Example #1
0
def CourantNo(runTime, mesh, h, phi, magg):
    CoNum = 0.0
    meanCoNum = 0.0
    waveCoNum = 0.0

    if mesh.nInternalFaces():
        from Foam import fvc
        SfUfbyDelta = mesh.deltaCoeffs() * phi.mag() / fvc.interpolate(h)

        CoNum = (SfUfbyDelta /
                 mesh.magSf()).ext_max().value() * runTime.deltaT().value()

        meanCoNum = (SfUfbyDelta.sum() /
                     mesh.magSf().sum()).value() * runTime.deltaT().value()

        # Gravity wave Courant number
        waveCoNum = 0.5 * (mesh.deltaCoeffs() * fvc.interpolate(h).sqrt(
        )).ext_max().value() * magg.sqrt().value() * runTime.deltaT().value()

    from Foam.OpenFOAM import ext_Info, nl
    ext_Info(
    ) << "Courant number mean: " << meanCoNum << " max: " << CoNum << nl
    ext_Info() << "Gravity wave Courant number max: " << waveCoNum << nl

    return CoNum, meanCoNum, waveCoNum
Example #2
0
def _UEqn(mesh, alpha1, U, p, rho, rhoPhi, turbulence, g, twoPhaseProperties, interface, momentumPredictor):
    from Foam.OpenFOAM import word
    from Foam.finiteVolume import surfaceScalarField
    from Foam import fvc

    muEff = surfaceScalarField(word("muEff"), twoPhaseProperties.muf() + fvc.interpolate(rho * turbulence.ext_nut()))
    from Foam import fvm

    UEqn = fvm.ddt(rho, U) + fvm.div(rhoPhi, U) - fvm.laplacian(muEff, U) - (fvc.grad(U) & fvc.grad(muEff))

    UEqn.relax()

    if momentumPredictor:
        from Foam.finiteVolume import solve

        solve(
            UEqn
            == fvc.reconstruct(
                fvc.interpolate(rho) * (g & mesh.Sf())
                + (fvc.interpolate(interface.sigmaK()) * fvc.snGrad(alpha1) - fvc.snGrad(p)) * mesh.magSf()
            )
        )
        pass

    return UEqn
Example #3
0
def _pEqn( rho, thermo, UEqn, nNonOrthCorr, psi, U, mesh, phi, p, cumulativeContErr ):
    from Foam.finiteVolume import volScalarField
    rUA = 1.0/UEqn.A()
    U.ext_assign( rUA*UEqn.H() )
            
    from Foam import fvc
    from Foam.finiteVolume import surfaceScalarField
    from Foam.OpenFOAM import word
    phid = surfaceScalarField( word( "phid" ), 
                               fvc.interpolate( thermo.psi() ) * ( (fvc.interpolate( U ) & mesh.Sf() ) + fvc.ddtPhiCorr( rUA, rho, U, phi ) ) )
    
    
    for nonOrth in range( nNonOrthCorr + 1 ) :
        from Foam import fvm
        pEqn = ( fvm.ddt(psi, p) + fvm.div(phid, word( "div(phid,p)" ) ) - fvm.laplacian(rho*rUA, p) )
        pEqn.solve()
        if (nonOrth == nNonOrthCorr) :
           phi.ext_assign( pEqn.flux() )
           pass
        pass
    from Foam.finiteVolume.cfdTools.compressible import rhoEqn
    rhoEqn( rho, phi )               
    
    from Foam.finiteVolume.cfdTools.compressible import compressibleContinuityErrs
    cumulativeContErr = compressibleContinuityErrs( rho, thermo, cumulativeContErr )
           
    U.ext_assign( U - rUA * fvc.grad(p) )
    U.correctBoundaryConditions()
    
    return cumulativeContErr
def fun_pEqn( runTime, thermo, UEqn, U, phi, rho, gh, pd, p, initialMass, mesh, pRef, nNonOrthCorr, \
              pdRefCell, pdRefValue, eqnResidual, maxResidual, cumulativeContErr ):
    
    rUA = 1.0/UEqn.A()
    U.ext_assign( rUA * UEqn().H() )
    
    UEqn.clear()
    from Foam import fvc
    phi.ext_assign( fvc.interpolate( rho )*(fvc.interpolate(U) & mesh.Sf()) )
    
    from Foam.finiteVolume import adjustPhi
    closedVolume = adjustPhi(phi, U, p)
    
    phi.ext_assign( phi - fvc.interpolate( rho *gh * rUA ) * fvc.snGrad( rho ) * mesh.magSf() )
    
    from Foam import fvm
    for nonOrth in range( nNonOrthCorr + 1):
        pdEqn = ( fvm.laplacian( rho * rUA, pd ) == fvc.div(phi) )
        
        pdEqn.setReference(pdRefCell, pdRefValue)
        # retain the residual from the first iteration    
        
        if nonOrth == 0:
           eqnResidual = pdEqn.solve().initialResidual()
           maxResidual = max(eqnResidual, maxResidual)
           pass
        else:
           pdEqn.solve()
           pass
        
        if nonOrth == nNonOrthCorr:
           phi.ext_assign( phi - pdEqn.flux() )
           pass
        
        pass

    from Foam.finiteVolume.cfdTools.general.include import ContinuityErrs
    cumulativeContErr = ContinuityErrs( phi, runTime, mesh, cumulativeContErr )
    
    # Explicitly relax pressure for momentum corrector
    pd.relax()
    
    p.ext_assign( pd + rho * gh + pRef )
    
    U.ext_assign( U- rUA * ( fvc.grad( pd ) + fvc.grad( rho ) * gh ) )
    U.correctBoundaryConditions()
    
    # For closed-volume cases adjust the pressure and density levels
    # to obey overall mass continuity
    if closedVolume:
       p.ext_assign( p + ( initialMass - fvc.domainIntegrate( thermo.psi() * p ) ) / fvc.domainIntegrate( thermo.psi() ) )
    
    rho.ext_assign( thermo.rho() )
    rho.relax()
    
    from Foam.OpenFOAM import ext_Info, nl
    ext_Info()<< "rho max/min : " << rho.ext_max().value() << " " << rho.ext_min().value() << nl
    
    return eqnResidual, maxResidual, cumulativeContErr
Example #5
0
def fun_pEqn( i, mesh, p, rho, turb, thermo, thermoFluid, K, UEqn, U, phi, psi, DpDt, initialMass, p_rgh, gh, ghf, \
              nNonOrthCorr, oCorr, nOuterCorr, corr, nCorr, cumulativeContErr ) :
    
    closedVolume = p_rgh.needReference()

    rho.ext_assign( thermo.rho() )
    
    rUA = 1.0 / UEqn.A()
    
    from Foam import fvc
    from Foam.OpenFOAM import word 
    from Foam.finiteVolume import surfaceScalarField
    rhorUAf = surfaceScalarField( word( "(rho*(1|A(U)))" ) , fvc.interpolate( rho * rUA ) )

