def getQuantBetaData(request): samples = Sample.objects.all() samples.query = pickle.loads(request.session['selected_samples']) selected = samples.values_list('sampleid') qs1 = Sample.objects.all().filter(sampleid__in=selected) if request.is_ajax(): allJson = request.GET["all"] all = simplejson.loads(allJson) button = int(all["button"]) taxaLevel = int(all["taxa"]) distance = int(all["distance"]) norm = int(all["normalize"]) PC1 = all["PC1"] metaString = all["meta"] metaDict = simplejson.JSONDecoder(object_pairs_hook=multidict).decode(metaString) metaDF = quantBetaMetaDF(qs1, metaDict) myList = metaDF['sampleid'].tolist() mySet = list(set(myList)) taxaDF = taxaProfileDF(mySet) factor = 'none' if norm == 1: factor = 'none' elif norm == 2: factor = 'min' elif norm == 3: factor = '10th percentile' elif norm == 4: factor = '25th percentile' elif norm == 5: factor = 'median' normDF = normalizeBeta(taxaDF, taxaLevel, mySet, factor) finalDF = metaDF.merge(normDF, on='sampleid', how='outer') pd.set_option('display.max_rows', finalDF.shape[0], 'display.max_columns', finalDF.shape[1], 'display.width', 1000) fieldList = [] for key in metaDict: fieldList.append(metaDict[key]) matrixDF = pd.DataFrame() if button == 1: matrixDF = finalDF.pivot(index='taxaid', columns='sampleid', values='count') elif button == 2: matrixDF = finalDF.pivot(index='taxaid', columns='sampleid', values='rel_abund') elif button == 3: matrixDF = finalDF.pivot(index='taxaid', columns='sampleid', values='rich') elif button == 4: matrixDF = finalDF.pivot(index='taxaid', columns='sampleid', values='diversity') datamtx = asarray(matrixDF[mySet].T) numrows, numcols = shape(datamtx) dists = zeros((numrows, numrows)) if distance == 1: dist = pdist(datamtx, 'braycurtis') dists = squareform(dist) elif distance == 2: dist = pdist(datamtx, 'canberra') dists = squareform(dist) elif distance == 3: dist = pdist(datamtx, 'dice') dists = squareform(dist) elif distance == 4: dist = pdist(datamtx, 'euclidean') dists = squareform(dist) elif distance == 5: dist = pdist(datamtx, 'jaccard') dists = squareform(dist) eigvals, coordinates, proportion_explained = PCoA(dists) numaxes = len(eigvals) axesList = [] for i in range(numaxes): j = i + 1 axesList.append('PC' + str(j)) valsDF = pd.DataFrame(eigvals, columns=['EigenVals'], index=axesList) propDF = pd.DataFrame(proportion_explained, columns=['Variance Explained (R2)'], index=axesList) eigenDF = valsDF.join(propDF) metaDF.set_index('sampleid', drop=True, inplace=True) pcoaDF = pd.DataFrame(coordinates, columns=axesList, index=mySet) resultDF = metaDF.join(pcoaDF) pd.set_option('display.max_rows', resultDF.shape[0], 'display.max_columns', resultDF.shape[1], 'display.width', 1000) finalDict = {} seriesList = [] xAxisDict = {} yAxisDict = {} dataList = resultDF[[PC1, fieldList[0]]].values.tolist() seriesDict = {} seriesDict['type'] = 'scatter' seriesDict['name'] = fieldList seriesDict['data'] = dataList seriesList.append(seriesDict) x = resultDF[PC1].values.tolist() y = resultDF[fieldList[0]].values.tolist() if max(x) == min(x): stop = 0 else: stop = 1 slope, intercept, r_value, p_value, std_err = stats.linregress(x, y) p_value = "%0.3f" % p_value r_square = r_value * r_value r_square = "%0.4f" % r_square min_y = slope*min(x) + intercept max_y = slope*max(x) + intercept slope = "%.3E" % slope intercept = "%.3E" % intercept regrList = [] regrList.append([min(x), min_y]) regrList.append([max(x), max_y]) if stop == 0: regDict = {} elif stop == 1: regrDict = {} regrDict['type'] = 'line' regrDict['name'] = 'R2: ' + str(r_square) + '; p-value: ' + str(p_value) + '<br>' + '(y = ' + str(slope) + 'x' + ' + ' + str(intercept) + ')' regrDict['data'] = regrList seriesList.append(regrDict) xTitle = {} xTitle['text'] = PC1 xAxisDict['title'] = xTitle yTitle = {} yTitle['text'] = fieldList[0] yAxisDict['title'] = yTitle finalDict['series'] = seriesList finalDict['xAxis'] = xAxisDict finalDict['yAxis'] = yAxisDict result = "" result = result + '===============================================\n' if taxaLevel == 1: result = result + 'Taxa level: Kingdom' + '\n' elif taxaLevel == 2: result = result + 'Taxa level: Phyla' + '\n' elif taxaLevel == 3: result = result + 'Taxa level: Class' + '\n' elif taxaLevel == 4: result = result + 'Taxa level: Order' + '\n' elif taxaLevel == 5: result = result + 'Taxa level: Family' + '\n' elif taxaLevel == 6: result = result + 'Taxa level: Genus' + '\n' elif taxaLevel == 7: result = result + 'Taxa level: Species' + '\n' if button == 1: result = result + 'Dependent Variable: Sequence Reads' + '\n' elif button == 2: result = result + 'Dependent Variable: Relative Abundance' + '\n' elif button == 3: result = result + 'Dependent Variable: Species Richness' + '\n' elif button == 4: result = result + 'Dependent Variable: Shannon Diversity' + '\n' result = result + 'Independent Variable: ' + str(fieldList[0]) + '\n' if distance == 1: result = result + 'Distance score: Bray-Curtis' + '\n' elif distance == 2: result = result + 'Distance score: Canberra' + '\n' elif distance == 3: result = result + 'Distance score: Dice' + '\n' elif distance == 4: result = result + 'Distance score: Euclidean' + '\n' elif distance == 5: result = result + 'Distance score: Jaccard' + '\n' result = result + '===============================================\n' result = result + str(eigenDF) + '\n' result = result + '===============================================\n' result = result + '\n\n\n\n' finalDict['text'] = result resultDF.reset_index(drop=True, inplace=True) res_table = resultDF.to_html(classes="table display") res_table = res_table.replace('border="1"', 'border="0"') finalDict['res_table'] = str(res_table) nameList = list(metaDF['sample_name']) distsDF = pd.DataFrame(dists, columns=nameList, index=nameList) dist_table = distsDF.to_html(classes="table display") dist_table = dist_table.replace('border="1"', 'border="0"') finalDict['dist_table'] = str(dist_table) res = simplejson.dumps(finalDict) return HttpResponse(res, content_type='application/json')
def getQuantBetaData(request): samples = Sample.objects.all() samples.query = pickle.loads(request.session['selected_samples']) selected = samples.values_list('sampleid') qs1 = Sample.objects.all().filter(sampleid__in=selected) if request.is_ajax(): allJson = request.GET["all"] all = simplejson.loads(allJson) button = int(all["button"]) taxaLevel = int(all["taxa"]) distance = int(all["distance"]) norm = int(all["normalize"]) PC1 = all["PC1"] metaString = all["meta"] metaDict = simplejson.JSONDecoder( object_pairs_hook=multidict).decode(metaString) metaDF = quantBetaMetaDF(qs1, metaDict) myList = metaDF['sampleid'].tolist() mySet = list(set(myList)) taxaDF = taxaProfileDF(mySet) factor = 'none' if norm == 1: factor = 'none' elif norm == 2: factor = 'min' elif norm == 3: factor = '10th percentile' elif norm == 4: factor = '25th percentile' elif norm == 5: factor = 'median' normDF = normalizeBeta(taxaDF, taxaLevel, mySet, factor) finalDF = metaDF.merge(normDF, on='sampleid', how='outer') pd.set_option('display.max_rows', finalDF.shape[0], 'display.max_columns', finalDF.shape[1], 'display.width', 1000) fieldList = [] for key in metaDict: fieldList.append(metaDict[key]) matrixDF = pd.DataFrame() if button == 1: matrixDF = finalDF.pivot(index='taxaid', columns='sampleid', values='count') elif button == 2: matrixDF = finalDF.pivot(index='taxaid', columns='sampleid', values='rel_abund') elif button == 3: matrixDF = finalDF.pivot(index='taxaid', columns='sampleid', values='rich') elif button == 4: matrixDF = finalDF.pivot(index='taxaid', columns='sampleid', values='diversity') datamtx = asarray(matrixDF[mySet].T) numrows, numcols = shape(datamtx) dists = zeros((numrows, numrows)) if distance == 1: dist = pdist(datamtx, 'braycurtis') dists = squareform(dist) elif distance == 2: dist = pdist(datamtx, 'canberra') dists = squareform(dist) elif distance == 3: dist = pdist(datamtx, 'dice') dists = squareform(dist) elif distance == 4: dist = pdist(datamtx, 'euclidean') dists = squareform(dist) elif distance == 5: dist = pdist(datamtx, 'jaccard') dists = squareform(dist) eigvals, coordinates, proportion_explained = PCoA(dists) numaxes = len(eigvals) axesList = [] for i in range(numaxes): j = i + 1 axesList.append('PC' + str(j)) valsDF = pd.DataFrame(eigvals, columns=['EigenVals'], index=axesList) propDF = pd.DataFrame(proportion_explained, columns=['Variance Explained (R2)'], index=axesList) eigenDF = valsDF.join(propDF) metaDF.set_index('sampleid', drop=True, inplace=True) pcoaDF = pd.DataFrame(coordinates, columns=axesList, index=mySet) resultDF = metaDF.join(pcoaDF) pd.set_option('display.max_rows', resultDF.shape[0], 'display.max_columns', resultDF.shape[1], 'display.width', 1000) finalDict = {} seriesList = [] xAxisDict = {} yAxisDict = {} dataList = resultDF[[PC1, fieldList[0]]].values.tolist() seriesDict = {} seriesDict['type'] = 'scatter' seriesDict['name'] = fieldList seriesDict['data'] = dataList seriesList.append(seriesDict) x = resultDF[PC1].values.tolist() y = resultDF[fieldList[0]].values.tolist() if max(x) == min(x): stop = 0 else: stop = 1 slope, intercept, r_value, p_value, std_err = stats.linregress( x, y) p_value = "%0.3f" % p_value r_square = r_value * r_value r_square = "%0.4f" % r_square min_y = slope * min(x) + intercept max_y = slope * max(x) + intercept slope = "%.3E" % slope intercept = "%.3E" % intercept regrList = [] regrList.append([min(x), min_y]) regrList.append([max(x), max_y]) if stop == 0: regDict = {} elif stop == 1: regrDict = {} regrDict['type'] = 'line' regrDict['name'] = 'R2: ' + str( r_square) + '; p-value: ' + str( p_value) + '<br>' + '(y = ' + str( slope) + 'x' + ' + ' + str(intercept) + ')' regrDict['data'] = regrList seriesList.append(regrDict) xTitle = {} xTitle['text'] = PC1 xAxisDict['title'] = xTitle yTitle = {} yTitle['text'] = fieldList[0] yAxisDict['title'] = yTitle finalDict['series'] = seriesList finalDict['xAxis'] = xAxisDict finalDict['yAxis'] = yAxisDict result = "" result = result + '===============================================\n' if taxaLevel == 1: result = result + 'Taxa level: Kingdom' + '\n' elif taxaLevel == 2: result = result + 'Taxa level: Phyla' + '\n' elif taxaLevel == 3: result = result + 'Taxa level: Class' + '\n' elif taxaLevel == 4: result = result + 'Taxa level: Order' + '\n' elif taxaLevel == 5: result = result + 'Taxa level: Family' + '\n' elif taxaLevel == 6: result = result + 'Taxa level: Genus' + '\n' elif taxaLevel == 7: result = result + 'Taxa level: Species' + '\n' if button == 1: result = result + 'Dependent Variable: Sequence Reads' + '\n' elif button == 2: result = result + 'Dependent Variable: Relative Abundance' + '\n' elif button == 3: result = result + 'Dependent Variable: Species Richness' + '\n' elif button == 4: result = result + 'Dependent Variable: Shannon Diversity' + '\n' result = result + 'Independent Variable: ' + str(fieldList[0]) + '\n' if distance == 1: result = result + 'Distance score: Bray-Curtis' + '\n' elif distance == 2: result = result + 'Distance score: Canberra' + '\n' elif distance == 3: result = result + 'Distance score: Dice' + '\n' elif distance == 4: result = result + 'Distance score: Euclidean' + '\n' elif distance == 5: result = result + 'Distance score: Jaccard' + '\n' result = result + '===============================================\n' result = result + str(eigenDF) + '\n' result = result + '===============================================\n' result = result + '\n\n\n\n' finalDict['text'] = result resultDF.reset_index(drop=True, inplace=True) res_table = resultDF.to_html(classes="table display") res_table = res_table.replace('border="1"', 'border="0"') finalDict['res_table'] = str(res_table) nameList = list(metaDF['sample_name']) distsDF = pd.DataFrame(dists, columns=nameList, index=nameList) dist_table = distsDF.to_html(classes="table display") dist_table = dist_table.replace('border="1"', 'border="0"') finalDict['dist_table'] = str(dist_table) res = simplejson.dumps(finalDict) return HttpResponse(res, content_type='application/json')
