Example #1
0
    def __init__(self, input_dim, output_dim, width, height, N, **kwargs):
        super(AttentionWriter, self).__init__(name="writer", **kwargs)

        self.img_width = width
        self.img_height = height
        self.N = N
        self.input_dim = input_dim
        self.output_dim = output_dim

        assert output_dim == width * height

        self.zoomer = ZoomableAttentionWindow(height, width, N)
        self.z_trafo = Linear(name=self.name + '_ztrafo',
                              input_dim=input_dim,
                              output_dim=5,
                              weights_init=self.weights_init,
                              biases_init=self.biases_init,
                              use_bias=True)

        self.w_trafo = Linear(name=self.name + '_wtrafo',
                              input_dim=input_dim,
                              output_dim=N * N,
                              weights_init=self.weights_init,
                              biases_init=self.biases_init,
                              use_bias=True)

        self.children = [self.z_trafo, self.w_trafo]
Example #2
0
class AttentionReader(Initializable):
    def __init__(self, x_dim, dec_dim, width, height, N, **kwargs):
        super(AttentionReader, self).__init__(name="reader", **kwargs)

        self.width = width
        self.height = height
        self.N = N
        self.x_dim = x_dim
        self.dec_dim = dec_dim
        self.output_dim = 2 * N * N

        self.zoomer = ZoomableAttentionWindow(height, width, N, normalize=True)
        self.readout = MLP(activations=[Identity()],
                           dims=[dec_dim, 5],
                           **kwargs)

        self.children = [self.readout]

    @application(inputs=['x', 'x_hat', 'h_dec'], outputs=['r'])
    def apply(self, x, x_hat, h_dec):
        l = self.readout.apply(h_dec)
        center_y = (l[:, 0] + 1.) / 2.
        center_x = (l[:, 1] + 1.) / 2.
        log_delta = l[:, 2]
        log_sigma = l[:, 3] / 2.
        log_gamma = l[:, 4]

        w = self.zoomer.read(x, center_y, center_x, T.exp(log_delta),
                             T.exp(log_sigma))
        w_hat = self.zoomer.read(x_hat, center_y, center_x, T.exp(log_delta),
                                 T.exp(log_sigma))

        gamma = T.exp(log_gamma).dimshuffle(0, 'x')
        return gamma * T.concatenate([w, w_hat], axis=1)
Example #3
0
class AttentionWriter(Initializable):
    def __init__(self, input_dim, output_dim, channels, width, height, N,
                 **kwargs):
        super(AttentionWriter, self).__init__(name="writer", **kwargs)

        self.channels = channels
        self.img_width = width
        self.img_height = height
        self.N = N
        self.input_dim = input_dim
        self.output_dim = output_dim

        assert output_dim == channels * width * height

        self.zoomer = ZoomableAttentionWindow(channels, height, width, N)
        self.z_trafo = Linear(name=self.name + '_ztrafo',
                              input_dim=input_dim,
                              output_dim=5,
                              weights_init=self.weights_init,
                              biases_init=self.biases_init,
                              use_bias=True)

        self.w_trafo = Linear(name=self.name + '_wtrafo',
                              input_dim=input_dim,
                              output_dim=channels * N * N,
                              weights_init=self.weights_init,
                              biases_init=self.biases_init,
                              use_bias=True)

        self.children = [self.z_trafo, self.w_trafo]

    @application(inputs=['h'], outputs=['c_update'])
    def apply(self, h):
        w = self.w_trafo.apply(h)
        l = self.z_trafo.apply(h)

        center_y, center_x, delta, sigma, gamma = self.zoomer.nn2att(l)

        c_update = 1. / gamma * self.zoomer.write(w, center_y, center_x, delta,
                                                  sigma)

        return c_update

    @application(inputs=['h'],
                 outputs=['c_update', 'center_y', 'center_x', 'delta'])
    def apply_detailed(self, h):
        w = self.w_trafo.apply(h)
        l = self.z_trafo.apply(h)

        center_y, center_x, delta, sigma, gamma = self.zoomer.nn2att(l)

        c_update = 1. / gamma * self.zoomer.write(w, center_y, center_x, delta,
                                                  sigma)

        return c_update, center_y, center_x, delta
Example #4
0
File: draw.py Project: zan2434/draw
class AttentionWriter(Initializable):
    def __init__(self, input_dim, output_dim, width, height, N, **kwargs):
        super(AttentionWriter, self).__init__(name="writer", **kwargs)