    U.ext_assign( rUA * UEqn.H() ) 

    from Foam import fvc

    phiU = ( fvc.interpolate( rho ) *
                 (  ( fvc.interpolate( U ) & mesh.Sf() ) +
                      fvc.ddtPhiCorr( rUA, rho, U, phi ) ) )
    phi.ext_assign( phiU - rhorUAf * ghf * fvc.snGrad( rho ) * mesh.magSf() )
    from Foam import fvm
    for nonOrth in range ( nNonOrthCorr + 1 ):
        p_rghEqn = ( fvm.ddt( psi, p_rgh) + fvc.ddt( psi, rho ) * gh + fvc.div( phi ) - fvm.laplacian( rhorUAf, p_rgh ) )
        p_rghEqn.solve( mesh.solver( p_rgh.select( ( oCorr == nOuterCorr-1 and corr == ( nCorr-1 ) and nonOrth == nNonOrthCorr ) ) ) )
        
        if nonOrth == nNonOrthCorr :
            phi.ext_assign( phi + p_rghEqn.flux() )
            pass
        pass
    
    # Correct velocity field
    U.ext_assign( U + rUA * fvc.reconstruct( ( phi - phiU ) / rhorUAf ) )
    U.correctBoundaryConditions()
    
    p.ext_assign( p_rgh + rho * gh )

    #Update pressure substantive derivative
    DpDt.ext_assign( fvc.DDt( surfaceScalarField( word( "phiU" ), phi / fvc.interpolate( rho ) ), p ) )
    
    # Solve continuity
    from Foam.finiteVolume.cfdTools.compressible import rhoEqn
    rhoEqn( rho, phi )   
    
    # Update continuity errors
    cumulativeContErr = compressibleContinuityErrors( i, mesh, rho, thermo, cumulativeContErr )
    
    # For closed-volume cases adjust the pressure and density levels
    # to obey overall mass continuity
    if closedVolume :
       p.ext_assign( p + ( initialMass - fvc.domainIntegrate( psi * p ) ) / fvc.domainIntegrate( psi ) )
       rho.ext_assign( thermo.rho() )
       p_rgh.ext_assign( p - rho * gh )
       pass
    #Update thermal conductivity
    K.ext_assign( thermoFluid[ i ].Cp() * turb.alphaEff() )
        
    return cumulativeContErr
Example #6
0
def _pEqn( runTime, mesh, UEqn, thermo, p, psi, U, rho, phi, DpDt, g, initialMass, totalVolume, corr, nCorr, nNonOrthCorr, cumulativeContErr ): 
    closedVolume = p.needReference()
    rho.ext_assign( thermo.rho() )

    # Thermodynamic density needs to be updated by psi*d(p) after the
    # pressure solution - done in 2 parts. Part 1:
    thermo.rho().ext_assign( thermo.rho() - psi * p )
    
    rUA = 1.0/UEqn.A()
    from Foam.OpenFOAM import word
    from Foam.finiteVolume import surfaceScalarField
    from Foam import fvc
    rhorUAf = surfaceScalarField( word( "(rho*(1|A(U)))" ), fvc.interpolate( rho * rUA ) )

    U.ext_assign( rUA * UEqn.H() )

    phiU = fvc.interpolate( rho ) * ( (fvc.interpolate( U ) & mesh.Sf() ) + fvc.ddtPhiCorr( rUA, rho, U, phi ) ) 

    phi.ext_assign( phiU + rhorUAf * fvc.interpolate( rho ) * (g & mesh.Sf() ) )
    
    for nonOrth in range( nNonOrthCorr+1 ):
        
        from Foam import fvm
        from Foam.finiteVolume import correction
        pEqn = fvc.ddt( rho ) + psi * correction( fvm.ddt( p ) ) + fvc.div( phi ) - fvm.laplacian( rhorUAf, p )
        
        if corr == nCorr-1  and nonOrth == nNonOrthCorr:
           pEqn.solve( mesh.solver( word( str( p.name() ) + "Final" ) ) )
           pass
        else:
           pEqn.solve( mesh.solver( p.name() ) )
           pass
        if nonOrth == nNonOrthCorr:
           phi.ext_assign( phi + pEqn.flux() )
           pass

    # Second part of thermodynamic density update
    thermo.rho().ext_assign( thermo.rho() + psi * p )

    U.ext_assign( U + rUA * fvc.reconstruct( ( phi - phiU ) / rhorUAf ) )
    U.correctBoundaryConditions()
    
    DpDt.ext_assign( fvc.DDt( surfaceScalarField( word( "phiU" ), phi / fvc.interpolate( rho ) ), p ) )
    
    from Foam.finiteVolume.cfdTools.compressible import rhoEqn  
    rhoEqn( rho, phi )
    
    from Foam.finiteVolume.cfdTools.compressible import compressibleContinuityErrs
    cumulativeContErr = compressibleContinuityErrs( rho, thermo, cumulativeContErr )

    # For closed-volume cases adjust the pressure and density levels
    # to obey overall mass continuity
    if closedVolume:
       p.ext_assign( p + ( initialMass - fvc.domainIntegrate( psi * p ) ) / fvc.domainIntegrate( psi ) )
       thermo.rho().ext_assign(  psi * p )
       rho.ext_assign( rho + ( initialMass - fvc.domainIntegrate( rho ) ) / totalVolume )
       pass

    return cumulativeContErr
def fun_pEqn( runTime, mesh, p, phi, U, UEqn, g, rhok, eqnResidual, maxResidual, nNonOrthCorr, cumulativeContErr, pRefCell, pRefValue ): 
    
    from Foam.finiteVolume import volScalarField, surfaceScalarField
    from Foam.OpenFOAM import word
    from Foam import fvc
    rUA = volScalarField( word( "rUA" ), 1.0 / UEqn().A() )
    rUAf = surfaceScalarField(word( "(1|A(U))" ), fvc.interpolate( rUA ) )

    U.ext_assign( rUA * UEqn().H() )
    UEqn.clear()
    
    from Foam import fvc 
    phi.ext_assign( fvc.interpolate( U ) & mesh.Sf() )
    
    from Foam.finiteVolume import adjustPhi
    adjustPhi( phi, U, p )
    
    buoyancyPhi = rUAf * fvc.interpolate( rhok ) * ( g & mesh.Sf() )
    
    phi.ext_assign( phi + buoyancyPhi )

    for nonOrth in range( nNonOrthCorr+1 ):
        
        from Foam import fvm, fvc
        pEqn = fvm.laplacian(rUAf, p) == fvc.div(phi)

        pEqn.setReference( pRefCell, pRefValue )
        
        # retain the residual from the first iteration
        if ( nonOrth == 0 ):
              eqnResidual = pEqn.solve().initialResidual()
              maxResidual = max( eqnResidual, maxResidual )
              pass
        else:
              pEqn.solve()
              pass
        

        if ( nonOrth == nNonOrthCorr ):
           # Calculate the conservative fluxes
           phi.ext_assign( phi - pEqn.flux() )
           
           # Explicitly relax pressure for momentum corrector
           p.relax()

           # Correct the momentum source with the pressure gradient flux
           # calculated from the relaxed pressure
           U.ext_assign( U + rUA * fvc.reconstruct( ( buoyancyPhi - pEqn.flux() ) / rUAf ) )
           U.correctBoundaryConditions()
           pass
        
        pass

    from Foam.finiteVolume.cfdTools.incompressible import continuityErrs
    cumulativeContErr = continuityErrs( mesh, phi, runTime, cumulativeContErr )
    
    return eqnResidual, maxResidual, cumulativeContErr
Example #8
0
def fun_pEqn( mesh, p, rho, psi, p_rgh, U, phi, ghf, gh, DpDt, UEqn, thermo, nNonOrthCorr, corr, nCorr, finalIter, cumulativeContErr ):
    
    rho.ext_assign( thermo.rho() )

