Example #1
0
def EMSA_PKCS1_V1_5_ENCODE(hash, emLen):
    """
    Implement the ``EMSA-PKCS1-V1_5-ENCODE`` function, as defined
    in PKCS#1 v2.1 (RFC3447, 9.2).

    ``EMSA-PKCS1-V1_5-ENCODE`` actually accepts the message ``M`` as input,
    and hash it internally. Here, we expect that the message has already
    been hashed instead.

    :Parameters:
     hash : hash object
            The hash object that holds the digest of the message being signed.
     emLen : int
            The length the final encoding must have, in bytes.

    :attention: the early standard (RFC2313) stated that ``DigestInfo``
        had to be BER-encoded. This means that old signatures
        might have length tags in indefinite form, which
        is not supported in DER. Such encoding cannot be
        reproduced by this function.

    :attention: the same standard defined ``DigestAlgorithm`` to be
        of ``AlgorithmIdentifier`` type, where the PARAMETERS
        item is optional. Encodings for ``MD2/4/5`` without
        ``PARAMETERS`` cannot be reproduced by this function.

    :Return: An ``emLen`` byte long string that encodes the hash.
    """

    # First, build the ASN.1 DER object DigestInfo:
    #
    #   DigestInfo ::= SEQUENCE {
    #       digestAlgorithm AlgorithmIdentifier,
    #       digest OCTET STRING
    #   }
    #
    # where digestAlgorithm identifies the hash function and shall be an
    # algorithm ID with an OID in the set PKCS1-v1-5DigestAlgorithms.
    #
    #   PKCS1-v1-5DigestAlgorithms    ALGORITHM-IDENTIFIER ::= {
    #       { OID id-md2 PARAMETERS NULL    }|
    #       { OID id-md5 PARAMETERS NULL    }|
    #       { OID id-sha1 PARAMETERS NULL   }|
    #       { OID id-sha256 PARAMETERS NULL }|
    #       { OID id-sha384 PARAMETERS NULL }|
    #       { OID id-sha512 PARAMETERS NULL }
    #   }
    #
    digestAlgo = DerSequence([hash.oid, DerNull().encode()])
    digest = DerOctetString(hash.digest())
    digestInfo = DerSequence([digestAlgo.encode(), digest.encode()]).encode()

    # We need at least 11 bytes for the remaining data: 3 fixed bytes and
    # at least 8 bytes of padding).
    if emLen < len(digestInfo) + 11:
        raise ValueError(
            "Selected hash algorith has a too long digest (%d bytes)." %
            len(digest))
    PS = bchr(0xFF) * (emLen - len(digestInfo) - 3)
    return b("\x00\x01") + PS + bchr(0x00) + digestInfo
Example #2
0
 def testEncode1(self):
     # Empty sequence
     der = DerOctetString()
     self.assertEquals(der.encode(), b('\x04\x00'))
     # Small payload
     der.payload = b('\x01\x02')
     self.assertEquals(der.encode(), b('\x04\x02\x01\x02'))
Example #3
0
def generate_privkey(d, generator):
    """
        Generate a private key with explicit parameters.
    """
    modulus_bytes = 48
    a = P384.a % P384.p
    public_key = d * generator
    generator = (b'\x04' + generator.x.to_bytes(modulus_bytes, "big") +
                 generator.y.to_bytes(modulus_bytes, "big"))
    public_key = (b'\x04' + public_key.x.to_bytes(modulus_bytes, "big") +
                  public_key.y.to_bytes(modulus_bytes, "big"))

    field_parameters = DerSequence([DerObjectId("1.2.840.10045.1.1"), P384.p])
    parameters = [
        DerSequence([
            1, field_parameters,
            DerSequence([
                DerOctetString(a.to_bytes(modulus_bytes, "big")),
                DerOctetString(P384.b.to_bytes(modulus_bytes, "big"))
            ]),
            DerOctetString(generator), P384.q, 1
        ])
    ]
    seq = [
        1,
        DerOctetString(d.to_bytes(modulus_bytes, "big")),
        DerSequence(parameters, implicit=0),
        DerBitString(public_key, explicit=1)
    ]

    return seq
Example #4
0
 def testEncode1(self):
     # Empty sequence
     der = DerOctetString()
     self.assertEqual(der.encode(), b('\x04\x00'))
     # Small payload
     der.payload = b('\x01\x02')
     self.assertEqual(der.encode(), b('\x04\x02\x01\x02'))
Example #5
0
 def testDecode1(self):
     # Empty sequence
     der = DerOctetString()
     der.decode(b('\x04\x00'))
     self.assertEqual(der.payload, b(''))
     # Small payload
     der.decode(b('\x04\x02\x01\x02'))
     self.assertEqual(der.payload, b('\x01\x02'))
Example #6
0
    def decrypt(data, passphrase):
        """Decrypt a piece of data using a passphrase and *PBES1*.

        The algorithm to use is automatically detected.

        :Parameters:
          data : byte string
            The piece of data to decrypt.
          passphrase : byte string
            The passphrase to use for decrypting the data.
        :Returns:
          The decrypted data, as a binary string.
        """

        enc_private_key_info = DerSequence().decode(data)
        encrypted_algorithm = DerSequence().decode(enc_private_key_info[0])
        encrypted_data = DerOctetString().decode(
            enc_private_key_info[1]).payload

        pbe_oid = DerObjectId().decode(encrypted_algorithm[0]).value
        cipher_params = {}
        if pbe_oid == _OID_PBE_WITH_MD5_AND_DES_CBC:
            # PBE_MD5_DES_CBC
            hashmod = MD5
            ciphermod = DES
        elif pbe_oid == _OID_PBE_WITH_MD5_AND_RC2_CBC:
            # PBE_MD5_RC2_CBC
            hashmod = MD5
            ciphermod = ARC2
            cipher_params['effective_keylen'] = 64
        elif pbe_oid == _OID_PBE_WITH_SHA1_AND_DES_CBC:
            # PBE_SHA1_DES_CBC
            hashmod = SHA1
            ciphermod = DES
        elif pbe_oid == _OID_PBE_WITH_SHA1_AND_RC2_CBC:
            # PBE_SHA1_RC2_CBC
            hashmod = SHA1
            ciphermod = ARC2
            cipher_params['effective_keylen'] = 64
        else:
            raise PbesError("Unknown OID for PBES1")