def getCatBetaData(request): samples = Sample.objects.all() samples.query = pickle.loads(request.session['selected_samples']) selected = samples.values_list('sampleid') qs1 = Sample.objects.all().filter(sampleid__in=selected) if request.is_ajax(): allJson = request.GET["all"] all = simplejson.loads(allJson) button = int(all["button"]) taxaLevel = int(all["taxa"]) distance = int(all["distance"]) norm = int(all["normalize"]) PC1 = all["PC1"] PC2 = all["PC2"] metaString = all["meta"] metaDict = simplejson.JSONDecoder(object_pairs_hook=multidict).decode(metaString) metaDF = catBetaMetaDF(qs1, metaDict) myList = metaDF['sampleid'].tolist() mySet = list(set(myList)) taxaDF = taxaProfileDF(mySet) factor = 'none' if norm == 1: factor = 'none' elif norm == 2: factor = 'min' elif norm == 3: factor = '10th percentile' elif norm == 4: factor = '25th percentile' elif norm == 5: factor = 'median' normDF = normalizeBeta(taxaDF, taxaLevel, mySet, factor) finalDF = metaDF.merge(normDF, on='sampleid', how='outer') pd.set_option('display.max_rows', finalDF.shape[0], 'display.max_columns', finalDF.shape[1], 'display.width', 1000) fieldList = [] for key in metaDict: fieldList.append(key) matrixDF = pd.DataFrame() if button == 1: matrixDF = finalDF.pivot(index='taxaid', columns='sampleid', values='count') elif button == 2: matrixDF = finalDF.pivot(index='taxaid', columns='sampleid', values='rel_abund') elif button == 3: matrixDF = finalDF.pivot(index='taxaid', columns='sampleid', values='rich') elif button == 4: matrixDF = finalDF.pivot(index='taxaid', columns='sampleid', values='diversity') datamtx = asarray(matrixDF[mySet].T) numrows, numcols = shape(datamtx) dists = np.zeros((numrows, numrows)) if distance == 1: dist = pdist(datamtx, 'braycurtis') dists = squareform(dist) elif distance == 2: dist = pdist(datamtx, 'canberra') dists = squareform(dist) elif distance == 3: dist = pdist(datamtx, 'dice') dists = squareform(dist) elif distance == 4: dist = pdist(datamtx, 'euclidean') dists = squareform(dist) elif distance == 5: dist = pdist(datamtx, 'jaccard') dists = squareform(dist) eigvals, coordinates, proportion_explained = PCoA(dists) numaxes = len(eigvals) axesList = [] for i in range(numaxes): j = i + 1 axesList.append('PC' + str(j)) valsDF = pd.DataFrame(eigvals, columns=['EigenVals'], index=axesList) propDF = pd.DataFrame(proportion_explained, columns=['Variance Explained (R2)'], index=axesList) eigenDF = valsDF.join(propDF) metaDF.set_index('sampleid', drop=True, inplace=True) pcoaDF = pd.DataFrame(coordinates, columns=axesList, index=mySet) resultDF = metaDF.join(pcoaDF) pd.set_option('display.max_rows', resultDF.shape[0], 'display.max_columns', resultDF.shape[1], 'display.width', 1000) ### create trtList that merges all categorical values groupList = metaDF[fieldList].values.tolist() trtList = [] for i in groupList: trtList.append(':'.join(i)) ### check to see if all samples are the same size sizeList = [] grouped = resultDF.groupby(fieldList) for name, group in grouped: (row, col) = shape(group) sizeList.append(row) setSize = len(set(sizeList)) if setSize == 1: try: bigf, p = permanova_oneway(dists, trtList, 200) except: bigf = float('nan') p = float('nan') else: bigf = float('nan') p = float('nan') finalDict = {} seriesList = [] xAxisDict = {} yAxisDict = {} grouped = resultDF.groupby(fieldList) for name, group in grouped: dataList = group[[PC1, PC2]].values.tolist() if isinstance(name, unicode): trt = name else: trt = ' & '.join(list(name)) seriesDict = {} seriesDict['name'] = trt seriesDict['data'] = dataList seriesList.append(seriesDict) xTitle = {} xTitle['text'] = PC1 xAxisDict['title'] = xTitle yTitle = {} yTitle['text'] = PC2 yAxisDict['title'] = yTitle finalDict['series'] = seriesList finalDict['xAxis'] = xAxisDict finalDict['yAxis'] = yAxisDict result = "" result = result + '===============================================\n' if