    # Thermodynamic density needs to be updated by psi*d(p) after the
    # pressure solution - done in 2 parts. Part 1:
    thermo.rho().ext_assign( thermo.rho() - psi * p_rgh )

    rUA = 1.0 / UEqn.A()
    from Foam.finiteVolume import surfaceScalarField
    from Foam.OpenFOAM import word
    from Foam import fvc
    rhorUAf = surfaceScalarField( word( "(rho*(1|A(U)))" ), fvc.interpolate( rho * rUA ) )

    U.ext_assign( rUA*UEqn.H() )

    phi.ext_assign( fvc.interpolate( rho ) * ( ( fvc.interpolate( U ) & mesh.Sf() ) + fvc.ddtPhiCorr( rUA, rho, U, phi ) ) )

    buoyancyPhi = -rhorUAf * ghf * fvc.snGrad( rho ) * mesh.magSf()
    phi.ext_assign( phi + buoyancyPhi )
    
    from Foam import fvm
    from Foam.finiteVolume import correction
    for nonOrth in range( nNonOrthCorr +1 ):
        p_rghEqn = fvc.ddt( rho ) + psi * correction( fvm.ddt( p_rgh ) ) + fvc.div( phi ) - fvm.laplacian( rhorUAf, p_rgh )

        p_rghEqn.solve( mesh.solver( p_rgh.select( ( finalIter and corr == nCorr-1 and nonOrth == nNonOrthCorr ) ) ) )

        if nonOrth == nNonOrthCorr:
            # Calculate the conservative fluxes
            phi.ext_assign( phi + p_rghEqn.flux() )

            # Explicitly relax pressure for momentum corrector
            p_rgh.relax()

            # Correct the momentum source with the pressure gradient flux
            # calculated from the relaxed pressure
            U.ext_assign( U + rUA * fvc.reconstruct( ( buoyancyPhi + p_rghEqn.flux() ) / rhorUAf ) )
            U.correctBoundaryConditions()
            pass

    p.ext_assign( p_rgh + rho * gh )

    # Second part of thermodynamic density update
    thermo.rho().ext_assign( thermo.rho() + psi * p_rgh )

    DpDt.ext_assign( fvc.DDt( surfaceScalarField( word( "phiU" ), phi / fvc.interpolate( rho ) ), p ) )

    from Foam.finiteVolume.cfdTools.compressible import rhoEqn  
    rhoEqn( rho, phi )
    
    from Foam.finiteVolume.cfdTools.compressible import compressibleContinuityErrs
    cumulativeContErr = compressibleContinuityErrs( rho, thermo, cumulativeContErr )

    return cumulativeContErr
Example #9
0
def _pEqn( runTime, mesh, UEqn, U, p, p_rgh, gh, ghf, phi, alpha1, rho, g, interface, corr, nCorr, nNonOrthCorr, pRefCell, pRefValue, cumulativeContErr ):
    rAU = 1.0/UEqn.A()
     
    from Foam import fvc
    rAUf = fvc.interpolate( rAU )
    
    U.ext_assign( rAU * UEqn.H() )
    
    from Foam.finiteVolume import surfaceScalarField
    from Foam.OpenFOAM import word
    phiU = surfaceScalarField( word( "phiU" ),  fvc.interpolate( U ) & mesh.Sf() )
    
    if p_rgh.needReference():
        fvc.makeRelative( phiU, U )
        from Foam.finiteVolume import adjustPhi
        adjustPhi( phiU, U, p )
        fvc.makeAbsolute( phiU, U )
        pass
    
    phi.ext_assign( phiU + ( fvc.interpolate( interface.sigmaK() ) * fvc.snGrad( alpha1 ) - ghf * fvc.snGrad( rho ) )*rAUf*mesh.magSf() )

    from Foam import fvm
    for nonOrth in range( nNonOrthCorr + 1 ):
        p_rghEqn = fvm.laplacian( rAUf, p_rgh ) == fvc.div( phi ) 
        p_rghEqn.setReference( pRefCell, pRefValue )

        p_rghEqn.solve( mesh.solver( p_rgh.select(corr == nCorr-1 and nonOrth == nNonOrthCorr) ) )
        
        if nonOrth == nNonOrthCorr:
           phi.ext_assign( phi - p_rghEqn.flux() )
           pass
        pass
    
    U.ext_assign( U + rAU * fvc.reconstruct( ( phi - phiU ) / rAUf ) )
    U.correctBoundaryConditions()

    from Foam.finiteVolume.cfdTools.incompressible import continuityErrs
    cumulativeContErr = continuityErrs( mesh, phi, runTime, cumulativeContErr )
    
    # Make the fluxes relative to the mesh motion
    fvc.makeRelative( phi, U )
    
    p == p_rgh + rho * gh

    if p_rgh.needReference():
       from Foam.OpenFOAM import pRefValue
       p.ext_assign( p + dimensionedScalar( word( "p" ),
                                            p.dimensions(),
                                            pRefValue - getRefCellValue(p, pRefCell) ) )
       p_rgh.ext_assign( p - rho * gh )
       pass
    
    return cumulativeContErr
Example #10
0
def alphaEqns( runTime, mesh, rho1, rho2, rhoPhi, phic, dgdt, divU, alpha1, alpha2, phi, interface, nAlphaCorr ):

    from Foam.OpenFOAM import word 
    alphaScheme = word( "div(phi,alpha)" )
    alpharScheme = word( "div(phirb,alpha)" )

    phir = phic*interface.nHatf()
    
    from Foam.finiteVolume import volScalarField
    from Foam.OpenFOAM import IOobject, word, fileName, dimensionedScalar, scalar, ext_Info, nl
    for gCorr in range( nAlphaCorr ):
        Sp = volScalarField.DimensionedInternalField( IOobject( word( "Sp" ),
                                                                fileName( runTime.timeName() ),
                                                                mesh ),
                                                      mesh,
                                                      dimensionedScalar( word( "Sp" ), dgdt.dimensions(), 0.0 ) )