        pbe_params = DerSequence().decode(encrypted_algorithm[1],
                                          nr_elements=2)
        salt = DerOctetString().decode(pbe_params[0]).payload
        iterations = pbe_params[1]

        key_iv = PBKDF1(passphrase, salt, 16, iterations, hashmod)
        key, iv = key_iv[:8], key_iv[8:]

        cipher = ciphermod.new(key, ciphermod.MODE_CBC, iv, **cipher_params)
        pt = cipher.decrypt(encrypted_data)
        return unpad(pt, cipher.block_size)
 def finalize_padded(self, pkey):
     if pkey.key_type not in (HAL_KEY_TYPE_RSA_PRIVATE, HAL_KEY_TYPE_RSA_PUBLIC):
         return self.finalize()
     # PKCS #1.5 requires the digest to be wrapped up in an ASN.1 DigestInfo object.
     from Crypto.Util.asn1 import DerSequence, DerNull, DerOctetString
     return DerSequence([DerSequence([self._context.oid, DerNull().encode()]).encode(),
                         DerOctetString(self.finalize()).encode()]).encode()
Example #8
0
    def _export_private_der(self, include_ec_params=True):

        assert self.has_private()

        # ECPrivateKey ::= SEQUENCE {
        #           version        INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
        #           privateKey     OCTET STRING,
        #           parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
        #           publicKey  [1] BIT STRING OPTIONAL
        #    }

        # Public key - uncompressed form
        modulus_bytes = self.pointQ.size_in_bytes()
        public_key = (b'\x04' + self.pointQ.x.to_bytes(modulus_bytes) +
                      self.pointQ.y.to_bytes(modulus_bytes))

        seq = [
            1,
            DerOctetString(self.d.to_bytes(modulus_bytes)),
            DerObjectId(self._curve.oid, explicit=0),
            DerBitString(public_key, explicit=1)
        ]

        if not include_ec_params:
            del seq[2]

        return DerSequence(seq).encode()
Example #9
0
 def encode_EncryptedPrivateKeyInfo(self, der):
     from Crypto.Util.asn1 import DerSequence, DerOctetString
     return DerSequence([
         DerSequence([
             chr(0x06) + chr(len(self.oid_aesKeyWrap)) + self.oid_aesKeyWrap
         ]).encode(),
         DerOctetString(der).encode()
     ]).encode()
Example #10
0
 def _encode(self, message):
     hash_oid = self.hash_function.get_OID()
     digest = self.hash_function.hash(message)
     der_digest = DerOctetString(digest).encode()
     der_null = DerNull().encode()
     der_sequence = DerSequence([hash_oid, der_null]).encode()
     hash_info = DerSequence([der_sequence, der_digest]).encode()
     hash_size = len(hash_info)
     padding = '\xff'*(self.n_size - hash_size - 3)
     return '\x00\x01' + padding + '\0' + hash_info
Example #11
0
def pkcs1_v1_5_encode(msg_hash: SHA256.SHA256Hash, emLen: int) -> bytes:
    # this code is copied from  EMSA_PKCS1_V1_5_ENCODE
    # https://github.com/dlitz/pycrypto/blob/v2.7a1/lib/Crypto/Signature/PKCS1_v1_5.py#L173
    digestAlgo = DerSequence([ DerObjectId(msg_hash.oid).encode() ])

    #if with_hash_parameters:
    if True:
        digestAlgo.append(DerNull().encode())

    digest      = DerOctetString(msg_hash.digest())
    digestInfo  = DerSequence([
                    digestAlgo.encode(),
                      digest.encode()
                    ]).encode()

    # We need at least 11 bytes for the remaining data: 3 fixed bytes and
    # at least 8 bytes of padding).
    if emLen<len(digestInfo)+11:
          raise TypeError("Selected hash algorith has a too long digest (%d bytes)." % len(digest))
    PS = b'\xFF' * (emLen - len(digestInfo) - 3)
    return b'\x00\x01' + PS + b'\x00' + digestInfo
Example #12
0
def generate_spoofed_key(pubkey):
    x = int(pubkey[0:96], 16)
    y = int(pubkey[96:], 16)
    # Generate rogue generator
    # Generate degenerate case rogue generator
    privkey = '\x01'
    rogueG = unhexlify(b"04" + hex2(x).encode() + hex2(y).encode())

    # Generate the file with explicit parameters
    der = get_der(ec_key_template)

    # Replace private key
    octet_der = DerOctetString(privkey)
    der[1] = octet_der.encode()

    # Replace public key
    der[3] = b"\xa1\x64\x03b\x00" + unhexlify(b"04" + pubkey)

    # Replace the generator
    seq_der = DerSequence()
    seq_der.decode(der[2][4:])
    s = seq_der._seq
    octet_der = DerOctetString(rogueG)
    s[3] = octet_der.encode()

    seq_der = DerSequence(s)
    der[2] = der[2][:4] + seq_der.encode()

    seq_der = DerSequence(der)
    return PEMHelper.PEMEncode(seq_der.encode(), 'EC PRIVATE KEY')
Example #13
0
 def parse_EncryptedPrivateKeyInfo(self, der):
     from Crypto.Util.asn1 import DerObject, DerSequence, DerOctetString, DerObjectId
     encryptedPrivateKeyInfo = DerSequence()
     encryptedPrivateKeyInfo.decode(der)
     encryptionAlgorithm = DerSequence()
     algorithm = DerObjectId()
     encryptedData = DerOctetString()
     encryptionAlgorithm.decode(encryptedPrivateKeyInfo[0])
     DerObject.decode(algorithm, encryptionAlgorithm[0])
     DerObject.decode(encryptedData, encryptedPrivateKeyInfo[1])
     if algorithm.payload != self.oid_aesKeyWrap:
         raise ValueError
     return encryptedData.payload
Example #14
0
 def testDecode1(self):
     # Empty sequence
     der = DerOctetString()
     der.decode(b('\x04\x00'))
     self.assertEquals(der.payload, b(''))
     # Small payload
     der.decode(b('\x04\x02\x01\x02'))
     self.assertEquals(der.payload, b('\x01\x02'))
Example #15
0
        def CRYPTO_EMSA_PKCS1_V1_5_ENCODE(M, emLen):
            msg_hash = SHA256.new(M)
            digestAlgo = DerSequence([DerObjectId(msg_hash.oid).encode()])
            print(digestAlgo)

            digestAlgo.append(DerNull().encode())

            digest = DerOctetString(msg_hash.digest())
            digestInfo = DerSequence([digestAlgo.encode(),
                                      digest.encode()]).encode()
            print("%x" % int.from_bytes(digestInfo, byteorder='big'))
            print("%x" % int.from_bytes(digestAlgo.encode(), byteorder='big'))
            print("%x" % int.from_bytes(digest.encode(), byteorder='big'))
            print("%x" % int.from_bytes(msg_hash.digest(), byteorder='big'))