        self.img_width = width
        self.img_height = height
        self.N = N
        self.input_dim = input_dim
        self.output_dim = output_dim

        assert output_dim == width * height

        self.zoomer = ZoomableAttentionWindow(height, width, N)
        self.z_trafo = Linear(
            name=self.name + "_ztrafo",
            input_dim=input_dim,
            output_dim=5,
            weights_init=self.weights_init,
            biases_init=self.biases_init,
            use_bias=True,
        )

        self.w_trafo = Linear(
            name=self.name + "_wtrafo",
            input_dim=input_dim,
            output_dim=N * N,
            weights_init=self.weights_init,
            biases_init=self.biases_init,
            use_bias=True,
        )

        self.children = [self.z_trafo, self.w_trafo]

    @application(inputs=["h"], outputs=["c_update"])
    def apply(self, h):
        w = self.w_trafo.apply(h)
        l = self.z_trafo.apply(h)

        center_y, center_x, delta, sigma, gamma = self.zoomer.nn2att(l)

        c_update = 1.0 / gamma * self.zoomer.write(w, center_y, center_x, delta, sigma)

        return c_update

    @application(inputs=["h"], outputs=["c_update", "center_y", "center_x", "delta"])
    def apply_detailed(self, h):
        w = self.w_trafo.apply(h)
        l = self.z_trafo.apply(h)

        center_y, center_x, delta, sigma, gamma = self.zoomer.nn2att(l)

        c_update = 1.0 / gamma * self.zoomer.write(w, center_y, center_x, delta, sigma)

        return c_update, center_y, center_x, delta
Example #5
0
    def __init__(self, x_dim, dec_dim, height, width, N, **kwargs):
        super(AttentionReader, self).__init__(name="reader", **kwargs)

        self.img_height = height
        self.img_width = width
        self.N = N
        self.x_dim = x_dim
        self.dec_dim = dec_dim
        self.output_dim = 2*N*N

        self.zoomer = ZoomableAttentionWindow(height, width, N)
        self.readout = MLP(activations=[Identity()], dims=[dec_dim, 5], **kwargs)

        self.children = [self.readout]
Example #6
0
class AttentionWriter(Initializable):
    def __init__(self, input_dim, output_dim, channels, width, height, N, **kwargs):
        super(AttentionWriter, self).__init__(name="writer", **kwargs)

        self.channels = channels
        self.img_width = width
        self.img_height = height
        self.N = N
        self.input_dim = input_dim
        self.output_dim = output_dim

        assert output_dim == channels*width*height

        self.zoomer = ZoomableAttentionWindow(channels, height, width, N)
        self.z_trafo = Linear(
                name=self.name+'_ztrafo',
                input_dim=input_dim, output_dim=5, 
                weights_init=self.weights_init, biases_init=self.biases_init,
                use_bias=True)

        self.w_trafo = Linear(
                name=self.name+'_wtrafo',
                input_dim=input_dim, output_dim=channels*N*N, 
                weights_init=self.weights_init, biases_init=self.biases_init,
                use_bias=True)

        self.children = [self.z_trafo, self.w_trafo]

    @application(inputs=['h'], outputs=['c_update'])
    def apply(self, h):
        w = self.w_trafo.apply(h)
        l = self.z_trafo.apply(h)

        center_y, center_x, delta, sigma, gamma = self.zoomer.nn2att(l)

        c_update = 1./gamma * self.zoomer.write(w, center_y, center_x, delta, sigma)

        return c_update

    @application(inputs=['h'], outputs=['c_update', 'center_y', 'center_x', 'delta'])
    def apply_detailed(self, h):
        w = self.w_trafo.apply(h)
        l = self.z_trafo.apply(h)

        center_y, center_x, delta, sigma, gamma = self.zoomer.nn2att(l)

        c_update = 1./gamma * self.zoomer.write(w, center_y, center_x, delta, sigma)

        return c_update, center_y, center_x, delta
Example #7
0
class AttentionReader(Initializable):
    def __init__(self, x_dim, dec_dim, channels, height, width, N, **kwargs):
        super(AttentionReader, self).__init__(name="reader", **kwargs)

        self.img_height = height
        self.img_width = width
        self.N = N
        self.x_dim = x_dim
        self.dec_dim = dec_dim
        self.output_dim = 2*channels*N*N

        self.zoomer = ZoomableAttentionWindow(channels, height, width, N)
        self.readout = MLP(activations=[Identity()], dims=[dec_dim, 5], **kwargs)

        self.children = [self.readout]

    def get_dim(self, name):
        if name == 'input':
            return self.dec_dim
        elif name == 'x_dim':
            return self.x_dim
        elif name == 'output':
            return self.output_dim
        else:
            raise ValueError
            