        Su = volScalarField.DimensionedInternalField( IOobject( word( "Su" ),
                                                                fileName( runTime.timeName() ),
                                                                mesh ),
                                                      # Divergence term is handled explicitly to be
                                                      # consistent with the explicit transport solution
                                                      divU * alpha1.ext_min( scalar( 1 ) ) )
        for celli in range( dgdt.size() ):
            if dgdt[ celli ] > 0.0 and alpha1[ celli ] > 0.0:
                Sp[ celli ] -= dgdt[ celli ] * alpha1[ celli ]
                Su[ celli ] += dgdt[ celli ] * alpha1[ celli ]
                pass
            elif dgdt[ celli ] < 0.0 and alpha1[ celli ] < 1.0:
                Sp[ celli ] += dgdt[ celli ] * ( 1.0 - alpha1[ celli ] )
                pass
            pass

        from Foam import fvc
        phiAlpha1 = fvc.flux( phi, alpha1, alphaScheme ) + fvc.flux( - fvc.flux( -phir, alpha2, alpharScheme ), alpha1, alpharScheme )
        
        from Foam import MULES
        from Foam.OpenFOAM import geometricOneField
        MULES.explicitSolve( geometricOneField(), alpha1, phi, phiAlpha1, Sp, Su, 1.0, 0.0 )
        
        rho1f = fvc.interpolate( rho1 )
        rho2f = fvc.interpolate( rho2 )
        rhoPhi.ext_assign( phiAlpha1 * ( rho1f - rho2f ) + phi * rho2f )

        alpha2.ext_assign( scalar( 1 ) - alpha1 )

        pass

    
    from Foam.OpenFOAM import ext_Info, nl
    ext_Info() << "Liquid phase volume fraction = " << alpha1.weightedAverage( mesh.V() ).value() \
               << "  Min(alpha1) = " << alpha1.ext_min().value() << "  Min(alpha2) = " << alpha2.ext_min().value() << nl
    pass
def fun_pEqn( thermo, g, rho, UEqn, p, U, psi, phi, initialMass, runTime, mesh, nNonOrthCorr, pRefCell, eqnResidual, maxResidual, cumulativeContErr ):

    rho.ext_assign( thermo.rho() )

    rUA = 1.0/UEqn.A()
    
    from Foam.OpenFOAM import word
    from Foam import fvc,fvm
    from Foam.finiteVolume import surfaceScalarField
    rhorUAf = surfaceScalarField(word( "(rho*(1|A(U)))" ) , fvc.interpolate(rho*rUA));
    U.ext_assign(rUA*UEqn.H())
    UEqn.clear()
    
    phi.ext_assign( fvc.interpolate( rho )*(fvc.interpolate(U) & mesh.Sf()) )

    from Foam.finiteVolume import adjustPhi
    closedVolume = adjustPhi(phi, U, p);

    buoyancyPhi =surfaceScalarField( rhorUAf * fvc.interpolate( rho )*( g & mesh.Sf() ) )
    
    phi.ext_assign( phi+buoyancyPhi )

    for nonOrth in range( nNonOrthCorr+1 ):
        from Foam import fvm
        pEqn = fvm.laplacian(rhorUAf, p) == fvc.div(phi)

        pEqn.setReference(pRefCell, p[pRefCell]);


        if (nonOrth == 0):
            eqnResidual = pEqn.solve().initialResidual()
            maxResidual = max(eqnResidual, maxResidual)
        else:
            pEqn.solve()

        if (nonOrth == nNonOrthCorr):
           if (closedVolume):
              p.ext_assign( p + ( initialMass - fvc.domainIntegrate( psi * p ) ) / fvc.domainIntegrate( psi ) ) 
           
           phi.ext_assign( phi - pEqn.flux() )
           p.relax()
           U.ext_assign( U + rUA * fvc.reconstruct( ( buoyancyPhi - pEqn.flux() ) / rhorUAf ) )
           U.correctBoundaryConditions();
    
    from Foam.finiteVolume.cfdTools.general.include import ContinuityErrs
    cumulativeContErr = ContinuityErrs( phi, runTime, mesh, cumulativeContErr )
    rho.ext_assign( thermo.rho() )
    rho.relax()

    ext_Info()<< "rho max/min : " << rho.ext_max().value() << " " << rho.ext_min().value() << nl
    
    return eqnResidual, maxResidual, cumulativeContErr
Example #12
0
def _hEqn( phi, h, turbulence, rho, p, thermo, eqnResidual, maxResidual ):
    from Foam import fvc, fvm
    hEqn = fvm.div( phi, h ) - fvm.Sp( fvc.div( phi ), h ) - fvm.laplacian( turbulence.alphaEff(), h ) \
            ==  fvc.div( phi / fvc.interpolate( rho ) * fvc.interpolate( p ) ) - p * fvc.div( phi / fvc.interpolate( rho ) ) 

    hEqn.relax()

    eqnResidual = hEqn.solve().initialResidual()
    maxResidual = max(eqnResidual, maxResidual)

    thermo.correct()
    
    return hEqn, eqnResidual, maxResidual
Example #13
0
def fun_pEqn( runTime, mesh, UEqn, p, p_rgh, phi, U, rho, rho1, rho2, rho10, rho20, gh, ghf, dgdt, pMin, \
              psi1, psi2, alpha1, alpha2, interface, transonic, oCorr, nOuterCorr, corr, nCorr, nNonOrthCorr ):
    rUA = 1.0/UEqn.A()
    
    from Foam import fvc
    rUAf = fvc.interpolate( rUA )

    p_rghEqnComp = None

    from Foam import fvm
    if transonic:
        p_rghEqnComp = fvm.ddt( p_rgh ) + fvm.div( phi, p_rgh ) - fvm.Sp( fvc.div( phi ), p_rgh )
        pass
    else:
        p_rghEqnComp = fvm.ddt( p_rgh ) + fvc.div( phi, p_rgh ) - fvc.Sp( fvc.div( phi ), p_rgh ) 
        pass

    U.ext_assign( rUA * UEqn.H() )

    from Foam.finiteVolume import surfaceScalarField
    from Foam.OpenFOAM import word
    phiU = surfaceScalarField( word( "phiU" ),
                               ( fvc.interpolate( U ) & mesh.Sf() ) + fvc.ddtPhiCorr( rUA, rho, U, phi ) )

    phi.ext_assign(phiU + ( fvc.interpolate( interface.sigmaK() ) * fvc.snGrad( alpha1 ) - ghf * fvc.snGrad( rho ) ) * rUAf * mesh.magSf() )

    from Foam.finiteVolume import solve
    from Foam.OpenFOAM import scalar
    for nonOrth in range( nNonOrthCorr +1 ):
        p_rghEqnIncomp = fvc.div( phi ) - fvm.laplacian( rUAf, p_rgh ) 
        
        solve( ( alpha1.ext_max( scalar( 0 ) ) * ( psi1 / rho1 ) + alpha2.ext_max( scalar( 0 ) ) * ( psi2 / rho2 ) ) *p_rghEqnComp() + p_rghEqnIncomp,
               mesh.solver( p_rgh.select( oCorr == ( nOuterCorr - 1 ) and corr == ( nCorr-1 ) and nonOrth == nNonOrthCorr )  ) )

        if nonOrth == nNonOrthCorr:
            dgdt.ext_assign( ( alpha2.pos() * ( psi2 / rho2 ) - alpha1.pos() * ( psi1 / rho1 ) ) * ( p_rghEqnComp & p_rgh ) )
            phi.ext_assign( phi + p_rghEqnIncomp.flux() )
            pass