            #b91d0b7a09f57c109926a449647283adb5dc213c0fdb0cf2b219e064cc132273 2004 00 0501020403650148866009060d30 3130
            #                                                                          501020403650148866009060d30
            #b91d0b7a09f57c109926a449647283adb5dc213c0fdb0cf2b219e064cc132273 2004
            #b91d0b7a09f57c109926a449647283adb5dc213c0fdb0cf2b219e064cc132273
            #b91d0b7a09f57c109926a449647283adb5dc213c0fdb0cf2b219e064cc1322732004000501020403650148866009060d30313000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0100

            #3031 300d06096086480165030402010500 0420 732213cc64e019b2f20cdb0f3c21dcb5ad83726449a42699107cf5097a0b1db9
            #     300d06096086480165030402010500
            #                                    0420 732213cc64e019b2f20cdb0f3c21dcb5ad83726449a42699107cf5097a0b1db9
            #                                         732213cc64e019b2f20cdb0f3c21dcb5ad83726449a42699107cf5097a0b1db9
            #0001ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff003031300d060960864801650304020105000420732213cc64e019b2f20cdb0f3c21dcb5ad83726449a42699107cf5097a0b1db9

            # We need at least 11 bytes for the remaining data: 3 fixed bytes and
            # at least 8 bytes of padding).
            if emLen < len(digestInfo) + 11:
                raise TypeError(
                    "Selected hash algorith has a too long digest (%d bytes)."
                    % len(digest))
            PS = b'\xFF' * (emLen - len(digestInfo) - 3)
            out = b'\x00\x01' + PS + b'\x00' + digestInfo
            print("%x" % int.from_bytes(out, byteorder='big'))
            return out
Example #16
0
def _import_private_der(encoded, passphrase, curve_oid=None):

    # See RFC5915 https://tools.ietf.org/html/rfc5915
    #
    # ECPrivateKey ::= SEQUENCE {
    #           version        INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
    #           privateKey     OCTET STRING,
    #           parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
    #           publicKey  [1] BIT STRING OPTIONAL
    #    }

    private_key = DerSequence().decode(encoded, nr_elements=(3, 4))
    if private_key[0] != 1:
        raise ValueError("Incorrect ECC private key version")

    try:
        parameters = DerObjectId(explicit=0).decode(private_key[2]).value
        if curve_oid is not None and parameters != curve_oid:
            raise ValueError("Curve mismatch")
        curve_oid = parameters
    except ValueError:
        pass

    if curve_oid is None:
        raise ValueError("No curve found")

    for curve_name, curve in _curves.items():
        if curve.oid == curve_oid:
            break
    else:
        raise UnsupportedEccFeature("Unsupported ECC curve (OID: %s)" %
                                    curve_oid)

    scalar_bytes = DerOctetString().decode(private_key[1]).payload
    modulus_bytes = curve.p.size_in_bytes()
    if len(scalar_bytes) != modulus_bytes:
        raise ValueError("Private key is too small")
    d = Integer.from_bytes(scalar_bytes)

    # Decode public key (if any)
    if len(private_key) == 4:
        public_key_enc = DerBitString(explicit=1).decode(private_key[3]).value
        public_key = _import_public_der(curve_oid, public_key_enc)
        point_x = public_key.pointQ.x
        point_y = public_key.pointQ.y
    else:
        point_x = point_y = None

    return construct(curve=curve_name, d=d, point_x=point_x, point_y=point_y)
def _import_private_der(encoded, passphrase, curve_name=None):

    # ECPrivateKey ::= SEQUENCE {
    #           version        INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
    #           privateKey     OCTET STRING,
    #           parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
    #           publicKey  [1] BIT STRING OPTIONAL
    #    }

    private_key = DerSequence().decode(encoded, nr_elements=(3, 4))
    if private_key[0] != 1:
        raise ValueError("Incorrect ECC private key version")

    try:
        curve_name = DerObjectId(explicit=0).decode(private_key[2]).value
    except ValueError:
        pass

    if curve_name != _curve.oid:
        raise UnsupportedEccFeature("Unsupported ECC curve (OID: %s)" %
                                    curve_name)

    scalar_bytes = DerOctetString().decode(private_key[1]).payload
    order_bytes = _curve.order.size_in_bytes()
    if len(scalar_bytes) != order_bytes:
        raise ValueError("Private key is too small")
    d = Integer.from_bytes(scalar_bytes)

    # Decode public key (if any, it must be P-256)
    if len(private_key) == 4:
        public_key_enc = DerBitString(explicit=1).decode(private_key[3]).value
        public_key = _import_public_der(curve_name, public_key_enc)
        point_x = public_key.pointQ.x
        point_y = public_key.pointQ.y
    else:
        point_x = point_y = None

    return construct(curve="P-256", d=d, point_x=point_x, point_y=point_y)
Example #18
0
def forge(certificate_path: str, key_pem: str):
    """
    given a valid certificate_path and key_pem create a forged key
    """
    public_key_point = get_public_key(certificate_path)
    Q = Point(int(public_key_point[0:96], 16),
              int(public_key_point[96:], 16),
              curve=P384)

    # Generate rogue generator
    privkey_inv = 2
    # we take the private key as being the inverse of 2 modulo the curve order
    private_key = gmpy2.invert(privkey_inv, P384.q)  # pylint: disable=c-extension-no-member
    private_key = unhexlify(f"{private_key:x}".encode())
    # we multply our public key Q with the inverse of our chosen private key value
    roug_g = privkey_inv * Q
    roug_g = unhexlify(b"04" + f"{roug_g.x:x}".encode() +
                       f"{roug_g.y:x}".encode())

    # Generate the file with explicit parameters
    with open(key_pem, mode="rt") as handle:
        keyfile = PEM.decode(handle.read())

    seq_der = DerSequence()
    der = seq_der.decode(keyfile[0])

    # Replace private key
    octet_der = DerOctetString(private_key)
    der[1] = octet_der.encode()

    # Replace public key
    bits_der = DerBitString(unhexlify(b"04" + public_key_point))
    der[3] = b"\xa1\x64" + bits_der.encode()

