea.layout().addWidget(self.canvas_view)
        self.canvas_view.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
        self.canvas_view.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
        self.canvas_view.setRenderHint(QPainter.Antialiasing)

        box = gui.vBox(self.controlArea, box=True)
        self.attr_combos = [
            gui.comboBox(box,
                         self,
                         value="variable{}".format(i),
                         orientation=Qt.Horizontal,
                         contentsLength=12,
                         callback=self.reset_graph,
                         sendSelectedValue=True,
                         valueType=str,
                         emptyString="(None)") for i in range(1, 5)
        ]
        self.vizrank, self.vizrank_button = MosaicVizRank.add_vizrank(
            box, self, "Find Informative Mosaics", self.set_attr)

        box2 = gui.vBox(self.controlArea, box="Interior Coloring")
        dmod = DomainModel
        self.color_model = DomainModel(order=dmod.MIXED,
                                       valid_types=dmod.PRIMITIVE,
                                       placeholder="(Pearson residuals)")
        self.cb_attr_color = gui.comboBox(box2,
                                          self,
                                          value="variable_color",
                                          orientation=Qt.Horizontal,
                                          contentsLength=12,
                                          labelWidth=50,
                                          callback=self.set_color_data,
                                          sendSelectedValue=True,
                                          model=self.color_model,
                                          valueType=str)
        self.bar_button = gui.checkBox(box2,
                                       self,
                                       'use_boxes',
                                       label='Compare with total',
                                       callback=self._compare_with_total)
        gui.rubber(self.controlArea)

    def sizeHint(self):
        return QSize(720, 530)

    def _compare_with_total(self):
        if self.data is not None and \
                self.data.domain.class_var is not None and \
                self.interior_coloring != self.CLASS_DISTRIBUTION:
            self.interior_coloring = self.CLASS_DISTRIBUTION
            self.coloring_changed()  # This also calls self.update_graph
        else:
            self.update_graph()

    def _get_discrete_data(self, data):
        """
        Discretizes continuous attributes.
        Returns None when there is no data, no rows, or no discrete or continuous attributes.
        """
        if (data is None or not len(data)
                or not any(attr.is_discrete or attr.is_continuous
                           for attr in chain(data.domain, data.domain.metas))):
            return None
        elif any(attr.is_continuous for attr in data.domain):
            return Discretize(method=EqualFreq(n=4),
                              remove_const=False,
                              discretize_classes=True,
                              discretize_metas=True)(data)
        else:
            return data

    def init_combos(self, data):
        for combo in self.attr_combos:
            combo.clear()
        if data is None:
            self.color_model.set_domain(None)
            return
        for combo in self.attr_combos[1:]:
            combo.addItem("(None)")

        icons = gui.attributeIconDict
        for attr in chain(data.domain, data.domain.metas):
            if attr.is_primitive:
                for combo in self.attr_combos:
                    combo.addItem(icons[attr], attr.name)

        if self.attr_combos[0].count() > 0:
            self.variable1 = self.attr_combos[0].itemText(0)
            self.variable2 = self.attr_combos[1].itemText(
                2 * (self.attr_combos[1].count() > 2))
        self.variable3 = self.attr_combos[2].itemText(0)
        self.variable4 = self.attr_combos[3].itemText(0)
        if self.data.domain.class_var:
            self.variable_color = self.data.domain.class_var.name
            idx = self.cb_attr_color.findText(self.variable_color)
        else:
            idx = 0
        self.cb_attr_color.setCurrentIndex(idx)

    def get_attr_list(self):
        return [
            a for a in
            [self.variable1, self.variable2, self.variable3, self.variable4]
            if a and a != "(None)"
        ]

    def set_attr(self, *attrs):
        self.variable1, self.variable2, self.variable3, self.variable4 = \
            [a.name if a else "" for a in attrs]
        self.reset_graph()

    def resizeEvent(self, e):
        OWWidget.resizeEvent(self, e)
        self.update_graph()

    def showEvent(self, ev):
        OWWidget.showEvent(self, ev)
        self.update_graph()

    @Inputs.data
    def set_data(self, data):
        if type(data) == SqlTable and data.approx_len() > LARGE_TABLE:
            data = data.sample_time(DEFAULT_SAMPLE_TIME)

        self.closeContext()
        self.data = data

        self.vizrank.stop_and_reset()
        self.vizrank_button.setEnabled(
            self.data is not None and len(self.data) > 1 \
            and len(self.data.domain.attributes) >= 1)

        if self.data is None:
            self.discrete_data = None
            self.init_combos(None)
            return

        self.color_model.set_domain(self.data.domain)
        self.init_combos(self.data)

        self.openContext(self.data)

        # if we first received subset we now call setSubsetData to process it
        if self.unprocessed_subset_data:
            self.set_subset_data(self.unprocessed_subset_data)
            self.unprocessed_subset_data = None

        self.set_color_data()

    @Inputs.data_subset
    def set_subset_data(self, data):
        self.Warning.incompatible_subset.clear()
        if self.data is None:
            self.unprocessed_subset_data = data
            return
        try:
            self.subset_data = data.transform(self.data.domain)
        except:
            self.subset_data = None
            self.Warning.incompatible_subset(shown=data is not None)

    # this is called by widget after setData and setSubsetData are called.
    # this way the graph is updated only once
    def handleNewSignals(self):
        self.reset_graph()

    def clear_selection(self):
        self.selection = set()
        self.update_selection_rects()
        self.send_selection()

    def coloring_changed(self):
        self.vizrank.coloring_changed()
        self.update_graph()

    def reset_graph(self):
        self.clear_selection()
        self.update_graph()

    def set_color_data(self):
        if self.data is None or len(self.data) < 2 or len(
                self.data.domain.attributes) < 1:
            return
        if self.cb_attr_color.currentIndex() <= 0:
            color_var = None
            self.interior_coloring = self.PEARSON
            self.bar_button.setEnabled(False)
        else:
            color_var = self.data.domain[self.cb_attr_color.currentText()]
            self.interior_coloring = self.CLASS_DISTRIBUTION
            self.bar_button.setEnabled(True)
        attributes = [
            v for v in self.data.domain.attributes +
            self.data.domain.class_vars + self.data.domain.metas
            if v != color_var and v.is_primitive()
        ]
        domain = Domain(attributes, color_var, None)
        self.color_data = color_data = self.data.from_table(domain, self.data)
        self.discrete_data = self._get_discrete_data(color_data)
        self.vizrank.stop_and_reset()
        self.vizrank_button.setEnabled(True)
        self.coloring_changed()

    def update_selection_rects(self):
        for i, (_, _, area) in enumerate(self.areas):
            if i in self.selection:
                area.setPen(QPen(Qt.black, 3, Qt.DotLine))
            else:
                area.setPen(QPen())

    def select_area(self, index, ev):
        if ev.button() != Qt.LeftButton:
            return
        if ev.modifiers() & Qt.ControlModifier:
            self.selection ^= {index}
        else:
            self.selection = {index}
        self.update_selection_rects()
        self.send_selection()

    def send_selection(self):
        if not self.selection or self.data is None:
            self.Outputs.selected_data.send(None)
            self.Outputs.annotated_data.send(
                create_annotated_table(self.data, []))
            return
        filters = []
        self.Warning.no_cont_selection_sql.clear()
        if self.discrete_data is not self.data:
            if isinstance(self.data, SqlTable):
                self.Warning.no_cont_selection_sql()
        for i in self.selection:
            cols, vals, _ = self.areas[i]
            filters.append(
                filter.Values(
                    filter.FilterDiscrete(col, [val])
                    for col, val in zip(cols, vals)))
        if len(filters) > 1:
            filters = filter.Values(filters, conjunction=False)
        else:
            filters = filters[0]
        selection = filters(self.discrete_data)
        idset = set(selection.ids)
        sel_idx = [i for i, id in enumerate(self.data.ids) if id in idset]
        if self.discrete_data is not self.data:
            selection = self.data[sel_idx]
        self.Outputs.selected_data.send(selection)
        self.Outputs.annotated_data.send(
            create_annotated_table(self.data, sel_idx))

    def send_report(self):
        self.report_plot(self.canvas)

    def update_graph(self):
        spacing = self.SPACING
        bar_width = self.BAR_WIDTH

        def get_counts(attr_vals, values):
            """This function calculates rectangles' widths.
            If all widths are zero then all widths are set to 1."""
            if attr_vals == "":
                counts = [conditionaldict[val] for val in values]
            else:
                counts = [
                    conditionaldict[attr_vals + "-" + val] for val in values
                ]
            total = sum(counts)
            if total == 0:
                counts = [1] * len(values)
                total = sum(counts)
            return total, counts