    U.ext_assign( U + rUA * fvc.reconstruct( ( phi - phiU ) / rUAf ) )
    U.correctBoundaryConditions()

    p.ext_assign( ( ( p_rgh + gh * ( alpha1 * rho10 + alpha2 * rho20 ) ) /( 1.0 - gh * ( alpha1 * psi1 + alpha2 * psi2 ) ) ).ext_max( pMin ) )

    rho1.ext_assign( rho10 + psi1 * p )
    rho2.ext_assign( rho20 + psi2 * p )

    from Foam.OpenFOAM import ext_Info, nl
    ext_Info() << "max(U) " << U.mag().ext_max().value() << nl
    ext_Info() << "min(p_rgh) " << p_rgh.ext_min().value() << nl
    pass
Example #14
0
def _pEqn( rho, thermo, UEqn, nNonOrthCorr, psi, U, mesh, phi, p, DpDt, cumulativeContErr, corr, nCorr, nOuterCorr, transonic ):
    rho.ext_assign( thermo.rho() )

    rUA = 1.0/UEqn.A()
    U.ext_assign( rUA * UEqn.H() )

    from Foam import fvc, fvm
    from Foam.OpenFOAM import word
    from Foam.finiteVolume import surfaceScalarField
    if transonic: 
       phid = surfaceScalarField( word( "phid" ), 
                                  fvc.interpolate( psi ) * ( ( fvc.interpolate( U ) & mesh.Sf() ) + fvc.ddtPhiCorr( rUA, rho, U, phi ) ) )
       
       for nonOrth in range( nNonOrthCorr + 1 ) :
           pEqn = fvm.ddt( psi, p ) + fvm.div( phid, p ) - fvm.laplacian( rho * rUA, p )
           
           pEqn.solve()
           
           if nonOrth == nNonOrthCorr:
              phi == pEqn.flux()
              pass
           pass
       pass
    else:
       phi.ext_assign( fvc.interpolate( rho ) * ( ( fvc.interpolate(U) & mesh.Sf() ) + fvc.ddtPhiCorr( rUA, rho, U, phi ) ) )
       
       for nonOrth in range( nNonOrthCorr + 1 ) :
           pEqn = fvm.ddt( psi, p ) + fvc.div( phi ) - fvm.laplacian( rho * rUA, p )
           
           pEqn.solve()
                      
           if nonOrth == nNonOrthCorr:
              phi.ext_assign( phi + pEqn.flux() )
              pass
           pass
       pass
        
    from Foam.finiteVolume.cfdTools.compressible import rhoEqn
    rhoEqn( rho, phi )
    
    from Foam.finiteVolume.cfdTools.compressible import compressibleContinuityErrs
    cumulativeContErr = compressibleContinuityErrs( rho, thermo, cumulativeContErr )

    U.ext_assign( U - rUA * fvc.grad( p ) )
    U.correctBoundaryConditions()
    
    DpDt.ext_assign( fvc.DDt( surfaceScalarField( word( "phiU" ), phi / fvc.interpolate( rho ) ), p ) )

    return cumulativeContErr
Example #15
0
def _pEqn(mesh, UEqn, U, p, phi, alpha1, rho, g, interface, corr, nCorr, nNonOrthCorr, pRefCell, pRefValue):
    rUA = 1.0 / UEqn.A()

    from Foam import fvc

    rUAf = fvc.interpolate(rUA)

    U.ext_assign(rUA * UEqn.H())

    from Foam.finiteVolume import surfaceScalarField
    from Foam.OpenFOAM import word

    phiU = surfaceScalarField(word("phiU"), (fvc.interpolate(U) & mesh.Sf()) + fvc.ddtPhiCorr(rUA, rho, U, phi))

    from Foam.finiteVolume import adjustPhi

    adjustPhi(phiU, U, p)

    phi.ext_assign(
        phiU
        + (
            fvc.interpolate(interface.sigmaK()) * fvc.snGrad(alpha1) * mesh.magSf()
            + fvc.interpolate(rho) * (g & mesh.Sf())
        )
        * rUAf
    )

    from Foam import fvm

    for nonOrth in range(nNonOrthCorr + 1):
        pEqn = fvm.laplacian(rUAf, p) == fvc.div(phi)
        pEqn.setReference(pRefCell, pRefValue)

        if corr == nCorr - 1 and nonOrth == nNonOrthCorr:
            pEqn.solve(mesh.solver(word(str(p.name()) + "Final")))
            pass
        else:
            pEqn.solve(mesh.solver(p.name()))
            pass
        if nonOrth == nNonOrthCorr:
            phi.ext_assign(phi - pEqn.flux())
            pass
        pass

    U.ext_assign(U + rUA * fvc.reconstruct((phi - phiU) / rUAf))
    U.correctBoundaryConditions()

    pass
Example #16
0
def fun_pEqn( i, fluidRegions, Uf, pdf, rhof, thermof, phif, ghf, Kf, DpDtf, turb, initialMassf, UEqn, pRef, corr, nCorr, nNonOrthCorr, cumulativeContErr ) :
    
    closedVolume = False

    rhof[ i ].ext_assign( thermof[ i ].rho() )
    rUA = 1.0 / UEqn.A()
    Uf[ i ].ext_assign( rUA * UEqn.H() )

    from Foam import fvc
    phif[ i ] .ext_assign( fvc.interpolate( rhof[ i ] ) * ( ( fvc.interpolate( Uf[ i ] ) & fluidRegions[ i ].Sf() ) + 
                                                                      fvc.ddtPhiCorr( rUA, rhof[ i ], Uf[ i ], phif[ i ] ) ) - 
                                            fvc.interpolate( rhof[ i ] * rUA * ghf[ i ] ) * fvc.snGrad( rhof[ i ] ) * fluidRegions[ i ].magSf() )
    
    # Solve pressure difference
    pdEqn, closedVolume = fun_pdEqn( corr, nCorr, nNonOrthCorr, closedVolume, pdf[i], pRef, rhof[i], thermof[i].psi(), rUA, ghf[i], phif[i] )
    
    # Solve continuity
    rhoEqn( rhof[i], phif[i] )
    
    # Update pressure field (including bc)
    from Foam.OpenFOAM import word
    thermof[i].p() == pdf[ i ] + rhof[ i ] * ghf[ i ] + pRef
    
    from Foam.finiteVolume import surfaceScalarField
    DpDtf[i].ext_assign( fvc.DDt( surfaceScalarField( word( "phiU" ), phif[ i ] / fvc.interpolate( rhof[ i ] ) ), thermof[i].p() ) )

    # Update continuity errors
    cumulativeContErr = compressibleContinuityErrors( cumulativeContErr, rhof[i], thermof[i] )
        
    # Correct velocity field
    Uf[ i ].ext_assign( Uf[i] - rUA * ( fvc.grad( pdf[ i ] ) + fvc.grad( rhof[ i ] ) * ghf[ i ] ) )
    Uf[ i ].correctBoundaryConditions()
    
    # For closed-volume cases adjust the pressure and density levels
    # to obey overall mass continuity
    if (closedVolume):
       from Foam.OpenFOAM import dimensionedScalar, dimMass
       thermof[i].p().ext_assign( thermof[i].p() + 
                                  ( dimensionedScalar( word( "massIni" ),
                                                       dimMass,
                                                       initialMassf[ i ] ) - fvc.domainIntegrate( thermof[ i ].psi() * thermof[ i ].p() ) )
                                  / fvc.domainIntegrate( thermof[ i ].psi() ) )
       rhof[ i ].ext_assign( thermof[ i ].rho() )
    
    # Update thermal conductivity
    Kf[i].ext_assign( rhof[ i ] * thermof[ i ].Cp() * turb[ i ].alphaEff() )

    return cumulativeContErr
def compressibleCourantNo_010600_dev( mesh, phi, rho, runTime ):
    
    from Foam.OpenFOAM import Time
    from Foam.finiteVolume import fvMesh
    from Foam.finiteVolume import surfaceScalarField