    # Replace the generator
    seq_der = DerSequence()
    s = seq_der.decode(der[2][4:])  # pylint: disable=invalid-name
    octet_der = DerOctetString(roug_g)
    s[3] = octet_der.encode()
    der[2] = der[2][:4] + s.encode()

    return PEM.encode(der.encode(), "EC PRIVATE KEY")
Example #19
0
 def testErrDecode1(self):
     # No leftovers allowed
     der = DerOctetString()
     self.assertRaises(ValueError, der.decode, b('\x04\x01\x01\xff'))
Example #20
0
 def testDecode2(self):
     # Verify that decode returns the object
     der = DerOctetString()
     self.assertEqual(der, der.decode(b('\x04\x00')))
Example #21
0
def pkcs1_hash_and_pad(text):
    return DerSequence([
        DerSequence([SHA256.oid, DerNull().encode()]).encode(),
        DerOctetString(SHA256(text).digest()).encode()
    ]).encode()
Example #22
0
 def testInit1(self):
     der = DerOctetString(b('\xFF'))
     self.assertEquals(der.encode(), b('\x04\x01\xFF'))
Example #23
0
def SignTransaction(UnsignedTx, prK):
    h = hs.sha256(hs.sha256(UnsignedTx.encode('utf-8')).digest()).digest()
    sk = SigningKey.from_string(prK, curve=SECP256k1)
    sig = sk.sign(h)
    derSig = DerOctetString(sig)
    return (derSig.encode())
Example #24
0
def unwrap(p8_private_key, passphrase=None):
    """Unwrap a private key from a PKCS#8 blob (clear or encrypted).

    Args:
      p8_private_key (byte string):
        The private key wrapped into a PKCS#8 blob, DER encoded.
      passphrase (byte string or string):
        The passphrase to use to decrypt the blob (if it is encrypted).

    Return:
      A tuple containing

       #. the algorithm identifier of the wrapped key (OID, dotted string)
       #. the private key (byte string, DER encoded)
       #. the associated parameters (byte string, DER encoded) or ``None``

    Raises:
      ValueError : if decoding fails
    """

    if passphrase:
        passphrase = tobytes(passphrase)

        found = False
        try:
            p8_private_key = PBES1.decrypt(p8_private_key, passphrase)
            found = True
        except PbesError as e:
            error_str = "PBES1[%s]" % str(e)
        except ValueError:
            error_str = "PBES1[Invalid]"

        if not found:
            try:
                p8_private_key = PBES2.decrypt(p8_private_key, passphrase)
                found = True
            except PbesError as e:
                error_str += ",PBES2[%s]" % str(e)
            except ValueError:
                error_str += ",PBES2[Invalid]"

        if not found:
            raise ValueError("Error decoding PKCS#8 (%s)" % error_str)

    pk_info = DerSequence().decode(p8_private_key, nr_elements=(2, 3, 4, 5))
    if len(pk_info) == 2 and not passphrase:
        raise ValueError("Not a valid clear PKCS#8 structure "
                         "(maybe it is encrypted?)")

    # RFC5208, PKCS#8, version is v1(0)
    #
    #   PrivateKeyInfo ::= SEQUENCE {
    #       version                 Version,
    #       privateKeyAlgorithm     PrivateKeyAlgorithmIdentifier,
    #       privateKey              PrivateKey,
    #       attributes              [0]  IMPLICIT Attributes OPTIONAL
    #   }
    #
    # RFC5915, Asymmetric Key Package, version is v2(1)
    #
    #   OneAsymmetricKey ::= SEQUENCE {
    #       version                   Version,
    #       privateKeyAlgorithm       PrivateKeyAlgorithmIdentifier,
    #       privateKey                PrivateKey,
    #       attributes            [0] Attributes OPTIONAL,
    #       ...,
    #       [[2: publicKey        [1] PublicKey OPTIONAL ]],
    #       ...
    #   }

    if pk_info[0] == 0:
        if len(pk_info) not in (3, 4):
            raise ValueError("Not a valid PrivateKeyInfo SEQUENCE")
    elif pk_info[0] == 1:
        if len(pk_info) not in (3, 4, 5):
            raise ValueError("Not a valid PrivateKeyInfo SEQUENCE")
    else:
        raise ValueError("Not a valid PrivateKeyInfo SEQUENCE")

    algo = DerSequence().decode(pk_info[1], nr_elements=(1, 2))
    algo_oid = DerObjectId().decode(algo[0]).value
    if len(algo) == 1:
        algo_params = None
    else:
        try:
            DerNull().decode(algo[1])
            algo_params = None
        except:
            algo_params = algo[1]

    # PrivateKey ::= OCTET STRING
    private_key = DerOctetString().decode(pk_info[2]).payload

    # We ignore attributes and (for v2 only) publickey

    return (algo_oid, private_key, algo_params)
Example #25
0
privkey = gmpy2.invert(privkey_inv, P384.q)
privkey = unhexlify(f'{privkey:x}'.encode())
# we multply our public key Q with the inverse of our chosen private key value
rogueG = privkey_inv * Q
rogueG = unhexlify(b"04" + f'{rogueG.x:x}'.encode() + f'{rogueG.y:x}'.encode())

# Generate the file with explicit parameters
f = open('p384-key.pem', 'rt')
keyfile = PEM.decode(f.read())
#print(hexlify(keyfile[0]))
f.close()
seq_der = DerSequence()
der = seq_der.decode(keyfile[0])

# Replace private key
octet_der = DerOctetString(privkey)
der[1] = octet_der.encode()

# Replace public key
#print(hexlify(der[3]))
bits_der = DerBitString(unhexlify(b"04" + pubkey))
der[3] = b"\xa1\x64" + bits_der.encode()
#print(hexlify(der[3]))

# Replace the generator
#print(hexlify(der[2]))
seq_der = DerSequence()
s = seq_der.decode(der[2][4:])
octet_der = DerOctetString(rogueG)
s[3] = octet_der.encode()
der[2] = der[2][:4] + s.encode()
Example #26
0
    def decrypt(data, passphrase):
        """Decrypt a piece of data using a passphrase and *PBES2*.

        The algorithm to use is automatically detected.