    @application(inputs=['x', 'x_hat', 'h_dec'], outputs=['r'])
    def apply(self, x, x_hat, h_dec):
        l = self.readout.apply(h_dec)

        center_y, center_x, delta, sigma, gamma = self.zoomer.nn2att(l)

        w     = gamma * self.zoomer.read(x    , center_y, center_x, delta, sigma)
        w_hat = gamma * self.zoomer.read(x_hat, center_y, center_x, delta, sigma)
        
        return T.concatenate([w, w_hat], axis=1)

    @application(inputs=['x', 'x_hat', 'h_dec'], outputs=['r','center_y', 'center_x', 'delta'])
    def apply_detailed(self, x, x_hat, h_dec):
        l = self.readout.apply(h_dec)

        center_y, center_x, delta, sigma, gamma = self.zoomer.nn2att(l)

        w     = gamma * self.zoomer.read(x    , center_y, center_x, delta, sigma)
        w_hat = gamma * self.zoomer.read(x_hat, center_y, center_x, delta, sigma)
        
        r = T.concatenate([w, w_hat], axis=1)
        return r, center_y, center_x, delta
Example #8
0
    def __init__(self, input_dim, output_dim, channels, width, height, N, **kwargs):
        super(AttentionWriter, self).__init__(name="writer", **kwargs)

        self.channels = channels
        self.img_width = width
        self.img_height = height
        self.N = N
        self.input_dim = input_dim
        self.output_dim = output_dim

        assert output_dim == channels*width*height

        self.zoomer = ZoomableAttentionWindow(channels, height, width, N)
        self.z_trafo = Linear(
                name=self.name+'_ztrafo',
                input_dim=input_dim, output_dim=5, 
                weights_init=self.weights_init, biases_init=self.biases_init,
                use_bias=True)

        self.w_trafo = Linear(
                name=self.name+'_wtrafo',
                input_dim=input_dim, output_dim=channels*N*N, 
                weights_init=self.weights_init, biases_init=self.biases_init,
                use_bias=True)

        self.children = [self.z_trafo, self.w_trafo]
Example #9
0
class LocatorReader(Initializable):
    def __init__(self, x_dim, dec_dim, channels, height, width, N, **kwargs):
        super(LocatorReader, self).__init__(name="reader", **kwargs)

        self.img_height = height
        self.img_width = width
        self.N = N
        self.x_dim = x_dim
        self.dec_dim = dec_dim
        self.output_dim = channels * N * N

        self.zoomer = ZoomableAttentionWindow(channels, height, width, N)
        self.readout = MLP(activations=[Identity()], dims=[dec_dim, 7], **kwargs)

        self.children = [self.readout]

    def get_dim(self, name):
        if name == 'input':
            return self.dec_dim
        elif name == 'x_dim':
            return self.x_dim
        elif name == 'output':
            return self.output_dim
        else:
            raise ValueError

    @application(inputs=['x', 'h_dec'], outputs=['r', 'l'])
    def apply(self, x, h_dec):
        l = self.readout.apply(h_dec)

        center_y, center_x, deltaY, deltaX, sigmaY, sigmaX, gamma = self.zoomer.nn2att(l)

        w = gamma * self.zoomer.read(x, center_y, center_x, deltaY, deltaX, sigmaY, sigmaX)

        return w, l

    @application(inputs=['h_dec'], outputs=['center_y', 'center_x', 'deltaY', 'deltaX'])
    def apply_l(self, h_dec):
        l = self.readout.apply(h_dec)

        center_y, center_x, deltaY, deltaX = self.zoomer.nn2att_wn(l)

        return center_y, center_x, deltaY, deltaX
Example #10
0
class AttentionReader(Initializable):
    def __init__(self, x_dim, dec_dim, height, width, N, **kwargs):
        super(AttentionReader, self).__init__(name="reader", **kwargs)

        self.img_height = height
        self.img_width = width
        self.N = N
        self.x_dim = x_dim
        self.dec_dim = dec_dim
        self.output_dim = 2 * N * N

        self.zoomer = ZoomableAttentionWindow(height, width, N)
        self.readout = MLP(activations=[Identity()],
                           dims=[dec_dim, 5],
                           **kwargs)

        self.children = [self.readout]

    def get_dim(self, name):
        if name == 'input':
            return self.dec_dim
        elif name == 'x_dim':
            return self.x_dim
        elif name == 'output':
            return self.output_dim
        else:
            raise ValueError