        def draw_data(attr_list,
                      x0_x1,
                      y0_y1,
                      side,
                      condition,
                      total_attrs,
                      used_attrs,
                      used_vals,
                      attr_vals=""):
            x0, x1 = x0_x1
            y0, y1 = y0_y1
            if conditionaldict[attr_vals] == 0:
                add_rect(x0,
                         x1,
                         y0,
                         y1,
                         "",
                         used_attrs,
                         used_vals,
                         attr_vals=attr_vals)
                # store coordinates for later drawing of labels
                draw_text(side, attr_list[0], (x0, x1), (y0, y1), total_attrs,
                          used_attrs, used_vals, attr_vals)
                return

            attr = attr_list[0]
            # how much smaller rectangles do we draw
            edge = len(attr_list) * spacing
            values = get_variable_values_sorted(data.domain[attr])
            if side % 2:
                values = values[::-1]  # reverse names if necessary

            if side % 2 == 0:  # we are drawing on the x axis
                # remove the space needed for separating different attr. values
                whole = max(0, (x1 - x0) - edge * (len(values) - 1))
                if whole == 0:
                    edge = (x1 - x0) / float(len(values) - 1)
            else:  # we are drawing on the y axis
                whole = max(0, (y1 - y0) - edge * (len(values) - 1))
                if whole == 0:
                    edge = (y1 - y0) / float(len(values) - 1)

            total, counts = get_counts(attr_vals, values)

            # if we are visualizing the third attribute and the first attribute
            # has the last value, we have to reverse the order in which the
            # boxes will be drawn otherwise, if the last cell, nearest to the
            # labels of the fourth attribute, is empty, we wouldn't be able to
            # position the labels
            valrange = list(range(len(values)))
            if len(attr_list + used_attrs) == 4 and len(used_attrs) == 2:
                attr1values = get_variable_values_sorted(
                    data.domain[used_attrs[0]])
                if used_vals[0] == attr1values[-1]:
                    valrange = valrange[::-1]

            for i in valrange:
                start = i * edge + whole * float(sum(counts[:i]) / total)
                end = i * edge + whole * float(sum(counts[:i + 1]) / total)
                val = values[i]
                htmlval = to_html(val)
                if attr_vals != "":
                    newattrvals = attr_vals + "-" + val
                else:
                    newattrvals = val

                tooltip = condition + 4 * "&nbsp;" + attr + \
                    ": <b>" + htmlval + "</b><br>"
                attrs = used_attrs + [attr]
                vals = used_vals + [val]
                common_args = attrs, vals, newattrvals
                if side % 2 == 0:  # if we are moving horizontally
                    if len(attr_list) == 1:
                        add_rect(x0 + start, x0 + end, y0, y1, tooltip,
                                 *common_args)
                    else:
                        draw_data(attr_list[1:], (x0 + start, x0 + end),
                                  (y0, y1), side + 1, tooltip, total_attrs,
                                  *common_args)
                else:
                    if len(attr_list) == 1:
                        add_rect(x0, x1, y0 + start, y0 + end, tooltip,
                                 *common_args)
                    else:
                        draw_data(attr_list[1:], (x0, x1),
                                  (y0 + start, y0 + end), side + 1, tooltip,
                                  total_attrs, *common_args)

            draw_text(side, attr_list[0], (x0, x1), (y0, y1), total_attrs,
                      used_attrs, used_vals, attr_vals)

        def draw_text(side, attr, x0_x1, y0_y1, total_attrs, used_attrs,
                      used_vals, attr_vals):
            x0, x1 = x0_x1
            y0, y1 = y0_y1
            if side in drawn_sides:
                return

            # the text on the right will be drawn when we are processing
            # visualization of the last value of the first attribute
            if side == 3:
                attr1values = \
                    get_variable_values_sorted(data.domain[used_attrs[0]])
                if used_vals[0] != attr1values[-1]:
                    return

            if not conditionaldict[attr_vals]:
                if side not in draw_positions:
                    draw_positions[side] = (x0, x1, y0, y1)
                return
            else:
                if side in draw_positions:
                    # restore the positions of attribute values and name
                    (x0, x1, y0, y1) = draw_positions[side]

            drawn_sides.add(side)

            values = get_variable_values_sorted(data.domain[attr])
            if side % 2:
                values = values[::-1]

            spaces = spacing * (total_attrs - side) * (len(values) - 1)
            width = x1 - x0 - spaces * (side % 2 == 0)
            height = y1 - y0 - spaces * (side % 2 == 1)

            # calculate position of first attribute
            currpos = 0

            total, counts = get_counts(attr_vals, values)

            aligns = [
                Qt.AlignTop | Qt.AlignHCenter, Qt.AlignRight | Qt.AlignVCenter,
                Qt.AlignBottom | Qt.AlignHCenter,
                Qt.AlignLeft | Qt.AlignVCenter
            ]
            align = aligns[side]
            for i, val in enumerate(values):
                perc = counts[i] / float(total)
                if distributiondict[val] != 0:
                    if side == 0:
                        CanvasText(self.canvas, str(val),
                                   x0 + currpos + width * 0.5 * perc,
                                   y1 + self.ATTR_VAL_OFFSET, align)
                    elif side == 1:
                        CanvasText(self.canvas, str(val),
                                   x0 - self.ATTR_VAL_OFFSET,
                                   y0 + currpos + height * 0.5 * perc, align)
                    elif side == 2:
                        CanvasText(self.canvas, str(val),
                                   x0 + currpos + width * perc * 0.5,
                                   y0 - self.ATTR_VAL_OFFSET, align)
                    else:
                        CanvasText(self.canvas, str(val),
                                   x1 + self.ATTR_VAL_OFFSET,
                                   y0 + currpos + height * 0.5 * perc, align)

                if side % 2 == 0:
                    currpos += perc * width + spacing * (total_attrs - side)
                else:
                    currpos += perc * height + spacing * (total_attrs - side)

            if side == 0:
                CanvasText(self.canvas,
                           attr,
                           x0 + (x1 - x0) / 2,
                           y1 + self.ATTR_VAL_OFFSET + self.ATTR_NAME_OFFSET,
                           align,
                           bold=1)
            elif side == 1:
                CanvasText(self.canvas,
                           attr,
                           x0 - max_ylabel_w1 - self.ATTR_VAL_OFFSET,
                           y0 + (y1 - y0) / 2,
                           align,
                           bold=1,
                           vertical=True)
            elif side == 2:
                CanvasText(self.canvas,
                           attr,
                           x0 + (x1 - x0) / 2,
                           y0 - self.ATTR_VAL_OFFSET - self.ATTR_NAME_OFFSET,
                           align,
                           bold=1)
            else:
                CanvasText(self.canvas,
                           attr,
                           x1 + max_ylabel_w2 + self.ATTR_VAL_OFFSET,
                           y0 + (y1 - y0) / 2,
                           align,
                           bold=1,
                           vertical=True)

        def add_rect(x0,
                     x1,
                     y0,
                     y1,
                     condition,
                     used_attrs,
                     used_vals,
                     attr_vals=""):
            area_index = len(self.areas)
            if x0 == x1:
                x1 += 1
            if y0 == y1:
                y1 += 1

            # rectangles of width and height 1 are not shown - increase
            if x1 - x0 + y1 - y0 == 2:
                y1 += 1

            if class_var:
                colors = [QColor(*col) for col in class_var.colors]
            else:
                colors = None

            def select_area(_, ev):
                self.select_area(area_index, ev)

            def rect(x, y, w, h, z, pen_color=None, brush_color=None, **args):
                if pen_color is None:
                    return CanvasRectangle(self.canvas,
                                           x,
                                           y,
                                           w,
                                           h,
                                           z=z,
                                           onclick=select_area,
                                           **args)
                if brush_color is None:
                    brush_color = pen_color
                return CanvasRectangle(self.canvas,
                                       x,
                                       y,
                                       w,
                                       h,
                                       pen_color,
                                       brush_color,
                                       z=z,
                                       onclick=select_area,
                                       **args)

            def line(x1, y1, x2, y2):
                r = QGraphicsLineItem(x1, y1, x2, y2, None)
                self.canvas.addItem(r)
                r.setPen(QPen(Qt.white, 2))
                r.setZValue(30)

            outer_rect = rect(x0, y0, x1 - x0, y1 - y0, 30)
            self.areas.append((used_attrs, used_vals, outer_rect))
            if not conditionaldict[attr_vals]:
                return