        :Parameters:
          data : byte string
            The piece of data to decrypt.
          passphrase : byte string
            The passphrase to use for decrypting the data.
        :Returns:
          The decrypted data, as a binary string.
        """

        enc_private_key_info = DerSequence().decode(data, nr_elements=2)
        enc_algo = DerSequence().decode(enc_private_key_info[0])
        encrypted_data = DerOctetString().decode(
            enc_private_key_info[1]).payload

        pbe_oid = DerObjectId().decode(enc_algo[0]).value
        if pbe_oid != _OID_PBES2:
            raise PbesError("Not a PBES2 object")

        pbes2_params = DerSequence().decode(enc_algo[1], nr_elements=2)

        ### Key Derivation Function selection
        kdf_info = DerSequence().decode(pbes2_params[0], nr_elements=2)
        kdf_oid = DerObjectId().decode(kdf_info[0]).value

        kdf_key_length = None

        # We only support PBKDF2 or scrypt
        if kdf_oid == _OID_PBKDF2:

            pbkdf2_params = DerSequence().decode(kdf_info[1],
                                                 nr_elements=(2, 3, 4))
            salt = DerOctetString().decode(pbkdf2_params[0]).payload
            iteration_count = pbkdf2_params[1]

            left = len(pbkdf2_params) - 2
            idx = 2

            if left > 0:
                try:
                    kdf_key_length = pbkdf2_params[idx] - 0
                    left -= 1
                    idx += 1
                except TypeError:
                    pass

            # Default is HMAC-SHA1
            pbkdf2_prf_oid = "1.2.840.113549.2.7"
            if left > 0:
                pbkdf2_prf_algo_id = DerSequence().decode(pbkdf2_params[idx])
                pbkdf2_prf_oid = DerObjectId().decode(
                    pbkdf2_prf_algo_id[0]).value

        elif kdf_oid == _OID_SCRYPT:

            scrypt_params = DerSequence().decode(kdf_info[1],
                                                 nr_elements=(4, 5))
            salt = DerOctetString().decode(scrypt_params[0]).payload
            iteration_count, scrypt_r, scrypt_p = [
                scrypt_params[x] for x in (1, 2, 3)
            ]
            if len(scrypt_params) > 4:
                kdf_key_length = scrypt_params[4]
            else:
                kdf_key_length = None
        else:
            raise PbesError("Unsupported PBES2 KDF")

        ### Cipher selection
        enc_info = DerSequence().decode(pbes2_params[1])
        enc_oid = DerObjectId().decode(enc_info[0]).value

        if enc_oid == _OID_DES_EDE3_CBC:
            # DES_EDE3_CBC
            ciphermod = DES3
            key_size = 24
        elif enc_oid == _OID_AES128_CBC:
            # AES128_CBC
            ciphermod = AES
            key_size = 16
        elif enc_oid == _OID_AES192_CBC:
            # AES192_CBC
            ciphermod = AES
            key_size = 24
        elif enc_oid == _OID_AES256_CBC:
            # AES256_CBC
            ciphermod = AES
            key_size = 32
        else:
            raise PbesError("Unsupported PBES2 cipher")

        if kdf_key_length and kdf_key_length != key_size:
            raise PbesError("Mismatch between PBES2 KDF parameters"
                            " and selected cipher")

        IV = DerOctetString().decode(enc_info[1]).payload

        # Create cipher
        if kdf_oid == _OID_PBKDF2:
            if pbkdf2_prf_oid == _OID_HMAC_SHA1:
                hmac_hash_module = SHA1
            elif pbkdf2_prf_oid == _OID_HMAC_SHA224:
                hmac_hash_module = SHA224
            elif pbkdf2_prf_oid == _OID_HMAC_SHA256:
                hmac_hash_module = SHA256
            elif pbkdf2_prf_oid == _OID_HMAC_SHA384:
                hmac_hash_module = SHA384
            elif pbkdf2_prf_oid == _OID_HMAC_SHA512:
                hmac_hash_module = SHA512
            else:
                raise PbesError("Unsupported HMAC %s" % pbkdf2_prf_oid)

            key = PBKDF2(passphrase,
                         salt,
                         key_size,
                         iteration_count,
                         hmac_hash_module=hmac_hash_module)
        else:
            key = scrypt(passphrase, salt, key_size, iteration_count, scrypt_r,
                         scrypt_p)
        cipher = ciphermod.new(key, ciphermod.MODE_CBC, IV)

        # Decrypt data
        pt = cipher.decrypt(encrypted_data)
        return unpad(pt, cipher.block_size)
Example #27
0
def unwrap(p8_private_key, passphrase=None):
    """Unwrap a private key from a PKCS#8 blob (clear or encrypted).

    :Parameters:
      p8_private_key : byte string
        The private key wrapped into a PKCS#8 blob, DER encoded.
      passphrase : (byte) string
        The passphrase to use to decrypt the blob (if it is encrypted).
    :Return:
      A tuple containing:

      #. the algorithm identifier of the wrapped key (OID, dotted string)
      #. the private key (byte string, DER encoded)
      #. the associated parameters (byte string, DER encoded) or ``None``

    :Raises ValueError:
      If decoding fails
    """

    if passphrase:
        passphrase = tobytes(passphrase)

        found = False
        try:
            p8_private_key = PBES1.decrypt(p8_private_key, passphrase)
            found = True
        except PbesError as e:
            error_str = "PBES1[%s]" % str(e)
        except ValueError:
            error_str = "PBES1[Invalid]"

        if not found:
            try:
                p8_private_key = PBES2.decrypt(p8_private_key, passphrase)
                found = True
            except PbesError as e:
                error_str += ",PBES2[%s]" % str(e)
            except ValueError:
                error_str += ",PBES2[Invalid]"

        if not found:
            raise ValueError("Error decoding PKCS#8 (%s)" % error_str)

    pk_info = DerSequence().decode(p8_private_key, nr_elements=(2, 3, 4))
    if len(pk_info) == 2 and not passphrase:
        raise ValueError("Not a valid clear PKCS#8 structure "
                         "(maybe it is encrypted?)")