    CoNum = 0.0
    meanCoNum = 0.0
    velMag = 0.0
    
    if mesh.nInternalFaces() :
        
        from Foam import fvc
        phiOverRho = phi.mag() / fvc.interpolate( rho )
        
        SfUfbyDelta = mesh.deltaCoeffs() * phiOverRho

        CoNum = ( SfUfbyDelta / mesh.magSf() ).ext_max().value() * runTime.deltaT().value()
        meanCoNum = ( SfUfbyDelta.sum() / mesh.magSf().sum() ).value() * runTime.deltaT().value();
        
        velMag = ( phiOverRho / mesh.magSf() ).ext_max().value()
        
        pass

    from Foam.OpenFOAM import ext_Info, nl
    ext_Info() << "Courant Number mean: " << meanCoNum << " max: " << CoNum  << " velocity magnitude: " << velMag << nl 

    return CoNum, meanCoNum, velMag
Example #18
0
def solidRegionDiffNo( mesh, runTime, Cprho, K ):
    DiNum = 0.0
    meanDiNum = 0.0

    #- Can have fluid domains with 0 cells so do not test.
    if mesh.nInternalFaces():
       from Foam import fvc
       KrhoCpbyDelta = mesh.deltaCoeffs() * fvc.interpolate( K ) / fvc.interpolate(Cprho);
       DiNum = KrhoCpbyDelta.internalField().max() * runTime.deltaT().value()
       meanDiNum = KrhoCpbyDelta.average().value() * runTime.deltaT().value()
       pass
    
    from Foam.OpenFOAM import ext_Info, nl
    ext_Info() << "Region: " << mesh.name() << " Diffusion Number mean: " << meanDiNum << " max: " << DiNum << nl

    return DiNum
Example #19
0
    def step(self, getPISOControls):
        from Foam.OpenFOAM import ext_Info, nl

        ext_Info() << "Time = " << self.runTime.timeName() << nl << nl

        piso, nCorr, nNonOrthCorr, momentumPredictor, transonic, nOuterCorr = getPISOControls(self.mesh)

        from Foam.finiteVolume.cfdTools.incompressible import CourantNo

        CoNum, meanCoNum = CourantNo(self.mesh, self.phi, self.runTime)

        from Foam import fvm

        UEqn = fvm.ddt(self.U) + fvm.div(self.phi, self.U) - fvm.laplacian(self.nu, self.U)

        from Foam import fvc
        from Foam.finiteVolume import solve

        solve(UEqn == -fvc.grad(self.p))

        # --- PISO loop

        for corr in range(nCorr):
            rUA = 1.0 / UEqn.A()

            self.U.ext_assign(rUA * UEqn.H())
            self.phi.ext_assign((fvc.interpolate(self.U) & self.mesh.Sf()) + fvc.ddtPhiCorr(rUA, self.U, self.phi))

            from Foam.finiteVolume import adjustPhi

            adjustPhi(self.phi, self.U, self.p)

            for nonOrth in range(nNonOrthCorr + 1):
                pEqn = fvm.laplacian(rUA, self.p) == fvc.div(self.phi)

                pEqn.setReference(self.pRefCell, self.pRefValue)
                pEqn.solve()

                if nonOrth == nNonOrthCorr:
                    self.phi.ext_assign(self.phi - pEqn.flux())
                    pass

                pass

            from Foam.finiteVolume.cfdTools.incompressible import continuityErrs

            cumulativeContErr = continuityErrs(self.mesh, self.phi, self.runTime, self.cumulativeContErr)

            self.U.ext_assign(self.U - rUA * fvc.grad(self.p))
            self.U.correctBoundaryConditions()

            pass

        self.runTime.write()

        ext_Info() << "ExecutionTime = " << self.runTime.elapsedCpuTime() << " s" << "  ClockTime = " << self.runTime.elapsedClockTime() << " s" << nl << nl

        self.runTime += self.runTime.deltaT()

        return self.runTime.value()
Example #20
0
def fun_UEqn(mesh, U, p_rgh, ghf, rho, rhoPhi, turbulence, twoPhaseProperties, momentumPredictor, finalIter):
    from Foam.OpenFOAM import word
    from Foam.finiteVolume import surfaceScalarField
    from Foam import fvc

    muEff = surfaceScalarField(word("muEff"), twoPhaseProperties.muf() + fvc.interpolate(rho * turbulence.ext_nut()))

    from Foam import fvm, fvc

    UEqn = fvm.ddt(rho, U) + fvm.div(rhoPhi, U) - fvm.laplacian(muEff, U) - (fvc.grad(U) & fvc.grad(muEff))

    if finalIter:
        UEqn.relax(1.0)
        pass
    else:
        UEqn.relax()
        pass

    if momentumPredictor:
        from Foam.finiteVolume import solve

        solve(
            UEqn == fvc.reconstruct((-ghf * fvc.snGrad(rho) - fvc.snGrad(p_rgh)) * mesh.magSf()),
            mesh.solver(U.select(finalIter)),
        )
        pass

    return UEqn
Example #21
0
def main_standalone( argc, argv ):

    from Foam.OpenFOAM import argList, word
    argList.validOptions.fget().insert( word( "writep" ), "" )
    
    from Foam.OpenFOAM.include import setRootCase
    args = setRootCase( argc, argv )

    from Foam.OpenFOAM.include import createTime
    runTime = createTime( args )

    from Foam.OpenFOAM.include import createMesh
    mesh = createMesh( runTime )
    
    p, U, phi, pRefCell, pRefValue = _createFields( runTime, mesh )
    
    from Foam.OpenFOAM import ext_Info, nl
    ext_Info() << nl << "Calculating potential flow" << nl
        
    from Foam.finiteVolume.cfdTools.general.include import readSIMPLEControls
    simple, nNonOrthCorr, momentumPredictor, fluxGradp, transonic = readSIMPLEControls( mesh )
    
    from Foam.finiteVolume import adjustPhi
    adjustPhi(phi, U, p)
    
    from Foam.OpenFOAM import dimensionedScalar, word, dimTime, dimensionSet
    from Foam import fvc, fvm
    for nonOrth in range( nNonOrthCorr + 1):
        pEqn = fvm.laplacian( dimensionedScalar( word( "1" ), dimTime / p.dimensions() * dimensionSet( 0.0, 2.0, -2.0, 0.0, 0.0 ), 1.0 ), p ) == fvc.div( phi )

        pEqn.setReference( pRefCell, pRefValue )
        pEqn.solve()

        if nonOrth == nNonOrthCorr:
           phi.ext_assign( phi - pEqn.flux() )
           pass
        pass
    
    ext_Info() << "continuity error = " << fvc.div( phi ).mag().weightedAverage( mesh.V() ).value() << nl

    U.ext_assign( fvc.reconstruct( phi ) )
    U.correctBoundaryConditions()
    ext_Info() << "Interpolated U error = " << ( ( ( fvc.interpolate( U ) & mesh.Sf() ) - phi ).sqr().sum().sqrt()  /mesh.magSf().sum() ).value() << nl