    @application(inputs=['x', 'x_hat', 'h_dec'], outputs=['r'])
    def apply(self, x, x_hat, h_dec):
        l = self.readout.apply(h_dec)

        center_y, center_x, delta, sigma, gamma = self.zoomer.nn2att(l)

        w = gamma * self.zoomer.read(x, center_y, center_x, delta, sigma)
        w_hat = gamma * self.zoomer.read(x_hat, center_y, center_x, delta,
                                         sigma)

        return T.concatenate([w, w_hat], axis=1)
Example #11
0
    def __init__(self, x_dim, dec_dim, channels, height, width, N, **kwargs):
        super(AttentionReader, self).__init__(name="reader", **kwargs)

        self.img_height = height
        self.img_width = width
        self.N = N
        self.x_dim = x_dim
        self.dec_dim = dec_dim
        self.output_dim = 2*channels*N*N

        self.zoomer = ZoomableAttentionWindow(channels, height, width, N)
        self.readout = MLP(activations=[Identity()], dims=[dec_dim, 5], **kwargs)

        self.children = [self.readout]
Example #12
0
File: draw.py Project: zan2434/draw
class AttentionReader(Initializable):
    def __init__(self, x_dim, dec_dim, height, width, N, **kwargs):
        super(AttentionReader, self).__init__(name="reader", **kwargs)

        self.img_height = height
        self.img_width = width
        self.N = N
        self.x_dim = x_dim
        self.dec_dim = dec_dim
        self.output_dim = 2 * N * N

        self.zoomer = ZoomableAttentionWindow(height, width, N)
        self.readout = MLP(activations=[Identity()], dims=[dec_dim, 5], **kwargs)

        self.children = [self.readout]

    def get_dim(self, name):
        if name == "input":
            return self.dec_dim
        elif name == "x_dim":
            return self.x_dim
        elif name == "output":
            return self.output_dim
        else:
            raise ValueError

    @application(inputs=["x", "x_hat", "h_dec"], outputs=["r"])
    def apply(self, x, x_hat, h_dec):
        l = self.readout.apply(h_dec)

        center_y, center_x, delta, sigma, gamma = self.zoomer.nn2att(l)

        w = gamma * self.zoomer.read(x, center_y, center_x, delta, sigma)
        w_hat = gamma * self.zoomer.read(x_hat, center_y, center_x, delta, sigma)

        return T.concatenate([w, w_hat], axis=1)
Example #13
0
class AttentionWriter(Initializable):
    def __init__(self, input_dim, output_dim, width, height, N, **kwargs):
        super(AttentionWriter, self).__init__(name="writer", **kwargs)

        self.width = width
        self.height = height
        self.N = N
        self.input_dim = input_dim
        self.output_dim = output_dim

        assert output_dim == width * height

        self.zoomer = ZoomableAttentionWindow(height, width, N, normalize=True)
        self.z_trafo = Linear(name=self.name + '_ztrafo',
                              input_dim=input_dim,
                              output_dim=5,
                              weights_init=self.weights_init,
                              biases_init=self.biases_init,
                              use_bias=True)

        self.w_trafo = Linear(name=self.name + '_wtrafo',
                              input_dim=input_dim,
                              output_dim=N * N,
                              weights_init=self.weights_init,
                              biases_init=self.biases_init,
                              use_bias=True)

        self.children = [self.z_trafo, self.w_trafo]