    #
    #   PrivateKeyInfo ::= SEQUENCE {
    #       version                 Version,
    #       privateKeyAlgorithm     PrivateKeyAlgorithmIdentifier,
    #       privateKey              PrivateKey,
    #       attributes              [0]  IMPLICIT Attributes OPTIONAL
    #   }
    #   Version ::= INTEGER
    if pk_info[0] != 0:
        raise ValueError("Not a valid PrivateKeyInfo SEQUENCE")

    # PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
    #
    #   EncryptedPrivateKeyInfo ::= SEQUENCE {
    #       encryptionAlgorithm  EncryptionAlgorithmIdentifier,
    #       encryptedData        EncryptedData
    #   }
    #   EncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

    #   AlgorithmIdentifier  ::=  SEQUENCE  {
    #       algorithm   OBJECT IDENTIFIER,
    #       parameters  ANY DEFINED BY algorithm OPTIONAL
    #   }

    algo = DerSequence().decode(pk_info[1], nr_elements=(1, 2))
    algo_oid = DerObjectId().decode(algo[0]).value
    if len(algo) == 1:
        algo_params = None
    else:
        try:
            DerNull().decode(algo[1])
            algo_params = None
        except:
            algo_params = algo[1]

    #   EncryptedData ::= OCTET STRING
    private_key = DerOctetString().decode(pk_info[2]).payload

    return (algo_oid, private_key, algo_params)
Example #28
0
def _EMSA_PKCS1_V1_5_ENCODE(msg_hash, emLen, with_hash_parameters=True):
    """
    Implement the ``EMSA-PKCS1-V1_5-ENCODE`` function, as defined
    in PKCS#1 v2.1 (RFC3447, 9.2).

    ``_EMSA-PKCS1-V1_5-ENCODE`` actually accepts the message ``M`` as input,
    and hash it internally. Here, we expect that the message has already
    been hashed instead.

    :Parameters:
     msg_hash : hash object
            The hash object that holds the digest of the message being signed.
     emLen : int
            The length the final encoding must have, in bytes.
     with_hash_parameters : bool
            If True (default), include NULL parameters for the hash
            algorithm in the ``digestAlgorithm`` SEQUENCE.

    :attention: the early standard (RFC2313) stated that ``DigestInfo``
        had to be BER-encoded. This means that old signatures
        might have length tags in indefinite form, which
        is not supported in DER. Such encoding cannot be
        reproduced by this function.

    :Return: An ``emLen`` byte long string that encodes the hash.
    """

    # First, build the ASN.1 DER object DigestInfo:
    #
    #   DigestInfo ::= SEQUENCE {
    #       digestAlgorithm AlgorithmIdentifier,
    #       digest OCTET STRING
    #   }
    #
    # where digestAlgorithm identifies the hash function and shall be an
    # algorithm ID with an OID in the set PKCS1-v1-5DigestAlgorithms.
    #
    #   PKCS1-v1-5DigestAlgorithms    ALGORITHM-IDENTIFIER ::= {
    #       { OID id-md2 PARAMETERS NULL    }|
    #       { OID id-md5 PARAMETERS NULL    }|
    #       { OID id-sha1 PARAMETERS NULL   }|
    #       { OID id-sha256 PARAMETERS NULL }|
    #       { OID id-sha384 PARAMETERS NULL }|
    #       { OID id-sha512 PARAMETERS NULL }
    #   }
    #
    # Appendix B.1 also says that for SHA-1/-2 algorithms, the parameters
    # should be omitted. They may be present, but when they are, they shall
    # have NULL value.

    digestAlgo = DerSequence([ DerObjectId(msg_hash.oid).encode() ])

    if with_hash_parameters:
        digestAlgo.append(DerNull().encode())

    digest      = DerOctetString(msg_hash.digest())
    digestInfo  = DerSequence([
                    digestAlgo.encode(),
                    digest.encode()
                    ]).encode()

    # We need at least 11 bytes for the remaining data: 3 fixed bytes and
    # at least 8 bytes of padding).
    if emLen<len(digestInfo)+11:
        raise TypeError("Selected hash algorith has a too long digest (%d bytes)." % len(digest))
    PS = b'\xFF' * (emLen - len(digestInfo) - 3)
    return b'\x00\x01' + PS + b'\x00' + digestInfo
Example #29
0
 def testDecode2(self):
     # Verify that decode returns the object
     der = DerOctetString()
     self.assertEqual(der, der.decode(b('\x04\x00')))
Example #30
0
def EMSA_PKCS1_V1_5_ENCODE(hash, emLen):
    """
    Implement the ``EMSA-PKCS1-V1_5-ENCODE`` function, as defined
    in PKCS#1 v2.1 (RFC3447, 9.2).

    ``EMSA-PKCS1-V1_5-ENCODE`` actually accepts the message ``M`` as input,
    and hash it internally. Here, we expect that the message has already
    been hashed instead.

    :Parameters:
     hash : hash object
            The hash object that holds the digest of the message being signed.
     emLen : int
            The length the final encoding must have, in bytes.

    :attention: the early standard (RFC2313) stated that ``DigestInfo``
        had to be BER-encoded. This means that old signatures
        might have length tags in indefinite form, which
        is not supported in DER. Such encoding cannot be
        reproduced by this function.

    :attention: the same standard defined ``DigestAlgorithm`` to be
        of ``AlgorithmIdentifier`` type, where the PARAMETERS
        item is optional. Encodings for ``MD2/4/5`` without
        ``PARAMETERS`` cannot be reproduced by this function.

    :Return: An ``emLen`` byte long string that encodes the hash.
    """

    # First, build the ASN.1 DER object DigestInfo:
    #
    #   DigestInfo ::= SEQUENCE {
    #       digestAlgorithm AlgorithmIdentifier,
    #       digest OCTET STRING
    #   }
    #
    # where digestAlgorithm identifies the hash function and shall be an
    # algorithm ID with an OID in the set PKCS1-v1-5DigestAlgorithms.
    #
    #   PKCS1-v1-5DigestAlgorithms    ALGORITHM-IDENTIFIER ::= {
    #       { OID id-md2 PARAMETERS NULL    }|
    #       { OID id-md5 PARAMETERS NULL    }|
    #       { OID id-sha1 PARAMETERS NULL   }|
    #       { OID id-sha256 PARAMETERS NULL }|
    #       { OID id-sha384 PARAMETERS NULL }|
    #       { OID id-sha512 PARAMETERS NULL }
    #   }
    #
    digestAlgo = DerSequence([hash.oid, DerNull().encode()])
    digest = DerOctetString(hash.digest())
    digestInfo = DerSequence([
        digestAlgo.encode(),
        digest.encode()
    ]).encode()