            if self.interior_coloring == self.PEARSON:
                s = sum(apriori_dists[0])
                expected = s * reduce(
                    mul, (apriori_dists[i][used_vals[i]] / float(s)
                          for i in range(len(used_vals))))
                actual = conditionaldict[attr_vals]
                pearson = (actual - expected) / sqrt(expected)
                if pearson == 0:
                    ind = 0
                else:
                    ind = max(0, min(int(log(abs(pearson), 2)), 3))
                color = [self.RED_COLORS, self.BLUE_COLORS][pearson > 0][ind]
                rect(x0, y0, x1 - x0, y1 - y0, -20, color)
                outer_rect.setToolTip(
                    condition + "<hr/>" + "Expected instances: %.1f<br>"
                    "Actual instances: %d<br>"
                    "Standardized (Pearson) residual: %.1f" %
                    (expected, conditionaldict[attr_vals], pearson))
            else:
                cls_values = get_variable_values_sorted(class_var)
                prior = get_distribution(data, class_var.name)
                total = 0
                for i, value in enumerate(cls_values):
                    val = conditionaldict[attr_vals + "-" + value]
                    if val == 0:
                        continue
                    if i == len(cls_values) - 1:
                        v = y1 - y0 - total
                    else:
                        v = ((y1 - y0) * val) / conditionaldict[attr_vals]
                    rect(x0, y0 + total, x1 - x0, v, -20, colors[i])
                    total += v

                if self.use_boxes and \
                        abs(x1 - x0) > bar_width and \
                        abs(y1 - y0) > bar_width:
                    total = 0
                    line(x0 + bar_width, y0, x0 + bar_width, y1)
                    n = sum(prior)
                    for i, (val, color) in enumerate(zip(prior, colors)):
                        if i == len(prior) - 1:
                            h = y1 - y0 - total
                        else:
                            h = (y1 - y0) * val / n
                        rect(x0, y0 + total, bar_width, h, 20, color)
                        total += h

                if conditionalsubsetdict:
                    if conditionalsubsetdict[attr_vals]:
                        counts = [
                            conditionalsubsetdict[attr_vals + "-" + val]
                            for val in cls_values
                        ]
                        if sum(counts) == 1:
                            rect(x0 - 2,
                                 y0 - 2,
                                 x1 - x0 + 5,
                                 y1 - y0 + 5,
                                 -550,
                                 colors[counts.index(1)],
                                 Qt.white,
                                 penWidth=2,
                                 penStyle=Qt.DashLine)
                        if self.subset_data is not None:
                            line(x1 - bar_width, y0, x1 - bar_width, y1)
                            total = 0
                            n = conditionalsubsetdict[attr_vals]
                            if n:
                                for i, (cls, color) in \
                                        enumerate(zip(cls_values, colors)):
                                    val = conditionalsubsetdict[attr_vals +
                                                                "-" + cls]
                                    if val == 0:
                                        continue
                                    if i == len(prior) - 1:
                                        v = y1 - y0 - total
                                    else:
                                        v = ((y1 - y0) * val) / n
                                    rect(x1 - bar_width, y0 + total, bar_width,
                                         v, 15, color)
                                    total += v

                actual = [
                    conditionaldict[attr_vals + "-" + cls_values[i]]
                    for i in range(len(prior))
                ]
                n_actual = sum(actual)
                if n_actual > 0:
                    apriori = [prior[key] for key in cls_values]
                    n_apriori = sum(apriori)
                    text = "<br/>".join(
                        "<b>%s</b>: %d / %.1f%% (Expected %.1f / %.1f%%)" %
                        (cls, act, 100.0 * act / n_actual,
                         apr / n_apriori * n_actual, 100.0 * apr / n_apriori)
                        for cls, act, apr in zip(cls_values, actual, apriori))
                else:
                    text = ""
                outer_rect.setToolTip("{}<hr>Instances: {}<br><br>{}".format(
                    condition, n_actual, text[:-4]))

        def draw_legend(x0_x1, y0_y1):
            x0, x1 = x0_x1
            _, y1 = y0_y1
            if self.interior_coloring == self.PEARSON:
                names = [
                    "<-8", "-8:-4", "-4:-2", "-2:2", "2:4", "4:8", ">8",
                    "Residuals:"
                ]
                colors = self.RED_COLORS[::-1] + self.BLUE_COLORS[1:]
            else:
                names = get_variable_values_sorted(class_var) + \
                        [class_var.name + ":"]
                colors = [QColor(*col) for col in class_var.colors]

            names = [
                CanvasText(self.canvas, name, alignment=Qt.AlignVCenter)
                for name in names
            ]
            totalwidth = sum(text.boundingRect().width() for text in names)

            # compute the x position of the center of the legend
            y = y1 + self.ATTR_NAME_OFFSET + self.ATTR_VAL_OFFSET + 35
            distance = 30
            startx = (x0 + x1) / 2 - (totalwidth + (len(names)) * distance) / 2

            names[-1].setPos(startx + 15, y)
            names[-1].show()
            xoffset = names[-1].boundingRect().width() + distance

            size = 8

            for i in range(len(names) - 1):
                if self.interior_coloring == self.PEARSON:
                    edgecolor = Qt.black
                else:
                    edgecolor = colors[i]

                CanvasRectangle(self.canvas, startx + xoffset, y - size / 2,
                                size, size, edgecolor, colors[i])
                names[i].setPos(startx + xoffset + 10, y)
                xoffset += distance + names[i].boundingRect().width()

        self.canvas.clear()
        self.areas = []

        data = self.discrete_data
        if data is None:
            return
        subset = self.subset_data
        attr_list = self.get_attr_list()
        class_var = data.domain.class_var
        if class_var:
            sql = type(data) == SqlTable
            name = not sql and data.name
            # save class_var because it is removed in the next line
            data = data[:, attr_list + [class_var]]
            data.domain.class_var = class_var
            if not sql:
                data.name = name
        else:
            data = data[:, attr_list]
        # TODO: check this
        # data = Preprocessor_dropMissing(data)
        if len(data) == 0:
            self.Warning.no_valid_data()
            return
        else:
            self.Warning.no_valid_data.clear()

        attrs = [attr for attr in attr_list if not data.domain[attr].values]
        if attrs:
            CanvasText(self.canvas,
                       "Feature {} has no values".format(attrs[0]),
                       (self.canvas_view.width() - 120) / 2,
                       self.canvas_view.height() / 2)
            return
        if self.interior_coloring == self.PEARSON:
            apriori_dists = [
                get_distribution(data, attr) for attr in attr_list
            ]
        else:
            apriori_dists = []

        def get_max_label_width(attr):
            values = get_variable_values_sorted(data.domain[attr])
            maxw = 0
            for val in values:
                t = CanvasText(self.canvas, val, 0, 0, bold=0, show=False)
                maxw = max(int(t.boundingRect().width()), maxw)
            return maxw

        # get the maximum width of rectangle
        xoff = 20
        width = 20
        if len(attr_list) > 1:
            text = CanvasText(self.canvas, attr_list[1], bold=1, show=0)
            max_ylabel_w1 = min(get_max_label_width(attr_list[1]), 150)
            width = 5 + text.boundingRect().height() + \
                self.ATTR_VAL_OFFSET + max_ylabel_w1
            xoff = width
            if len(attr_list) == 4:
                text = CanvasText(self.canvas, attr_list[3], bold=1, show=0)
                max_ylabel_w2 = min(get_max_label_width(attr_list[3]), 150)
                width += text.boundingRect().height() + \
                    self.ATTR_VAL_OFFSET + max_ylabel_w2 - 10

        # get the maximum height of rectangle
        height = 100
        yoff = 45
        square_size = min(self.canvas_view.width() - width - 20,
                          self.canvas_view.height() - height - 20)

        if square_size < 0:
            return  # canvas is too small to draw rectangles
        self.canvas_view.setSceneRect(0, 0, self.canvas_view.width(),
                                      self.canvas_view.height())

        drawn_sides = set()
        draw_positions = {}

        conditionaldict, distributiondict = \
            get_conditional_distribution(data, attr_list)
        conditionalsubsetdict = None
        if subset:
            conditionalsubsetdict, _ = \
                get_conditional_distribution(subset, attr_list)