    @application(inputs=['h'], outputs=['c_update'])
    def apply(self, h):
        w = self.w_trafo.apply(h)
        l = self.z_trafo.apply(h)
        center_y = (l[:, 0] + 1.) / 2.
        center_x = (l[:, 1] + 1.) / 2.
        log_delta = l[:, 2]
        log_sigma = l[:, 3] / 2.
        log_gamma = l[:, 4]

        gamma = T.exp(log_gamma).dimshuffle(0, 'x')
        c_update = self.zoomer.write(w, center_y, center_x, T.exp(log_delta),
                                     T.exp(log_sigma)) / gamma

        return c_update
Example #14
0
def main(name, epochs, batch_size, learning_rate):
    if name is None:
        name = "att-rw" 

    print("\nRunning experiment %s" % name)
    print("         learning rate: %5.3f" % learning_rate) 
    print()


    #------------------------------------------------------------------------

    img_height, img_width = 28, 28
    
    read_N = 12
    write_N = 14

    inits = {
        #'weights_init': Orthogonal(),
        'weights_init': IsotropicGaussian(0.001),
        'biases_init': Constant(0.),
    }
    
    x_dim = img_height * img_width

    reader = ZoomableAttentionWindow(img_height, img_width,  read_N)
    writer = ZoomableAttentionWindow(img_height, img_width, write_N)

    # Parameterize the attention reader and writer
    mlpr = MLP(activations=[Tanh(), Identity()], 
                dims=[x_dim, 50, 5], 
                name="RMLP",
                **inits)
    mlpw = MLP(activations=[Tanh(), Identity()],
                dims=[x_dim, 50, 5],
                name="WMLP",
                **inits)

    # MLP between the reader and writer
    mlp = MLP(activations=[Tanh(), Identity()],
                dims=[read_N**2, 300, write_N**2],
                name="MLP",
                **inits)

    for brick in [mlpr, mlpw, mlp]:
        brick.allocate()
        brick.initialize()

    #------------------------------------------------------------------------
    x = tensor.matrix('features')

    hr = mlpr.apply(x)
    hw = mlpw.apply(x)

    center_y, center_x, delta, sigma, gamma = reader.nn2att(hr)
    r = reader.read(x, center_y, center_x, delta, sigma)

    h = mlp.apply(r)

    center_y, center_x, delta, sigma, gamma = writer.nn2att(hw)
    c = writer.write(h, center_y, center_x, delta, sigma) / gamma
    x_recons = T.nnet.sigmoid(c)

    cost = BinaryCrossEntropy().apply(x, x_recons)
    cost.name = "cost"

    #------------------------------------------------------------
    cg = ComputationGraph([cost])
    params = VariableFilter(roles=[PARAMETER])(cg.variables)

    algorithm = GradientDescent(
        cost=cost, 
        params=params,
        step_rule=CompositeRule([
            RemoveNotFinite(),
            Adam(learning_rate),
            StepClipping(3.), 
        ])
        #step_rule=RMSProp(learning_rate),
        #step_rule=Momentum(learning_rate=learning_rate, momentum=0.95)
    )


    #------------------------------------------------------------------------
    # Setup monitors
    monitors = [cost]
    #for v in [center_y, center_x, log_delta, log_sigma, log_gamma]:
    #    v_mean = v.mean()
    #    v_mean.name = v.name
    #    monitors += [v_mean]
    #    monitors += [aggregation.mean(v)]

    train_monitors = monitors[:]
    train_monitors += [aggregation.mean(algorithm.total_gradient_norm)]
    train_monitors += [aggregation.mean(algorithm.total_step_norm)]

    # Live plotting...
    plot_channels = [
        ["cost"],
    ]

    #------------------------------------------------------------

    mnist_train = BinarizedMNIST("train", sources=['features'])
    mnist_test = BinarizedMNIST("test", sources=['features'])
    #mnist_train = MNIST("train", binary=True, sources=['features'])
    #mnist_test = MNIST("test", binary=True, sources=['features'])

    main_loop = MainLoop(
        model=Model(cost),
        data_stream=ForceFloatX(DataStream(mnist_train,
                        iteration_scheme=SequentialScheme(
                        mnist_train.num_examples, batch_size))),
        algorithm=algorithm,
        extensions=[
            Timing(),
            FinishAfter(after_n_epochs=epochs),
            DataStreamMonitoring(
                monitors,
                ForceFloatX(DataStream(mnist_test,
                    iteration_scheme=SequentialScheme(
                    mnist_test.num_examples, batch_size))),
                prefix="test"),
            TrainingDataMonitoring(
                train_monitors, 
                prefix="train",
                after_every_epoch=True),
            SerializeMainLoop(name+".pkl"),
            #Plot(name, channels=plot_channels),
            ProgressBar(),
            Printing()])
    main_loop.run()
Example #15
0
def main(name, epochs, batch_size, learning_rate):
    if name is None:
        name = "att-rw"

    print("\nRunning experiment %s" % name)
    print("         learning rate: %5.3f" % learning_rate)
    print()