    # We need at least 11 bytes for the remaining data: 3 fixed bytes and
    # at least 8 bytes of padding).
    if emLen < len(digestInfo) + 11:
        raise ValueError("Selected hash algorith has a too long digest (%d bytes)." % len(digest))
    PS = bchr(0xFF) * (emLen - len(digestInfo) - 3)
    return b("\x00\x01") + PS + bchr(0x00) + digestInfo
Example #31
0
        raise ValueError("Not a valid PrivateKeyInfo SEQUENCE")

    # PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
    #
    #   EncryptedPrivateKeyInfo ::= SEQUENCE {
    #       encryptionAlgorithm  EncryptionAlgorithmIdentifier,
    #       encryptedData        EncryptedData
    #   }
    #   EncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

    #   AlgorithmIdentifier  ::=  SEQUENCE  {
    #       algorithm   OBJECT IDENTIFIER,
    #       parameters  ANY DEFINED BY algorithm OPTIONAL
    #   }

    algo = DerSequence().decode(pk_info[1], nr_elements=(1, 2))
    algo_oid = DerObjectId().decode(algo[0]).value
    if len(algo) == 1:
        algo_params = None
    else:
        try:
            DerNull().decode(algo[1])
            algo_params = None
        except:
            algo_params = algo[1]

    #   EncryptedData ::= OCTET STRING
    private_key = DerOctetString().decode(pk_info[2]).payload

    return (algo_oid, private_key, algo_params)
Example #32
0
    def encrypt(data, passphrase, protection, prot_params=None, randfunc=None):
        """Encrypt a piece of data using a passphrase and *PBES2*.

        :Parameters:
          data : byte string
            The piece of data to encrypt.
          passphrase : byte string
            The passphrase to use for encrypting the data.
          protection : string
            The identifier of the encryption algorithm to use.
            The default value is '``PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC``'.
          prot_params : dictionary
            Parameters of the protection algorithm.

            +------------------+-----------------------------------------------+
            | Key              | Description                                   |
            +==================+===============================================+
            | iteration_count  | The KDF algorithm is repeated several times to|
            |                  | slow down brute force attacks on passwords    |
            |                  | (called *N* or CPU/memory cost in scrypt).    |
            |                  |                                               |
            |                  | The default value for PBKDF2 is 1 000.        |
            |                  | The default value for scrypt is 16 384.       |
            +------------------+-----------------------------------------------+
            | salt_size        | Salt is used to thwart dictionary and rainbow |
            |                  | attacks on passwords. The default value is 8  |
            |                  | bytes.                                        |
            +------------------+-----------------------------------------------+
            | block_size       | *(scrypt only)* Memory-cost (r). The default  |
            |                  | value is 8.                                   |
            +------------------+-----------------------------------------------+
            | parallelization  | *(scrypt only)* CPU-cost (p). The default     |
            |                  | value is 1.                                   |
            +------------------+-----------------------------------------------+


          randfunc : callable
            Random number generation function; it should accept
            a single integer N and return a string of random data,
            N bytes long. If not specified, a new RNG will be
            instantiated from ``Crypto.Random``.

        :Returns:
          The encrypted data, as a binary string.
        """

        if prot_params is None:
            prot_params = {}

        if randfunc is None:
            randfunc = Random.new().read

        if protection == 'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC':
            key_size = 24
            module = DES3
            cipher_mode = DES3.MODE_CBC
            enc_oid = "1.2.840.113549.3.7"
        elif protection in ('PBKDF2WithHMAC-SHA1AndAES128-CBC',
                            'scryptAndAES128-CBC'):
            key_size = 16
            module = AES
            cipher_mode = AES.MODE_CBC
            enc_oid = "2.16.840.1.101.3.4.1.2"
        elif protection in ('PBKDF2WithHMAC-SHA1AndAES192-CBC',
                            'scryptAndAES192-CBC'):
            key_size = 24
            module = AES
            cipher_mode = AES.MODE_CBC
            enc_oid = "2.16.840.1.101.3.4.1.22"
        elif protection in ('PBKDF2WithHMAC-SHA1AndAES256-CBC',
                            'scryptAndAES256-CBC'):
            key_size = 32
            module = AES
            cipher_mode = AES.MODE_CBC
            enc_oid = "2.16.840.1.101.3.4.1.42"
        else:
            raise ValueError("Unknown mode")

        # Get random data
        iv = randfunc(module.block_size)
        salt = randfunc(prot_params.get("salt_size", 8))

        # Derive key from password
        if protection.startswith('PBKDF2'):
            count = prot_params.get("iteration_count", 1000)
            key = PBKDF2(passphrase, salt, key_size, count)
            key_derivation_func = newDerSequence(
                DerObjectId("1.2.840.113549.1.5.12"),  # PBKDF2
                newDerSequence(DerOctetString(salt), DerInteger(count)))
        else:
            # It must be scrypt
            count = prot_params.get("iteration_count", 16384)
            scrypt_r = prot_params.get('block_size', 8)
            scrypt_p = prot_params.get('parallelization', 1)
            key = scrypt(passphrase, salt, key_size, count, scrypt_r, scrypt_p)
            key_derivation_func = newDerSequence(
                DerObjectId("1.3.6.1.4.1.11591.4.11"),  # scrypt
                newDerSequence(DerOctetString(salt), DerInteger(count),
                               DerInteger(scrypt_r), DerInteger(scrypt_p)))

        # Create cipher and use it
        cipher = module.new(key, cipher_mode, iv)
        encrypted_data = cipher.encrypt(pad(data, cipher.block_size))
        encryption_scheme = newDerSequence(DerObjectId(enc_oid),
                                           DerOctetString(iv))

        # Result
        encrypted_private_key_info = newDerSequence(
            # encryptionAlgorithm
            newDerSequence(
                DerObjectId("1.2.840.113549.1.5.13"),  # PBES2
                newDerSequence(key_derivation_func, encryption_scheme),
            ),
            DerOctetString(encrypted_data))
        return encrypted_private_key_info.encode()
Example #33
0
def wrap(private_key,
         key_oid,
         passphrase=None,
         protection=None,
         prot_params=None,
         key_params=None,
         randfunc=None):
    """Wrap a private key into a PKCS#8 blob (clear or encrypted).

    :Parameters:

      private_key : byte string
        The private key encoded in binary form. The actual encoding is
        algorithm specific. In most cases, it is DER.

      key_oid : string
        The object identifier (OID) of the private key to wrap.
        It is a dotted string, like "``1.2.840.113549.1.1.1``" (for RSA keys).

      passphrase : (binary) string
        The secret passphrase from which the wrapping key is derived.
        Set it only if encryption is required.

      protection : string
        The identifier of the algorithm to use for securely wrapping the key.
        The default value is '``PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC``'.

      prot_params : dictionary
        Parameters for the protection algorithm.