    # Force the write
    U.write()
    phi.write()
    
    if args.optionFound( word( "writep" ) ):
       p.write()
       pass
       
    ext_Info() << "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << \
              "  ClockTime = " << runTime.elapsedClockTime() << " s" << nl << nl
        
    ext_Info() << "End\n" << nl 

    import os
    return os.EX_OK
Example #22
0
def _eEqn( rho, e, phi, turbulence, p, thermo ):
    from Foam import fvm, fvc
    from Foam.finiteVolume import solve
    solve( fvm.ddt( rho, e ) + fvm.div( phi, e ) - fvm.laplacian( turbulence.alphaEff(), e )
           == - p * fvc.div( phi / fvc.interpolate( rho ) ) )

    thermo.correct()
    pass
def create_fields( runTime, mesh ):
    from Foam.OpenFOAM import ext_Info, nl
    ext_Info() << "Reading thermophysical properties\n" << nl
    
    from Foam.thermophysicalModels import basicPsiThermo, autoPtr_basicPsiThermo
    thermo = basicPsiThermo.New( mesh )

    p = thermo.p()
    h = thermo.h()
    psi = thermo.psi()
    
    from Foam.OpenFOAM import IOobject, word, fileName
    from Foam.finiteVolume import volScalarField
    rho = volScalarField( IOobject( word( "rho" ),
                                    fileName( runTime.timeName() ),
                                    mesh,
                                    IOobject.READ_IF_PRESENT,
                                    IOobject.AUTO_WRITE ),
                          thermo.rho() )

    ext_Info() << "Reading field U\n" << nl
    
    from Foam.finiteVolume import volVectorField
    U = volVectorField( IOobject( word( "U" ),
                                  fileName( runTime.timeName() ),
                                  mesh,
                                  IOobject.MUST_READ,
                                  IOobject.AUTO_WRITE ),
                        mesh )

    from Foam.finiteVolume.cfdTools.compressible import compressibleCreatePhi
    phi = compressibleCreatePhi( runTime, mesh, rho, U )

    from Foam.OpenFOAM import dimensionedScalar
    pMin = dimensionedScalar( mesh.solutionDict().subDict( word( "PIMPLE" ) ).lookup( word( "pMin" ) ) )

    ext_Info() << "Creating turbulence model\n" << nl
    from Foam import compressible
    turbulence = compressible.turbulenceModel.New( rho, U, phi, thermo() ) 

    # initialMass = fvc.domainIntegrate(rho)

    ext_Info() << "Creating field DpDt\n" << nl
    from Foam import fvc
    from Foam.finiteVolume import surfaceScalarField
    DpDt = fvc.DDt( surfaceScalarField( word( "phiU" ), phi / fvc.interpolate( rho ) ), p )

    from Foam.finiteVolume import MRFZones
    mrfZones = MRFZones( mesh )
    mrfZones.correctBoundaryVelocity( U )

    from Foam.finiteVolume import porousZones
    pZones = porousZones( mesh )
    
    from Foam.OpenFOAM import Switch
    pressureImplicitPorosity = Switch( False )
    
    return thermo, turbulence, p, h, psi, rho, U, phi, pMin, DpDt, mrfZones, pZones, pressureImplicitPorosity
Example #24
0
def fun_pEqn( mesh, p, U, trTU, trAU, UEqn, phi, runTime, pressureImplicitPorosity, nNonOrthCorr, \
              eqnResidual, maxResidual, cumulativeContErr, pRefCell, pRefValue, ):
   
    if pressureImplicitPorosity :
       U.ext_assign( trTU & UEqn.H() )
       pass
    else:
       U.ext_assign( trAU * UEqn.H() )
       pass
    
    UEqn.clear() 
    
    from Foam import fvc, fvm
    phi.ext_assign( fvc.interpolate( U ) & mesh.Sf() )

    from Foam.finiteVolume import adjustPhi
    adjustPhi( phi, U, p )
    
    for nonOrth in range( nNonOrthCorr + 1 ) :
        tpEqn = None
        if pressureImplicitPorosity :
            tpEqn = ( fvm.laplacian( trTU, p ) == fvc.div( phi ) )
            pass
        else:
            tpEqn = ( fvm.laplacian( trAU, p ) == fvc.div( phi ) )
            pass
        
        tpEqn.setReference( pRefCell, pRefValue )
        # retain the residual from the first iteration
        if nonOrth == 0 :
            eqnResidual = tpEqn.solve().initialResidual()
            maxResidual = max( eqnResidual, maxResidual )
            pass
        else:
            tpEqn.solve()
            pass
        
        if nonOrth == nNonOrthCorr :
            phi.ext_assign( phi - tpEqn.flux() )
            pass
        
        pass
    
    from Foam.finiteVolume.cfdTools.incompressible import continuityErrs
    cumulativeContErr = continuityErrs( mesh, phi, runTime, cumulativeContErr )

    # Explicitly relax pressure for momentum corrector
    p.relax()
           
    if pressureImplicitPorosity :
        U.ext_assign( U - ( trTU & fvc.grad( p ) ) )
    else:
        U.ext_assign( U - ( trAU * fvc.grad( p ) ) )
        pass
       
    U.correctBoundaryConditions()

    return eqnResidual, maxResidual
def fun_hEqn( turbulence, phi, h, rho, radiation, p, thermo, eqnResidual, maxResidual  ):
    
    from Foam import fvc, fvm    
    left_exp = fvm.div( phi, h ) - fvm.Sp( fvc.div( phi ), h ) - fvm.laplacian( turbulence.alphaEff(), h )
    right_exp = fvc.div( phi/fvc.interpolate( rho )*fvc.interpolate( p ) ) - p*fvc.div( phi/fvc.interpolate( rho ) ) + radiation.Sh( thermo() )
    
    hEqn = (left_exp == right_exp )

    hEqn.relax()

    eqnResidual = hEqn.solve().initialResidual()
    maxResidual = max(eqnResidual, maxResidual)

    thermo.correct()

    radiation.correct()
    
    return hEqn, eqnResidual, maxResidual
Example #26
0
def _hEqn(thermo, phi, h, turbulence, p, rho):
    from Foam.finiteVolume import fvScalarMatrix
    from Foam import fvc, fvm

    left_expr = fvm.div(phi, h) - fvm.Sp(fvc.div(phi), h) - fvm.laplacian(turbulence.alphaEff(), h)
    from Foam.OpenFOAM import word

    right_expr = fvc.div(phi / fvc.interpolate(rho) * fvc.interpolate(p, word("div(U,p)"))) - p * fvc.div(
        phi / fvc.interpolate(rho)
    )

    hEqn = left_expr == right_expr

    hEqn.relax()

    hEqn.solve()
    thermo.correct()

    return hEqn
Example #27
0
def Ueqn( mesh, phi, U, rho, p, g, turbulence, eqnResidual, maxResidual ):
    from Foam import fvm, fvc
    UEqn = fvm.div( phi, U ) + turbulence.divDevRhoReff( U )
    UEqn.relax()
    
    from Foam.finiteVolume import solve
    eqnResidual = solve( UEqn() == fvc.reconstruct( fvc.interpolate( rho )*( g & mesh.Sf() ) - fvc.snGrad( p ) * mesh.magSf() ) ).initialResidual()
    
    maxResidual = max(eqnResidual, maxResidual)
       
    return UEqn, eqnResidual, maxResidual
Example #28
0
def _UEqn( mesh, alpha1, U, p, rho, rhoPhi, turbulence, g, twoPhaseProperties, interface, momentumPredictor ):
    from Foam.OpenFOAM import word
    from Foam.finiteVolume import surfaceScalarField
    from Foam import fvc
    muEff = surfaceScalarField( word( "muEff" ),
                                twoPhaseProperties.muf() + fvc.interpolate( rho * turbulence.ext_nut() ) )
    from Foam import fvm