        # draw rectangles
        draw_data(attr_list, (xoff, xoff + square_size),
                  (yoff, yoff + square_size), 0, "", len(attr_list), [], [])
        draw_legend((xoff, xoff + square_size), (yoff, yoff + square_size))
        self.update_selection_rects()
 def hoverLeaveEvent(self, event):
     super().hoverLeaveEvent(event)
     self.setBrush(QBrush(QColor(200, 200, 200)))
     self.update()
Example #43
0
 def __getitem__(self, val):
     return QColor(*self.getRGB(val))
Example #44
0
    def _setup_plot(self):
        def get_minmax(points):
            minmax = [float('inf'), float('-inf'), float('inf'), float('-inf')]
            for pp in points:
                for p in pp:
                    minmax[0] = min(p[0], minmax[0])
                    minmax[1] = max(p[0], minmax[1])
                    minmax[2] = min(p[1], minmax[2])
                    minmax[3] = max(p[1], minmax[3])
            return minmax

        self.plot.clear()
        points = self.ca
        variables = self.selected_vars()
        colors = colorpalette.ColorPaletteGenerator(len(variables))

        p_axes = self._p_axes()

        if points is None:
            return

        if len(variables) == 2:
            row_points = self.ca.row_factors[:, p_axes]
            col_points = self.ca.col_factors[:, p_axes]
            points = [row_points, col_points]
        else:
            points = self.ca.row_factors[:, p_axes]
            counts = [len(var.values) for var in variables]
            range_indices = np.cumsum([0] + counts)
            ranges = zip(range_indices, range_indices[1:])
            points = [points[s:e] for s, e in ranges]

        minmax = get_minmax(points)

        margin = abs(minmax[0] - minmax[1])
        margin = margin * 0.05 if margin > 1e-10 else 1
        self.plot.setXRange(minmax[0] - margin, minmax[1] + margin)
        margin = abs(minmax[2] - minmax[3])
        margin = margin * 0.05 if margin > 1e-10 else 1
        self.plot.setYRange(minmax[2] - margin, minmax[3] + margin)

        for i, (v, points) in enumerate(zip(variables, points)):
            color_outline = colors[i]
            color_outline.setAlpha(200)
            color = QColor(color_outline)
            color.setAlpha(120)
            item = ScatterPlotItem(
                x=points[:, 0],
                y=points[:, 1],
                brush=QBrush(color),
                pen=pg.mkPen(color_outline.darker(120), width=1.5),
                size=np.full((points.shape[0], ), 10.1),
            )
            self.plot.addItem(item)

            for name, point in zip(v.values, points):
                item = pg.TextItem(name, anchor=(0.5, 0))
                self.plot.addItem(item)
                item.setPos(point[0], point[1])

        inertia = self.ca.inertia_of_axis()
        if np.sum(inertia) == 0:
            inertia = 100 * inertia
        else:
            inertia = 100 * inertia / np.sum(inertia)

        ax = self.plot.getAxis("bottom")
        ax.setLabel("Component {} ({:.1f}%)".format(p_axes[0] + 1,
                                                    inertia[p_axes[0]]))
        ax = self.plot.getAxis("left")
        ax.setLabel("Component {} ({:.1f}%)".format(p_axes[1] + 1,
                                                    inertia[p_axes[1]]))
Example #45
0
    def __init__(self):
        super().__init__()

        self._inputs = OrderedDict()

        self.__pending_selected_rows = self.selected_rows
        self.selected_rows = None
        self.__pending_selected_cols = self.selected_cols
        self.selected_cols = None

        self.dist_color = QColor(*self.dist_color_RGB)

        info_box = gui.vBox(self.controlArea, "Info")
        self.info_ex = gui.widgetLabel(
            info_box,
            'No data on input.',
        )
        self.info_ex.setWordWrap(True)
        self.info_attr = gui.widgetLabel(info_box, ' ')
        self.info_attr.setWordWrap(True)
        self.info_class = gui.widgetLabel(info_box, ' ')
        self.info_class.setWordWrap(True)
        self.info_meta = gui.widgetLabel(info_box, ' ')
        self.info_meta.setWordWrap(True)
        info_box.setMinimumWidth(200)
        gui.separator(self.controlArea)

        box = gui.vBox(self.controlArea, "Variables")
        self.c_show_attribute_labels = gui.checkBox(
            box,
            self,
            "show_attribute_labels",
            "Show variable labels (if present)",
            callback=self._on_show_variable_labels_changed)

        gui.checkBox(box,
                     self,
                     "show_distributions",
                     'Visualize numeric values',
                     callback=self._on_distribution_color_changed)
        gui.checkBox(box,
                     self,
                     "color_by_class",
                     'Color by instance classes',
                     callback=self._on_distribution_color_changed)

        box = gui.vBox(self.controlArea, "Selection")

        gui.checkBox(box,
                     self,
                     "select_rows",
                     "Select full rows",
                     callback=self._on_select_rows_changed)

        gui.rubber(self.controlArea)

        reset = gui.button(None,
                           self,
                           "Restore Original Order",
                           callback=self.restore_order,
                           tooltip="Show rows in the original order",
                           autoDefault=False)
        self.buttonsArea.layout().insertWidget(0, reset)
        gui.auto_send(self.buttonsArea, self, "auto_commit")

        # GUI with tabs
        self.tabs = gui.tabWidget(self.mainArea)
        self.tabs.currentChanged.connect(self._on_current_tab_changed)
Example #46
0
    def __init__(self):
        super().__init__()

        self._inputs = OrderedDict()

        self.__pending_selected_rows = self.selected_rows
        self.selected_rows = None
        self.__pending_selected_cols = self.selected_cols
        self.selected_cols = None

        self.dist_color = QColor(*self.dist_color_RGB)

        info_box = gui.vBox(self.controlArea, "信息")
        self.info_ex = gui.widgetLabel(
            info_box,
            '没有输入数据。',
        )
        self.info_ex.setWordWrap(True)
        self.info_attr = gui.widgetLabel(info_box, ' ')
        self.info_attr.setWordWrap(True)
        self.info_class = gui.widgetLabel(info_box, ' ')
        self.info_class.setWordWrap(True)
        self.info_meta = gui.widgetLabel(info_box, ' ')
        self.info_meta.setWordWrap(True)
        info_box.setMinimumWidth(200)
        gui.separator(self.controlArea)

        box = gui.vBox(self.controlArea, "变量")
        self.c_show_attribute_labels = gui.checkBox(
            box,
            self,
            "show_attribute_labels",
            "显示变量标签(如果存在)",
            callback=self._on_show_variable_labels_changed)

        gui.checkBox(box,
                     self,
                     "show_distributions",
                     '可视化数值',
                     callback=self._on_distribution_color_changed)
        gui.checkBox(box,
                     self,
                     "color_by_class",
                     '按实例类着色',
                     callback=self._on_distribution_color_changed)

        box = gui.vBox(self.controlArea, "选择")

        gui.checkBox(box,
                     self,
                     "select_rows",
                     "选择整行",
                     callback=self._on_select_rows_changed)

        gui.rubber(self.controlArea)

        reset = gui.button(None,
                           self,
                           "恢复原始顺序",
                           callback=self.restore_order,
                           tooltip="按原始顺序显示行",
                           autoDefault=False)
        self.buttonsArea.layout().insertWidget(0, reset)
        gui.auto_commit(self.buttonsArea, self, "auto_commit", "发送所选行", "自动发送")

        # GUI with tabs
        self.tabs = gui.tabWidget(self.mainArea)
        self.tabs.currentChanged.connect(self._on_current_tab_changed)
Example #47
0
    def draw_statistics(self):
        """Draw lines that represent standard deviation or quartiles"""
        return # TODO: Implement using BasicStats
        if self.show_statistics and self.data is not None:
            data = []
            domain = self.data.domain
            for attr_idx in self.attribute_indices:
                if not self.domain[attr_idx].is_continuous:
                    data.append([()])
                    continue  # only for continuous attributes

                if not domain.class_var or domain.has_continuous_class:
                    if self.show_statistics == MEANS:
                        m = self.domain_data_stat[attr_idx].mean
                        dev = self.domain_data_stat[attr_idx].var
                        data.append([(m - dev, m, m + dev)])
                    elif self.show_statistics == MEDIAN:
                        data.append([(0, 0, 0)]); continue

                        sorted_array = np.sort(attr_values)
                        if len(sorted_array) > 0:
                            data.append([(sorted_array[int(len(sorted_array) / 4.0)],
                                          sorted_array[int(len(sorted_array) / 2.0)],
                                          sorted_array[int(len(sorted_array) * 0.75)])])
                        else:
                            data.append([(0, 0, 0)])
                else:
                    curr = []
                    class_values = get_variable_values_sorted(self.domain.class_var)
                    class_index = self.domain.index(self.domain.class_var)

                    for c in range(len(class_values)):
                        attr_values = self.data[attr_idx, self.data[class_index] == c]
                        attr_values = attr_values[~np.isnan(attr_values)]