        +------------------+-----------------------------------------------+
        | Key              | Description                                   |
        +==================+===============================================+
        | iteration_count  | The KDF algorithm is repeated several times to|
        |                  | slow down brute force attacks on passwords    |
        |                  | (called *N* or CPU/memory cost in scrypt).    |
        |                  |                                               |
        |                  | The default value for PBKDF2 is 1 000.        |
        |                  | The default value for scrypt is 16 384.       |
        +------------------+-----------------------------------------------+
        | salt_size        | Salt is used to thwart dictionary and rainbow |
        |                  | attacks on passwords. The default value is 8  |
        |                  | bytes.                                        |
        +------------------+-----------------------------------------------+
        | block_size       | *(scrypt only)* Memory-cost (r). The default  |
        |                  | value is 8.                                   |
        +------------------+-----------------------------------------------+
        | parallelization  | *(scrypt only)* CPU-cost (p). The default     |
        |                  | value is 1.                                   |
        +------------------+-----------------------------------------------+

      key_params : DER object
        The algorithm parameters associated to the private key.
        It is required for algorithms like DSA, but not for others like RSA.

      randfunc : callable
        Random number generation function; it should accept a single integer
        N and return a string of random data, N bytes long.
        If not specified, a new RNG will be instantiated
        from ``Crypto.Random``.

    :Return:
      The PKCS#8-wrapped private key (possibly encrypted),
      as a binary string.
    """

    if key_params is None:
        key_params = DerNull()

    #
    #   PrivateKeyInfo ::= SEQUENCE {
    #       version                 Version,
    #       privateKeyAlgorithm     PrivateKeyAlgorithmIdentifier,
    #       privateKey              PrivateKey,
    #       attributes              [0]  IMPLICIT Attributes OPTIONAL
    #   }
    #
    pk_info = DerSequence([
        0,
        DerSequence([DerObjectId(key_oid), key_params]),
        DerOctetString(private_key)
    ])
    pk_info_der = pk_info.encode()

    if passphrase is None:
        return pk_info_der

    if not passphrase:
        raise ValueError("Empty passphrase")

    # Encryption with PBES2
    passphrase = tobytes(passphrase)
    if protection is None:
        protection = 'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC'
    return PBES2.encrypt(pk_info_der, passphrase, protection, prot_params,
                         randfunc)
Example #34
0
    def decrypt(data, passphrase):
        """Decrypt a piece of data using a passphrase and *PBES2*.

        The algorithm to use is automatically detected.

        :Parameters:
          data : byte string
            The piece of data to decrypt.
          passphrase : byte string
            The passphrase to use for decrypting the data.
        :Returns:
          The decrypted data, as a binary string.
        """

        enc_private_key_info = DerSequence().decode(data, nr_elements=2)
        enc_algo = DerSequence().decode(enc_private_key_info[0])
        encrypted_data = DerOctetString().decode(
            enc_private_key_info[1]).payload

        pbe_oid = DerObjectId().decode(enc_algo[0]).value
        if pbe_oid != "1.2.840.113549.1.5.13":
            raise PbesError("Not a PBES2 object")

        pbes2_params = DerSequence().decode(enc_algo[1], nr_elements=2)

        ### Key Derivation Function selection
        kdf_info = DerSequence().decode(pbes2_params[0], nr_elements=2)
        kdf_oid = DerObjectId().decode(kdf_info[0]).value

        # We only support PBKDF2 or scrypt
        if kdf_oid == "1.2.840.113549.1.5.12":

            pbkdf2_params = DerSequence().decode(kdf_info[1],
                                                 nr_elements=(2, 3, 4))
            salt = DerOctetString().decode(pbkdf2_params[0]).payload
            iteration_count = pbkdf2_params[1]
            if len(pbkdf2_params) > 2:
                kdf_key_length = pbkdf2_params[2]
            else:
                kdf_key_length = None
            if len(pbkdf2_params) > 3:
                raise PbesError("Unsupported PRF for PBKDF2")

        elif kdf_oid == "1.3.6.1.4.1.11591.4.11":

            scrypt_params = DerSequence().decode(kdf_info[1],
                                                 nr_elements=(4, 5))
            salt = DerOctetString().decode(scrypt_params[0]).payload
            iteration_count, scrypt_r, scrypt_p = [
                scrypt_params[x] for x in (1, 2, 3)
            ]
            if len(scrypt_params) > 4:
                kdf_key_length = scrypt_params[4]
            else:
                kdf_key_length = None
        else:
            raise PbesError("Unsupported PBES2 KDF")

        ### Cipher selection
        enc_info = DerSequence().decode(pbes2_params[1])
        enc_oid = DerObjectId().decode(enc_info[0]).value

        if enc_oid == "1.2.840.113549.3.7":
            # DES_EDE3_CBC
            ciphermod = DES3
            key_size = 24
        elif enc_oid == "2.16.840.1.101.3.4.1.2":
            # AES128_CBC
            ciphermod = AES
            key_size = 16
        elif enc_oid == "2.16.840.1.101.3.4.1.22":
            # AES192_CBC
            ciphermod = AES
            key_size = 24
        elif enc_oid == "2.16.840.1.101.3.4.1.42":
            # AES256_CBC
            ciphermod = AES
            key_size = 32
        else:
            raise PbesError("Unsupported PBES2 cipher")

        if kdf_key_length and kdf_key_length != key_size:
            raise PbesError("Mismatch between PBES2 KDF parameters"
                            " and selected cipher")

        IV = DerOctetString().decode(enc_info[1]).payload

        # Create cipher
        if kdf_oid == "1.2.840.113549.1.5.12":  # PBKDF2
            key = PBKDF2(passphrase, salt, key_size, iteration_count)
        else:
            key = scrypt(passphrase, salt, key_size, iteration_count, scrypt_r,
                         scrypt_p)
        cipher = ciphermod.new(key, ciphermod.MODE_CBC, IV)

        # Decrypt data
        pt = cipher.decrypt(encrypted_data)
        return unpad(pt, cipher.block_size)
Example #35
0
 def testInit1(self):
     der = DerOctetString(b('\xFF'))
     self.assertEqual(der.encode(), b('\x04\x01\xFF'))