    UEqn = fvm.ddt( rho, U ) + fvm.div( rhoPhi, U ) - fvm.laplacian( muEff, U ) - ( fvc.grad( U ) & fvc.grad( muEff ) )
    
    UEqn.relax()

    if momentumPredictor:
       from Foam.finiteVolume import solve
       solve( UEqn == \
                   fvc.reconstruct( fvc.interpolate( rho ) * ( g & mesh.Sf() ) + \
                                    ( fvc.interpolate( interface.sigmaK() ) * fvc.snGrad( alpha1 ) - fvc.snGrad( p ) ) * mesh.magSf() ) )
       pass
    
    return UEqn
Example #29
0
def fun_UEqn( mesh, alpha1, U, p, p_rgh, ghf, rho, rhoPhi, turbulence, g, twoPhaseProperties, interface, momentumPredictor, oCorr, nOuterCorr ):
    from Foam.OpenFOAM import word
    from Foam.finiteVolume import surfaceScalarField
    from Foam import fvc
    muEff = surfaceScalarField( word( "muEff" ),
                                twoPhaseProperties.muf() + fvc.interpolate( rho * turbulence.ext_nut() ) )
    from Foam import fvm

    UEqn = fvm.ddt( rho, U ) + fvm.div( rhoPhi, U ) - fvm.laplacian( muEff, U ) - ( fvc.grad( U ) & fvc.grad( muEff ) )
    
    UEqn.relax()

    if momentumPredictor:
       from Foam.finiteVolume import solve
       solve( UEqn == \
                   fvc.reconstruct( ( fvc.interpolate( interface.sigmaK() ) * fvc.snGrad( alpha1 ) - ghf * fvc.snGrad( rho ) \
                                                                                                 - fvc.snGrad( p_rgh ) ) * mesh.magSf(),
                                     mesh.solver( U.select( oCorr == nOuterCorr-1 ) ) ) )
       pass
    
    return UEqn
Example #30
0
def pEqn(
    runTime, mesh, p, phi, U, UEqn, eqnResidual, maxResidual, nNonOrthCorr, cumulativeContErr, pRefCell, pRefValue
):

    p.ext_boundaryField().updateCoeffs()

    AU = UEqn.A()
    U.ext_assign(UEqn.H() / AU)
    UEqn.clear()

    from Foam import fvc

    phi.ext_assign(fvc.interpolate(U) & mesh.Sf())

    from Foam.finiteVolume import adjustPhi

    adjustPhi(phi, U, p)

    # Non-orthogonal pressure corrector loop
    for nonOrth in range(nNonOrthCorr + 1):

        from Foam import fvm, fvc

        pEqn = fvm.laplacian(1.0 / AU, p) == fvc.div(phi)
        pEqn.setReference(pRefCell, pRefValue)

        # retain the residual from the first iteration
        if nonOrth == 0:
            eqnResidual = pEqn.solve().initialResidual()
            maxResidual = max(eqnResidual, maxResidual)
            pass
        else:
            pEqn.solve()
            pass

        if nonOrth == nNonOrthCorr:
            phi.ext_assign(phi - pEqn.flux())
            pass

        pass

    from Foam.finiteVolume.cfdTools.incompressible import continuityErrs

    cumulativeContErr = continuityErrs(mesh, phi, runTime, cumulativeContErr)

    # Explicitly relax pressure for momentum corrector
    p.relax()

    # Momentum corrector
    U.ext_assign(U - fvc.grad(p) / AU)
    U.correctBoundaryConditions()

    return eqnResidual, maxResidual, cumulativeContErr
def _pEqn( runTime, mesh, U, UEqn, phi, p, rhok, g, corr, nCorr, nNonOrthCorr, cumulativeContErr ): 
    
    from Foam.finiteVolume import volScalarField, surfaceScalarField
    from Foam.OpenFOAM import word
    from Foam import fvc
    rUA = volScalarField( word( "rUA" ), 1.0 / UEqn.A() )

    rUAf = surfaceScalarField(word( "(1|A(U))" ), fvc.interpolate( rUA ) )

    U.ext_assign( rUA * UEqn.H() )
    
    phiU = ( fvc.interpolate( U ) & mesh.Sf() ) + fvc.ddtPhiCorr( rUA, U, phi )
    
    phi.ext_assign( phiU + rUAf * fvc.interpolate( rhok ) * ( g & mesh.Sf() ) )
    
    for nonOrth in range( nNonOrthCorr+1 ):
        
        from Foam import fvm
        pEqn = fvm.laplacian( rUAf, p ) == fvc.div( phi )

        if ( corr == nCorr-1 ) and (nonOrth == nNonOrthCorr):
           from Foam.OpenFOAM import word
           pEqn.solve(mesh.solver( word( str( p.name() ) + "Final" ) ) )
           pass
        else:
           pEqn.solve( mesh.solver( p.name() ) )
           pass

        if (nonOrth == nNonOrthCorr):
           phi.ext_assign( phi - pEqn.flux() )
           pass
        pass
    U.ext_assign( U + rUA * fvc.reconstruct( ( phi - phiU ) / rUAf ) )
    U.correctBoundaryConditions() 

    from Foam.finiteVolume.cfdTools.incompressible import continuityErrs
    cumulativeContErr = continuityErrs( mesh, phi, runTime, cumulativeContErr )
    
    return pEqn
Example #32
0
def CourantNo( runTime, mesh, h, phi, magg ):
    CoNum = 0.0
    meanCoNum = 0.0
    waveCoNum = 0.0
    
    
    if mesh.nInternalFaces():
       from Foam import fvc
       SfUfbyDelta = mesh.deltaCoeffs() * phi.mag() / fvc.interpolate(h)
       
       CoNum = ( SfUfbyDelta / mesh.magSf() ).ext_max().value() * runTime.deltaT().value()
       
       meanCoNum = ( SfUfbyDelta.sum() / mesh.magSf().sum() ).value() * runTime.deltaT().value()

       # Gravity wave Courant number
       waveCoNum = 0.5 * ( mesh.deltaCoeffs() * fvc.interpolate( h ).sqrt() ).ext_max().value() * magg.sqrt().value() * runTime.deltaT().value()
    
    from Foam.OpenFOAM import ext_Info, nl
    ext_Info() << "Courant number mean: " << meanCoNum  << " max: " << CoNum << nl
    ext_Info() << "Gravity wave Courant number max: " << waveCoNum  << nl
    
    return CoNum, meanCoNum, waveCoNum
def _Ueqn( U, phi, turbulence, p, rhok, g, mesh, momentumPredictor ):
    from Foam import fvm
    # Solve the momentum equation

    UEqn = fvm.ddt( U ) + fvm.div( phi, U ) + turbulence.divDevReff( U )

    UEqn.relax()

    from Foam.finiteVolume import solve
    from Foam import fvc
    if momentumPredictor:
       solve( UEqn == fvc.reconstruct( ( fvc.interpolate( rhok ) * ( g & mesh.Sf() ) - fvc.snGrad( p ) * mesh.magSf() ) ) )
       
    return UEqn