                        if len(attr_values) == 0:
                            curr.append((0, 0, 0))
                            continue
                        if self.show_statistics == MEANS:
                            m = attr_values.mean()
                            dev = attr_values.std()
                            curr.append((m - dev, m, m + dev))
                        elif self.show_statistics == MEDIAN:
                            sorted_array = np.sort(attr_values)
                            curr.append((sorted_array[int(len(attr_values) / 4.0)],
                                         sorted_array[int(len(attr_values) / 2.0)],
                                         sorted_array[int(len(attr_values) * 0.75)]))
                    data.append(curr)

            # draw vertical lines
            for i in range(len(data)):
                for c in range(len(data[i])):
                    if data[i][c] == ():
                        continue
                    x = i - 0.03 * (len(data[i]) - 1) / 2.0 + c * 0.03
                    col = QColor(self.discrete_palette[c])
                    col.setAlpha(self.alpha_value_2)
                    self.add_curve("", col, col, 3, OWCurve.Lines, OWPoint.NoSymbol, xData=[x, x, x],
                                   yData=[data[i][c][0], data[i][c][1], data[i][c][2]], lineWidth=4)
                    self.add_curve("", col, col, 1, OWCurve.Lines, OWPoint.NoSymbol, xData=[x - 0.03, x + 0.03],
                                   yData=[data[i][c][0], data[i][c][0]], lineWidth=4)
                    self.add_curve("", col, col, 1, OWCurve.Lines, OWPoint.NoSymbol, xData=[x - 0.03, x + 0.03],
                                   yData=[data[i][c][1], data[i][c][1]], lineWidth=4)
                    self.add_curve("", col, col, 1, OWCurve.Lines, OWPoint.NoSymbol, xData=[x - 0.03, x + 0.03],
                                   yData=[data[i][c][2], data[i][c][2]], lineWidth=4)

            # draw lines with mean/median values
            if not domain.class_var or domain.has_continuous_class:
                class_count = 1
            else:
                class_count = len(self.domain.class_var.values)
            for c in range(class_count):
                diff = - 0.03 * (class_count - 1) / 2.0 + c * 0.03
                ys = []
                xs = []
                for i in range(len(data)):
                    if data[i] != [()]:
                        ys.append(data[i][c][1])
                        xs.append(i + diff)
                    else:
                        if len(xs) > 1:
                            col = QColor(self.discrete_palette[c])
                            col.setAlpha(self.alpha_value_2)
                            self.add_curve("", col, col, 1, OWCurve.Lines,
                                           OWPoint.NoSymbol, xData=xs, yData=ys, lineWidth=4)
                        xs = []
                        ys = []
                col = QColor(self.discrete_palette[c])
                col.setAlpha(self.alpha_value_2)
                self.add_curve("", col, col, 1, OWCurve.Lines,
                               OWPoint.NoSymbol, xData=xs, yData=ys, lineWidth=4)
 class Pen:
     DEFAULT = QPen(Qt.black, 0)
     SELECTED = QPen(QColor('#dd0000'), 3)
     HIGHLIGHTED = QPen(QColor('#ffaa22'), 3)
Example #49
0
 def __init__(self, color=QColor(Qt.white), size=12):
     p = QPixmap(size, size)
     p.fill(color)
     self.color = color
     QIcon.__init__(self, p)
    def _setup_plot(self):
        """Setup the plot with new curve data."""
        assert self.data is not None

        data, domain = self.data, self.data.domain
        if is_discrete(domain.class_var):
            class_col_data, _ = data.get_column_view(domain.class_var)

            group_indices = [np.flatnonzero(class_col_data == i)
                             for i in range(len(domain.class_var.values))]
        else:
            group_indices = [np.arange(len(data))]

        X = np.arange(1, len(domain.attributes)+1)
        groups = []

        for i, indices in enumerate(group_indices):
            if self.classes:
                color = self.class_colors[i]
            else:
                color = QColor(Qt.darkGray)
            group_data = data[indices, :]
            plot_x, plot_y, connect = disconnected_curve_data(group_data.X, x=X)

            color.setAlpha(200)
            lightcolor = QColor(color.lighter(factor=150))
            lightcolor.setAlpha(150)
            pen = QPen(color, 2)
            pen.setCosmetic(True)

            lightpen = QPen(lightcolor, 1)
            lightpen.setCosmetic(True)
            hoverpen = QPen(pen)
            hoverpen.setWidth(2)

            curve = pg.PlotCurveItem(
                x=plot_x, y=plot_y, connect=connect,
                pen=lightpen, symbolSize=2, antialias=True,
            )
            self.graph.addItem(curve)

            hovercurves = []
            for index, profile in zip(indices, group_data.X):
                hcurve = HoverCurve(x=X, y=profile, pen=hoverpen,
                                    antialias=True)
                hcurve.setToolTip('{}'.format(index))
                hcurve._data_index = index
                hovercurves.append(hcurve)
                self.graph.addItem(hcurve)

            mean = np.nanmean(group_data.X, axis=0)

            meancurve = pg.PlotDataItem(
                x=X, y=mean, pen=pen, size=5, symbol="o", pxMode=True,
                symbolSize=5, antialias=True
            )
            hoverpen = QPen(hoverpen)
            hoverpen.setWidth(5)

            hc = HoverCurve(x=X, y=mean, pen=hoverpen, antialias=True)
            hc.setFlag(QGraphicsItem.ItemIsSelectable, False)
            self.graph.addItem(hc)

            self.graph.addItem(meancurve)
            self.legend_items.append(meancurve)
            q1, q2, q3 = np.nanpercentile(group_data.X, [25, 50, 75], axis=0)
            # TODO: implement and use a box plot item
            errorbar = pg.ErrorBarItem(
                x=X, y=mean,
                bottom=np.clip(mean - q1, 0, mean - q1),
                top=np.clip(q3 - mean, 0, q3 - mean),
                beam=0.5
            )
            self.graph.addItem(errorbar)
            groups.append(
                namespace(
                    data=group_data, indices=indices, profiles=curve,
                    hovercurves=hovercurves, mean=meancurve, boxplot=errorbar)
            )

        self.__groups = groups
        self.__update_visibility()
        self.__update_tooltips()
Example #51
0
def rgbToQColor(rgb):
    return QColor(rgb & 0xFFFFFFFF)
Example #52
0
class OWDataSets(OWWidget):
    name = "Datasets"
    description = "Load a dataset from an online repository"
    icon = "icons/DataSets.svg"
    priority = 20
    replaces = ["orangecontrib.prototypes.widgets.owdatasets.OWDataSets"]
    keywords = ["online"]

    want_control_area = False

    # The following constants can be overridden in a subclass
    # to reuse this widget for a different repository
    # Take care when refactoring! (used in e.g. single-cell)
    INDEX_URL = "https://datasets.biolab.si/"
    DATASET_DIR = "datasets"

    # override HEADER_SCHEMA to define new columns
    # if schema is changed override methods: self.assign_delegates and
    # self.create_model
    HEADER_SCHEMA = [['islocal', {
        'label': ''
    }], ['title', {
        'label': 'Title'
    }], ['size', {
        'label': 'Size'
    }], ['instances', {
        'label': 'Instances'
    }], ['variables', {
        'label': 'Variables'
    }], ['target', {
        'label': 'Target'
    }], ['tags', {
        'label': 'Tags'
    }]]  # type: List[str, dict]

    IndicatorBrushes = (QBrush(Qt.darkGray), QBrush(QColor(0, 192, 0)))

    class Error(OWWidget.Error):
        no_remote_datasets = Msg("Could not fetch dataset list")

    class Warning(OWWidget.Warning):
        only_local_datasets = Msg("Could not fetch datasets list, only local "
                                  "cached datasets are shown")

    class Outputs:
        data = Output("Data", Orange.data.Table)

    #: Selected dataset id
    selected_id = settings.Setting(None)  # type: Optional[str]