    #------------------------------------------------------------------------

    img_height, img_width = 28, 28

    read_N = 12
    write_N = 14

    inits = {
        #'weights_init': Orthogonal(),
        'weights_init': IsotropicGaussian(0.001),
        'biases_init': Constant(0.),
    }

    x_dim = img_height * img_width

    reader = ZoomableAttentionWindow(img_height, img_width, read_N)
    writer = ZoomableAttentionWindow(img_height, img_width, write_N)

    # Parameterize the attention reader and writer
    mlpr = MLP(activations=[Tanh(), Identity()],
               dims=[x_dim, 50, 5],
               name="RMLP",
               **inits)
    mlpw = MLP(activations=[Tanh(), Identity()],
               dims=[x_dim, 50, 5],
               name="WMLP",
               **inits)

    # MLP between the reader and writer
    mlp = MLP(activations=[Tanh(), Identity()],
              dims=[read_N**2, 300, write_N**2],
              name="MLP",
              **inits)

    for brick in [mlpr, mlpw, mlp]:
        brick.allocate()
        brick.initialize()

    #------------------------------------------------------------------------
    x = tensor.matrix('features')

    hr = mlpr.apply(x)
    hw = mlpw.apply(x)

    center_y, center_x, delta, sigma, gamma = reader.nn2att(hr)
    r = reader.read(x, center_y, center_x, delta, sigma)

    h = mlp.apply(r)

    center_y, center_x, delta, sigma, gamma = writer.nn2att(hw)
    c = writer.write(h, center_y, center_x, delta, sigma) / gamma
    x_recons = T.nnet.sigmoid(c)

    cost = BinaryCrossEntropy().apply(x, x_recons)
    cost.name = "cost"

    #------------------------------------------------------------
    cg = ComputationGraph([cost])
    params = VariableFilter(roles=[PARAMETER])(cg.variables)

    algorithm = GradientDescent(
        cost=cost,
        params=params,
        step_rule=CompositeRule([
            RemoveNotFinite(),
            Adam(learning_rate),
            StepClipping(3.),
        ])
        #step_rule=RMSProp(learning_rate),
        #step_rule=Momentum(learning_rate=learning_rate, momentum=0.95)
    )

    #------------------------------------------------------------------------
    # Setup monitors
    monitors = [cost]
    #for v in [center_y, center_x, log_delta, log_sigma, log_gamma]:
    #    v_mean = v.mean()
    #    v_mean.name = v.name
    #    monitors += [v_mean]
    #    monitors += [aggregation.mean(v)]

    train_monitors = monitors[:]
    train_monitors += [aggregation.mean(algorithm.total_gradient_norm)]
    train_monitors += [aggregation.mean(algorithm.total_step_norm)]

    # Live plotting...
    plot_channels = [
        ["cost"],
    ]

    #------------------------------------------------------------

    mnist_train = BinarizedMNIST("train", sources=['features'])
    mnist_test = BinarizedMNIST("test", sources=['features'])
    #mnist_train = MNIST("train", binary=True, sources=['features'])
    #mnist_test = MNIST("test", binary=True, sources=['features'])

    main_loop = MainLoop(
        model=Model(cost),
        data_stream=ForceFloatX(
            DataStream(mnist_train,
                       iteration_scheme=SequentialScheme(
                           mnist_train.num_examples, batch_size))),
        algorithm=algorithm,
        extensions=[
            Timing(),
            FinishAfter(after_n_epochs=epochs),
            DataStreamMonitoring(
                monitors,
                ForceFloatX(
                    DataStream(mnist_test,
                               iteration_scheme=SequentialScheme(
                                   mnist_test.num_examples, batch_size))),
                prefix="test"),
            TrainingDataMonitoring(train_monitors,
                                   prefix="train",
                                   after_every_epoch=True),
            SerializeMainLoop(name + ".pkl"),
            #Plot(name, channels=plot_channels),
            ProgressBar(),
            Printing()
        ])
    main_loop.run()