def test_BasisfunctionRegression_simple():
    x = np.arange(10.).reshape((10, 1))
    y = np.arange(10.) + 1
    dy = 1

    mu = np.arange(11.)[:, None]
    sigma = 1.0

    clf = BasisFunctionRegression(mu=mu, sigma=sigma).fit(x, y, dy)
    y_true = clf.predict(x)

    assert_allclose(y, y_true, atol=1E-10)
Example #2
0
def test_BasisfunctionRegression_simple():
    x = np.arange(10.).reshape((10, 1))
    y = np.arange(10.) + 1
    dy = 1

    mu = np.arange(11.)[:, None]
    sigma = 1.0

    clf = BasisFunctionRegression(mu=mu, sigma=sigma).fit(x, y, dy)
    y_true = clf.predict(x)

    assert_allclose(y, y_true, atol=1E-10)
Example #3
0
z_sample, mu_sample, dmu = generate_mu_z(100, random_state=0)

cosmo = Cosmology()
z = np.linspace(0.01, 2, 1000)
mu_true = np.asarray(map(cosmo.mu, z))

#------------------------------------------------------------
# Define our classifiers
basis_mu = np.linspace(0, 2, 15)[:, None]
basis_sigma = 3 * (basis_mu[1] - basis_mu[0])

subplots = [221, 222, 223, 224]
classifiers = [
    LinearRegression(),
    PolynomialRegression(4),
    BasisFunctionRegression('gaussian', mu=basis_mu, sigma=basis_sigma),
    NadarayaWatson('gaussian', h=0.1)
]
text = [
    'Straight-line Regression', '4th degree Polynomial\n Regression',
    'Gaussian Basis Function\n Regression', 'Gaussian Kernel\n Regression'
]

# number of constraints of the model.  Because
# Nadaraya-watson is just a weighted mean, it has only one constraint
n_constraints = [2, 5, len(basis_mu) + 1, 1]

#------------------------------------------------------------
# Plot the results
fig = plt.figure(figsize=(8, 8))
fig.subplots_adjust(left=0.1,
Example #4
0
def fit_BasisFunction(features_train, labels_train, features_pred, kernel='gaussian', mu=mu0, sigma=0.1):
	model = BasisFunctionRegression(kernel, mu=mu, sigma=sigma)
	model.fit(features_train, labels_train)
	labels_pred = model.predict(features_pred)
	return labels_pred