    #: main area splitter state
    splitter_state = settings.Setting(b'')  # type: bytes
    header_state = settings.Setting(b'')  # type: bytes

    def __init__(self):
        super().__init__()
        self.allinfo_local = {}
        self.allinfo_remote = {}

        self.local_cache_path = os.path.join(data_dir(), self.DATASET_DIR)
        # current_output does not equal selected_id when, for instance, the
        # data is still downloading
        self.current_output = None

        self._header_labels = [
            header['label'] for _, header in self.HEADER_SCHEMA
        ]
        self._header_index = namedtuple(
            '_header_index', [info_tag for info_tag, _ in self.HEADER_SCHEMA])
        self.Header = self._header_index(
            *[index for index, _ in enumerate(self._header_labels)])

        self.__awaiting_state = None  # type: Optional[_FetchState]

        self.filterLineEdit = QLineEdit(
            textChanged=self.filter, placeholderText="Search for data set ...")
        self.mainArea.layout().addWidget(self.filterLineEdit)

        self.splitter = QSplitter(orientation=Qt.Vertical)

        self.view = TreeViewWithReturn(
            sortingEnabled=True,
            selectionMode=QTreeView.SingleSelection,
            alternatingRowColors=True,
            rootIsDecorated=False,
            editTriggers=QTreeView.NoEditTriggers,
            uniformRowHeights=True,
            toolTip="Press Return or double-click to send")
        # the method doesn't exists yet, pylint: disable=unnecessary-lambda
        self.view.doubleClicked.connect(self.commit)
        self.view.returnPressed.connect(self.commit)
        box = gui.widgetBox(self.splitter, "Description", addToLayout=False)
        self.descriptionlabel = QLabel(
            wordWrap=True,
            textFormat=Qt.RichText,
        )
        self.descriptionlabel = QTextBrowser(
            openExternalLinks=True,
            textInteractionFlags=(Qt.TextSelectableByMouse
                                  | Qt.LinksAccessibleByMouse))
        self.descriptionlabel.setFrameStyle(QTextBrowser.NoFrame)
        # no (white) text background
        self.descriptionlabel.viewport().setAutoFillBackground(False)

        box.layout().addWidget(self.descriptionlabel)
        self.splitter.addWidget(self.view)
        self.splitter.addWidget(box)

        self.info.set_output_summary(self.info.NoOutput)

        self.splitter.setSizes([300, 200])
        self.splitter.splitterMoved.connect(lambda: setattr(
            self, "splitter_state", bytes(self.splitter.saveState())))
        self.mainArea.layout().addWidget(self.splitter)

        proxy = QSortFilterProxyModel()
        proxy.setFilterKeyColumn(-1)
        proxy.setFilterCaseSensitivity(False)
        self.view.setModel(proxy)

        if self.splitter_state:
            self.splitter.restoreState(self.splitter_state)

        self.assign_delegates()

        self.setBlocking(True)
        self.setStatusMessage("Initializing")

        self._executor = ThreadPoolExecutor(max_workers=1)
        f = self._executor.submit(self.list_remote)
        w = FutureWatcher(f, parent=self)
        w.done.connect(self.__set_index)

    def assign_delegates(self):
        # NOTE: All columns must have size hinting delegates.
        # QTreeView queries only the columns displayed in the viewport so
        # the layout would be different depending in the horizontal scroll
        # position
        self.view.setItemDelegate(UniformHeightDelegate(self))
        self.view.setItemDelegateForColumn(
            self.Header.islocal,
            UniformHeightIndicatorDelegate(self,
                                           role=Qt.DisplayRole,
                                           indicatorSize=4))
        self.view.setItemDelegateForColumn(self.Header.size,
                                           SizeDelegate(self))
        self.view.setItemDelegateForColumn(self.Header.instances,
                                           NumericalDelegate(self))
        self.view.setItemDelegateForColumn(self.Header.variables,
                                           NumericalDelegate(self))
        self.view.resizeColumnToContents(self.Header.islocal)

    def _parse_info(self, file_path):
        if file_path in self.allinfo_remote:
            info = self.allinfo_remote[file_path]
        else:
            info = self.allinfo_local[file_path]

        islocal = file_path in self.allinfo_local
        isremote = file_path in self.allinfo_remote

        outdated = islocal and isremote and (
            self.allinfo_remote[file_path].get('version', '') !=
            self.allinfo_local[file_path].get('version', ''))
        islocal &= not outdated

        prefix = os.path.join('', *file_path[:-1])
        filename = file_path[-1]

        return Namespace(file_path=file_path,
                         prefix=prefix,
                         filename=filename,
                         islocal=islocal,
                         outdated=outdated,
                         **info)

    def create_model(self):
        allkeys = set(self.allinfo_local) | set(self.allinfo_remote)
        allkeys = sorted(allkeys)

        model = QStandardItemModel(self)
        model.setHorizontalHeaderLabels(self._header_labels)

        current_index = -1
        for i, file_path in enumerate(allkeys):
            datainfo = self._parse_info(file_path)
            item1 = QStandardItem()
            item1.setData(" " if datainfo.islocal else "", Qt.DisplayRole)
            item1.setData(self.IndicatorBrushes[0], Qt.ForegroundRole)
            item1.setData(datainfo, Qt.UserRole)
            item2 = QStandardItem(datainfo.title)
            item3 = QStandardItem()
            item3.setData(datainfo.size, Qt.DisplayRole)
            item4 = QStandardItem()
            item4.setData(datainfo.instances, Qt.DisplayRole)
            item5 = QStandardItem()
            item5.setData(datainfo.variables, Qt.DisplayRole)
            item6 = QStandardItem()
            item6.setData(datainfo.target, Qt.DisplayRole)
            if datainfo.target:
                item6.setIcon(variable_icon(datainfo.target))
            item7 = QStandardItem()
            item7.setData(", ".join(datainfo.tags) if datainfo.tags else "",
                          Qt.DisplayRole)
            row = [item1, item2, item3, item4, item5, item6, item7]
            model.appendRow(row)

            if os.path.join(*file_path) == self.selected_id:
                current_index = i

        return model, current_index

    @Slot(object)
    def __set_index(self, f):
        # type: (Future) -> None
        # set results from `list_remote` query.
        assert QThread.currentThread() is self.thread()
        assert f.done()
        self.setBlocking(False)
        self.setStatusMessage("")
        self.allinfo_local = self.list_local()

        try:
            self.allinfo_remote = f.result()
        except Exception:  # anytying can happen, pylint: disable=broad-except
            log.exception("Error while fetching updated index")
            if not self.allinfo_local:
                self.Error.no_remote_datasets()
            else:
                self.Warning.only_local_datasets()
            self.allinfo_remote = {}

        model, current_index = self.create_model()

        self.view.model().setSourceModel(model)
        self.view.selectionModel().selectionChanged.connect(
            self.__on_selection)

        self.view.resizeColumnToContents(0)
        self.view.setColumnWidth(
            1,
            min(self.view.sizeHintForColumn(1),
                self.view.fontMetrics().width("X" * 37)))

        header = self.view.header()
        header.restoreState(self.header_state)

        if current_index != -1:
            selmodel = self.view.selectionModel()
            selmodel.select(
                self.view.model().mapFromSource(model.index(current_index, 0)),
                QItemSelectionModel.ClearAndSelect | QItemSelectionModel.Rows)
            self.commit()

    def __update_cached_state(self):
        model = self.view.model().sourceModel()
        localinfo = self.list_local()
        assert isinstance(model, QStandardItemModel)
        allinfo = []
        for i in range(model.rowCount()):
            item = model.item(i, 0)
            info = item.data(Qt.UserRole)
            is_local = info.file_path in localinfo
            is_current = (is_local and os.path.join(
                self.local_cache_path, *info.file_path) == self.current_output)
            item.setData(" " * (is_local + is_current), Qt.DisplayRole)
            item.setData(self.IndicatorBrushes[is_current], Qt.ForegroundRole)
            allinfo.append(info)

    def selected_dataset(self):
        """
        Return the current selected dataset info or None if not selected

        Returns
        -------
        info : Optional[Namespace]
        """
        rows = self.view.selectionModel().selectedRows(0)
        assert 0 <= len(rows) <= 1
        current = rows[0] if rows else None  # type: Optional[QModelIndex]
        if current is not None:
            info = current.data(Qt.UserRole)
            assert isinstance(info, Namespace)
        else:
            info = None
        return info

    def filter(self):
        filter_string = self.filterLineEdit.text().strip()
        proxyModel = self.view.model()
        if proxyModel:
            proxyModel.setFilterFixedString(filter_string)

    def __on_selection(self):
        # Main datasets view selection has changed
        rows = self.view.selectionModel().selectedRows(0)
        assert 0 <= len(rows) <= 1
        current = rows[0] if rows else None  # type: Optional[QModelIndex]
        if current is not None:
            current = self.view.model().mapToSource(current)
            di = current.data(Qt.UserRole)
            text = description_html(di)
            self.descriptionlabel.setText(text)
            self.selected_id = os.path.join(di.prefix, di.filename)
        else:
            self.descriptionlabel.setText("")
            self.selected_id = None

    def commit(self):
        """
        Commit a dataset to the output immediately (if available locally) or
        schedule download background and an eventual send.

        During the download the widget is in blocking state
        (OWWidget.isBlocking)
        """
        di = self.selected_dataset()
        if di is not None:
            self.Error.clear()

            if self.__awaiting_state is not None:
                # disconnect from the __commit_complete
                self.__awaiting_state.watcher.done.disconnect(
                    self.__commit_complete)
                # .. and connect to update_cached_state
                # self.__awaiting_state.watcher.done.connect(
                #     self.__update_cached_state)
                # TODO: There are possible pending __progress_advance queued
                self.__awaiting_state.pb.advance.disconnect(
                    self.__progress_advance)
                self.progressBarFinished()
                self.__awaiting_state = None

            if not di.islocal:
                pr = progress()
                callback = lambda pr=pr: pr.advance.emit()
                pr.advance.connect(self.__progress_advance,
                                   Qt.QueuedConnection)

                self.progressBarInit()
                self.setStatusMessage("Fetching...")
                self.setBlocking(True)

                f = self._executor.submit(ensure_local,
                                          self.INDEX_URL,
                                          di.file_path,
                                          self.local_cache_path,
                                          force=di.outdated,
                                          progress_advance=callback)
                w = FutureWatcher(f, parent=self)
                w.done.connect(self.__commit_complete)
                self.__awaiting_state = _FetchState(f, w, pr)
            else:
                self.setStatusMessage("")
                self.setBlocking(False)
                self.commit_cached(di.file_path)
        else:
            self.load_and_output(None)

    @Slot(object)
    def __commit_complete(self, f):
        # complete the commit operation after the required file has been
        # downloaded
        assert QThread.currentThread() is self.thread()
        assert self.__awaiting_state is not None
        assert self.__awaiting_state.future is f

        if self.isBlocking():
            self.progressBarFinished()
            self.setBlocking(False)
            self.setStatusMessage("")

        self.__awaiting_state = None

        try:
            path = f.result()
        # anything can happen here, pylint: disable=broad-except
        except Exception as ex:
            log.exception("Error:")
            self.error(format_exception(ex))
            path = None
        self.load_and_output(path)

    def commit_cached(self, file_path):
        path = LocalFiles(self.local_cache_path).localpath(*file_path)
        self.load_and_output(path)

    @Slot()
    def __progress_advance(self):
        assert QThread.currentThread() is self.thread()
        self.progressBarAdvance(1)

    def onDeleteWidget(self):
        super().onDeleteWidget()
        if self.__awaiting_state is not None:
            self.__awaiting_state.watcher.done.disconnect(
                self.__commit_complete)
            self.__awaiting_state.pb.advance.disconnect(
                self.__progress_advance)
            self.__awaiting_state = None

    @staticmethod
    def sizeHint():
        return QSize(1100, 500)

    def closeEvent(self, event):
        self.splitter_state = bytes(self.splitter.saveState())
        self.header_state = bytes(self.view.header().saveState())
        super().closeEvent(event)

    def load_and_output(self, path):
        if path is None:
            self.Outputs.data.send(None)
            self.info.set_output_summary(self.info.NoOutput)
        else:
            data = self.load_data(path)
            self.Outputs.data.send(data)
            self.info.set_output_summary(len(data),
                                         format_summary_details(data))

        self.current_output = path
        self.__update_cached_state()

    @staticmethod
    def load_data(path):
        return Orange.data.Table(path)

    def list_remote(self):
        # type: () -> Dict[Tuple[str, ...], dict]
        client = ServerFiles(server=self.INDEX_URL)
        return client.allinfo()

    def list_local(self):
        # type: () -> Dict[Tuple[str, ...], dict]
        return LocalFiles(self.local_cache_path).allinfo()
Example #53
0
 def show_splash_message(self, message: str, color=QColor()):
     """Display splash screen message"""
     splash = self.splash_screen()
     if splash is not None:
         splash.show()
         splash.showMessage(message, color=color)
 def setColor(self, color):
     self.setBrush(QBrush(QColor(color)) if color else Node.BRUSH_DEFAULT)
Example #55
0
    def display_contingency(self):
        """
        Set the contingency to display.
        """
        cont = self.contingencies
        var, cvar = self.var, self.cvar
        if cont is None or not len(cont):
            return
        self.plot.clear()
        self.plot_prob.clear()
        self._legend.clear()
        self.tooltip_items = []

        if self.show_prob:
            self.ploti.showAxis('right')
        else:
            self.ploti.hideAxis('right')

        bottomaxis = self.ploti.getAxis("bottom")
        bottomaxis.setLabel(var.name)
        bottomaxis.resizeEvent()

        cvar_values = cvar.values
        colors = [QColor(*col) for col in cvar.colors]

        if var and var.is_continuous:
            bottomaxis.setTicks(None)

            weights, cols, cvar_values, curves = [], [], [], []
            for i, dist in enumerate(cont):
                v, W = dist
                if len(v):
                    weights.append(numpy.sum(W))
                    cols.append(colors[i])
                    cvar_values.append(cvar.values[i])
                    curves.append(ash_curve(
                        dist, cont, m=OWDistributions.ASH_HIST,
                        smoothing_factor=self.smoothing_factor))
            weights = numpy.array(weights)
            sumw = numpy.sum(weights)
            weights /= sumw
            colors = cols
            curves = [(X, Y * w) for (X, Y), w in zip(curves, weights)]

            curvesline = [] #from histograms to lines
            for X, Y in curves:
                X = X + (X[1] - X[0])/2
                X = X[:-1]
                X = numpy.array(X)
                Y = numpy.array(Y)
                curvesline.append((X, Y))

            for t in ["fill", "line"]:
                curve_data = list(zip(curvesline, colors, weights, cvar_values))
                for (X, Y), color, w, cval in reversed(curve_data):
                    item = pg.PlotCurveItem()
                    pen = QPen(QBrush(color), 3)
                    pen.setCosmetic(True)
                    color = QColor(color)
                    color.setAlphaF(0.2)
                    item.setData(X, Y/(w if self.relative_freq else 1),
                                 antialias=True, stepMode=False,
                                 fillLevel=0 if t == "fill" else None,
                                 brush=QBrush(color), pen=pen)
                    self.plot.addItem(item)
                    if t == "line":
                        item.tooltip = "{}\n{}={}".format(
                            "Normalized density " if self.relative_freq else "Density ",
                            cvar.name, cval)
                        self.tooltip_items.append((self.plot, item))

            if self.show_prob:
                all_X = numpy.array(numpy.unique(numpy.hstack([X for X, _ in curvesline])))
                inter_X = numpy.array(numpy.linspace(all_X[0], all_X[-1], len(all_X)*2))
                curvesinterp = [numpy.interp(inter_X, X, Y) for (X, Y) in curvesline]
                sumprob = numpy.sum(curvesinterp, axis=0)
                legal = sumprob > 0.05 * numpy.max(sumprob)

                i = len(curvesinterp) + 1
                show_all = self.show_prob == i
                for Y, color, cval in reversed(list(zip(curvesinterp, colors, cvar_values))):
                    i -= 1
                    if show_all or self.show_prob == i:
                        item = pg.PlotCurveItem()
                        pen = QPen(QBrush(color), 3, style=Qt.DotLine)
                        pen.setCosmetic(True)
                        prob = Y[legal] / sumprob[legal]
                        item.setData(
                            inter_X[legal], prob, antialias=True, stepMode=False,
                            fillLevel=None, brush=None, pen=pen)
                        self.plot_prob.addItem(item)
                        item.tooltip = "Probability that \n" + cvar.name + "=" + cval
                        self.tooltip_items.append((self.plot_prob, item))

        elif var and var.is_discrete:
            bottomaxis.setTicks([list(enumerate(var.values))])

            cont = numpy.array(cont)

            maxh = 0 #maximal column height
            maxrh = 0 #maximal relative column height
            scvar = cont.sum(axis=1)
            #a cvar with sum=0 with allways have distribution counts 0,
            #therefore we can divide it by anything
            scvar[scvar == 0] = 1
            for i, (value, dist) in enumerate(zip(var.values, cont.T)):
                maxh = max(maxh, max(dist))
                maxrh = max(maxrh, max(dist/scvar))

            for i, (value, dist) in enumerate(zip(var.values, cont.T)):
                dsum = sum(dist)
                geom = QRectF(i - 0.333, 0, 0.666,
                              maxrh if self.relative_freq else maxh)
                if self.show_prob:
                    prob = dist / dsum
                    ci = 1.96 * numpy.sqrt(prob * (1 - prob) / dsum)
                else:
                    ci = None
                item = DistributionBarItem(geom, dist/scvar/maxrh
                                           if self.relative_freq
                                           else dist/maxh, colors)
                self.plot.addItem(item)
                tooltip = "\n".join(
                    "%s: %.*f" % (n, 3 if self.relative_freq else 1, v)
                    for n, v in zip(cvar_values, dist/scvar if self.relative_freq else dist))
                item.tooltip = "{} ({}={}):\n{}".format(
                    "Normalized frequency " if self.relative_freq else "Frequency ",
                    cvar.name, value, tooltip)
                self.tooltip_items.append((self.plot, item))

                if self.show_prob:
                    item.tooltip += "\n\nProbabilities:"
                    for ic, a in enumerate(dist):
                        if self.show_prob - 1 != ic and \
                                self.show_prob - 1 != len(dist):
                            continue
                        position = -0.333 + ((ic+0.5)*0.666/len(dist))
                        if dsum < 1e-6:
                            continue
                        prob = a / dsum
                        if not 1e-6 < prob < 1 - 1e-6:
                            continue
                        ci = 1.96 * sqrt(prob * (1 - prob) / dsum)
                        item.tooltip += "\n%s: %.3f ± %.3f" % (cvar_values[ic], prob, ci)
                        mark = pg.ScatterPlotItem()
                        errorbar = pg.ErrorBarItem()
                        pen = QPen(QBrush(QColor(0)), 1)
                        pen.setCosmetic(True)
                        errorbar.setData(x=[i+position], y=[prob],
                                         bottom=min(numpy.array([ci]), prob),
                                         top=min(numpy.array([ci]), 1 - prob),
                                         beam=numpy.array([0.05]),
                                         brush=QColor(1), pen=pen)
                        mark.setData([i+position], [prob], antialias=True, symbol="o",
                                     fillLevel=None, pxMode=True, size=10,
                                     brush=QColor(colors[ic]), pen=pen)
                        self.plot_prob.addItem(errorbar)
                        self.plot_prob.addItem(mark)

        for color, name in zip(colors, cvar_values):
            self._legend.addItem(
                ScatterPlotItem(pen=color, brush=color, size=10, shape="s"),
                escape(name)
            )
        self._legend.show()
Example #56
0
 def _create_legend(self, anchor, brush=QBrush(QColor(232, 232, 232, 200))):
     # by default the legend transparency was to high for colorful maps
     legend = LegendItem(brush=brush)
     legend.setParentItem(self.plot_widget.getViewBox())
     legend.restoreAnchor(anchor)
     return legend
from orangecontrib.imageanalytics.image_grid import ImageGrid
from orangecontrib.imageanalytics.widgets.owimageviewer import ImageLoader, Preview

_log = logging.getLogger(__name__)

_ImageItem = namedtuple(
    "_ImageItem",
    [
        "index",  # Index in the input data table
        "widget",  # GraphicsThumbnailWidget displaying the image.
        "url",  # Composed final image url.
        "future"
    ]  # Future instance yielding an QImage
)

DEFAULT_SELECTION_BRUSH = QBrush(QColor(217, 232, 252, 192))
DEFAULT_SELECTION_PEN = QPen(QColor(125, 162, 206, 192))


class OWImageGrid(widget.OWWidget):
    name = "Image Grid"
    description = "Visualize images in a similarity grid"
    icon = "icons/ImageGrid.svg"
    priority = 160
    keywords = ["image", "grid", "similarity"]
    graph_name = "scene"

    class Inputs:
        data = Input("Embeddings", Orange.data.Table)
        data_subset = Input("Data Subset", Orange.data.Table)
Example #58
0
        def add_rect(x0,
                     x1,
                     y0,
                     y1,
                     condition,
                     used_attrs,
                     used_vals,
                     attr_vals=""):
            area_index = len(self.areas)
            if x0 == x1:
                x1 += 1
            if y0 == y1:
                y1 += 1

            # rectangles of width and height 1 are not shown - increase
            if x1 - x0 + y1 - y0 == 2:
                y1 += 1

            if class_var:
                colors = [QColor(*col) for col in class_var.colors]
            else:
                colors = None

            def select_area(_, ev):
                self.select_area(area_index, ev)

            def rect(x, y, w, h, z, pen_color=None, brush_color=None, **args):
                if pen_color is None:
                    return CanvasRectangle(self.canvas,
                                           x,
                                           y,
                                           w,
                                           h,
                                           z=z,
                                           onclick=select_area,
                                           **args)
                if brush_color is None:
                    brush_color = pen_color
                return CanvasRectangle(self.canvas,
                                       x,
                                       y,
                                       w,
                                       h,
                                       pen_color,
                                       brush_color,
                                       z=z,
                                       onclick=select_area,
                                       **args)

            def line(x1, y1, x2, y2):
                r = QGraphicsLineItem(x1, y1, x2, y2, None)
                self.canvas.addItem(r)
                r.setPen(QPen(Qt.white, 2))
                r.setZValue(30)

            outer_rect = rect(x0, y0, x1 - x0, y1 - y0, 30)
            self.areas.append((used_attrs, used_vals, outer_rect))
            if not conditionaldict[attr_vals]:
                return

            if self.interior_coloring == self.PEARSON:
                s = sum(apriori_dists[0])
                expected = s * reduce(
                    mul, (apriori_dists[i][used_vals[i]] / float(s)
                          for i in range(len(used_vals))))
                actual = conditionaldict[attr_vals]
                pearson = (actual - expected) / sqrt(expected)
                if pearson == 0:
                    ind = 0
                else:
                    ind = max(0, min(int(log(abs(pearson), 2)), 3))
                color = [self.RED_COLORS, self.BLUE_COLORS][pearson > 0][ind]
                rect(x0, y0, x1 - x0, y1 - y0, -20, color)
                outer_rect.setToolTip(
                    condition + "<hr/>" + "Expected instances: %.1f<br>"
                    "Actual instances: %d<br>"
                    "Standardized (Pearson) residual: %.1f" %
                    (expected, conditionaldict[attr_vals], pearson))
            else:
                cls_values = get_variable_values_sorted(class_var)
                prior = get_distribution(data, class_var.name)
                total = 0
                for i, value in enumerate(cls_values):
                    val = conditionaldict[attr_vals + "-" + value]
                    if val == 0:
                        continue
                    if i == len(cls_values) - 1:
                        v = y1 - y0 - total
                    else:
                        v = ((y1 - y0) * val) / conditionaldict[attr_vals]
                    rect(x0, y0 + total, x1 - x0, v, -20, colors[i])
                    total += v

                if self.use_boxes and \
                        abs(x1 - x0) > bar_width and \
                        abs(y1 - y0) > bar_width:
                    total = 0
                    line(x0 + bar_width, y0, x0 + bar_width, y1)
                    n = sum(prior)
                    for i, (val, color) in enumerate(zip(prior, colors)):
                        if i == len(prior) - 1:
                            h = y1 - y0 - total
                        else:
                            h = (y1 - y0) * val / n
                        rect(x0, y0 + total, bar_width, h, 20, color)
                        total += h

                if conditionalsubsetdict:
                    if conditionalsubsetdict[attr_vals]:
                        counts = [
                            conditionalsubsetdict[attr_vals + "-" + val]
                            for val in cls_values
                        ]
                        if sum(counts) == 1:
                            rect(x0 - 2,
                                 y0 - 2,
                                 x1 - x0 + 5,
                                 y1 - y0 + 5,
                                 -550,
                                 colors[counts.index(1)],
                                 Qt.white,
                                 penWidth=2,
                                 penStyle=Qt.DashLine)
                        if self.subset_data is not None:
                            line(x1 - bar_width, y0, x1 - bar_width, y1)
                            total = 0
                            n = conditionalsubsetdict[attr_vals]
                            if n:
                                for i, (cls, color) in \
                                        enumerate(zip(cls_values, colors)):
                                    val = conditionalsubsetdict[attr_vals +
                                                                "-" + cls]
                                    if val == 0:
                                        continue
                                    if i == len(prior) - 1:
                                        v = y1 - y0 - total
                                    else:
                                        v = ((y1 - y0) * val) / n
                                    rect(x1 - bar_width, y0 + total, bar_width,
                                         v, 15, color)
                                    total += v

                actual = [
                    conditionaldict[attr_vals + "-" + cls_values[i]]
                    for i in range(len(prior))
                ]
                n_actual = sum(actual)
                if n_actual > 0:
                    apriori = [prior[key] for key in cls_values]
                    n_apriori = sum(apriori)
                    text = "<br/>".join(
                        "<b>%s</b>: %d / %.1f%% (Expected %.1f / %.1f%%)" %
                        (cls, act, 100.0 * act / n_actual,
                         apr / n_apriori * n_actual, 100.0 * apr / n_apriori)
                        for cls, act, apr in zip(cls_values, actual, apriori))
                else:
                    text = ""
                outer_rect.setToolTip("{}<hr>Instances: {}<br><br>{}".format(
                    condition, n_actual, text[:-4]))
 def color(self):
     """
     Return the arrow brush color.
     """
     return QColor(self.__color)
 def setColor(self, color):
     self.setPen(QPen(QColor(color or Qt.gray), self.pen().width()))