taxaLevel == 1: result = result + 'Taxa level: Kingdom' + '\n' elif taxaLevel == 2: result = result + 'Taxa level: Phyla' + '\n' elif taxaLevel == 3: result = result + 'Taxa level: Class' + '\n' elif taxaLevel == 4: result = result + 'Taxa level: Order' + '\n' elif taxaLevel == 5: result = result + 'Taxa level: Family' + '\n' elif taxaLevel == 6: result = result + 'Taxa level: Genus' + '\n' elif taxaLevel == 7: result = result + 'Taxa level: Species' + '\n' if button == 1: result = result + 'Dependent Variable: Sequence Reads' + '\n' elif button == 2: result = result + 'Dependent Variable: Relative Abundance' + '\n' elif button == 3: result = result + 'Dependent Variable: Species Richness' + '\n' elif button == 4: result = result + 'Dependent Variable: Shannon Diversity' + '\n' indVar = ' x '.join(fieldList) result = result + 'Independent Variable: ' + str(indVar) + '\n' if distance == 1: result = result + 'Distance score: Bray-Curtis' + '\n' elif distance == 2: result = result + 'Distance score: Canberra' + '\n' elif distance == 3: result = result + 'Distance score: Dice' + '\n' elif distance == 4: result = result + 'Distance score: Euclidean' + '\n' elif distance == 5: result = result + 'Distance score: Jaccard' + '\n' if math.isnan(bigf): result = result + '===============================================\n' result = result + 'perMANOVA cannot be performed...' + '\n' result = result + 'The current version requires all treatments to be of equal sample size.' + '\n' else: result = result + '===============================================\n' result = result + 'perMANOVA results' + '\n' result = result + 'f-value: ' + str(bigf) + '\n' result = result + 'p-value: ' + str(p) + '\n' result = result + '===============================================\n' result = result + str(eigenDF) + '\n' result = result + '===============================================\n' result = result + '\n\n\n\n' finalDict['text'] = result resultDF.reset_index(drop=True, inplace=True) res_table = resultDF.to_html(classes="table display") res_table = res_table.replace('border="1"', 'border="0"') finalDict['res_table'] = str(res_table) nameList = list(metaDF['sample_name']) distsDF = pd.DataFrame(dists, columns=nameList, index=nameList) dist_table = distsDF.to_html(classes="table display") dist_table = dist_table.replace('border="1"', 'border="0"') finalDict['dist_table'] = str(dist_table) res = simplejson.dumps(finalDict) return HttpResponse(res, content_type='application/json')
def getCatBetaData(request): samples = Sample.objects.all() samples.query = pickle.loads(request.session['selected_samples']) selected = samples.values_list('sampleid') qs1 = Sample.objects.all().filter(sampleid__in=selected) if request.is_ajax(): allJson = request.GET["all"] all = simplejson.loads(allJson) button = int(all["button"]) taxaLevel = int(all["taxa"]) distance = int(all["distance"]) norm = int(all["normalize"]) PC1 = all["PC1"] PC2 = all["PC2"] metaString = all["meta"] metaDict = simplejson.JSONDecoder( object_pairs_hook=multidict).decode(metaString) metaDF = catBetaMetaDF(qs1, metaDict) myList = metaDF['sampleid'].tolist() mySet = list(set(myList)) taxaDF = taxaProfileDF(mySet) factor = 'none' if norm == 1: factor = 'none' elif norm == 2: factor = 'min' elif norm == 3: factor = '10th percentile' elif norm == 4: factor = '25th percentile' elif norm == 5: factor = 'median' normDF = normalizeBeta(taxaDF, taxaLevel, mySet, factor) finalDF = metaDF.merge(normDF, on='sampleid', how='outer') pd.set_option('display.max_rows', finalDF.shape[0], 'display.max_columns', finalDF.shape[1], 'display.width', 1000) fieldList = [] for key in metaDict: fieldList.append(key) matrixDF = pd.DataFrame() if button == 1: matrixDF = finalDF.pivot(index='taxaid', columns='sampleid', values='count') elif button == 2: matrixDF = finalDF.pivot(index='taxaid', columns='sampleid', values='rel_abund') elif button == 3: matrixDF = finalDF.pivot(index='taxaid', columns='sampleid', values='rich') elif button == 4: matrixDF = finalDF.pivot(index='taxaid', columns='sampleid', values='diversity') datamtx = asarray(matrixDF[mySet].T) numrows, numcols = shape(datamtx) dists = np.zeros((numrows, numrows)) if distance == 1: dist = pdist(datamtx, 'braycurtis') dists = squareform(dist) elif distance == 2: dist = pdist(datamtx, 'canberra') dists = squareform(dist) elif distance == 3: dist = pdist(datamtx, 'dice') dists = squareform(dist) elif distance == 4: dist = pdist(datamtx, 'euclidean') dists = squareform(dist) elif distance == 5: dist = pdist(datamtx, 'jaccard') dists = squareform(dist) eigvals, coordinates, proportion_explained = PCoA(dists) numaxes = len(eigvals) axesList = [] for i in range(numaxes): j = i + 1 axesList.append('PC' + str(j)) valsDF = pd.DataFrame(eigvals, columns=['EigenVals'], index=axesList) propDF = pd.DataFrame(proportion_explained, columns=['Variance Explained (R2)'], index=axesList) eigenDF = valsDF.join(propDF) metaDF.set_index('sampleid', drop=True, inplace=True) pcoaDF = pd.DataFrame(coordinates, columns=axesList, index=mySet) resultDF = metaDF.join(pcoaDF) pd.set_option('display.max_rows', resultDF.shape[0], 'display.max_columns', resultDF.shape[1], 'display.width', 1000) ### create trtList that merges all categorical values groupList = metaDF[fieldList].values.tolist() trtList = [] for i in groupList: trtList.append(':'.join(i)) ### check to see if all samples are the same size sizeList = [] grouped = resultDF.groupby(fieldList) for name, group in grouped: (row, col) = shape(group) sizeList.append(row) setSize = len(set(sizeList)) if setSize == 1: try: bigf, p = permanova_oneway(dists, trtList, 200) except: bigf = float('nan') p = float('nan') else: bigf = float('nan') p = float('nan') finalDict = {} seriesList = [] xAxisDict = {} yAxisDict = {} grouped = resultDF.groupby(fieldList) for name, group in grouped: dataList = group[[PC1, PC2]].values.tolist() if isinstance(name, unicode): trt = name else: trt = ' & '.join(list(name)) seriesDict = {} seriesDict['name'] = trt seriesDict['data'] = dataList seriesList.append(seriesDict) xTitle = {} xTitle['text'] = PC1 xAxisDict['title'] = xTitle yTitle = {} yTitle['text'] = PC2 yAxisDict['title'] = yTitle finalDict['series'] = seriesList finalDict['xAxis'] = xAxisDict finalDict['yAxis'] = yAxisDict result = "" result = result + '===============================================\n' if taxaLevel == 1: result = result + 'Taxa level: Kingdom' + '\n' elif taxaLevel == 2: result = result + 'Taxa level: Phyla' + '\n' elif taxaLevel == 3: result = result + 'Taxa level: Class' + '\n' elif taxaLevel == 4: result = result + 'Taxa level: Order' + '\n' elif taxaLevel == 5: result = result + 'Taxa level: Family' + '\n' elif taxaLevel == 6: result = result + 'Taxa level: Genus' + '\n' elif taxaLevel == 7: result = result + 'Taxa level: Species' + '\n' if button == 1: result = result + 'Dependent Variable: Sequence Reads' + '\n' elif button == 2: result = result + 'Dependent Variable: Relative Abundance' + '\n' elif button == 3: result = result + 'Dependent Variable: Species Richness' + '\n' elif button == 4: result = result + 'Dependent Variable: Shannon Diversity' + '\n' indVar = ' x '.join(fieldList) result = result + 'Independent Variable: ' + str(indVar) + '\n' if distance == 1: result = result + 'Distance score: Bray-Curtis' + '\n' elif distance == 2: result = result + 'Distance score: Canberra' + '\n' elif distance == 3: result = result + 'Distance score: Dice' + '\n' elif distance == 4: result = result + 'Distance score: Euclidean' + '\n' elif distance == 5: result = result + 'Distance score: Jaccard' + '\n' if math.isnan(bigf): result = result + '===============================================\n' result = result + 'perMANOVA cannot be performed...' + '\n' result = result + 'The current version requires all treatments to be of equal sample size.' + '\n' else: result = result + '===============================================\n' result = result + 'perMANOVA results' + '\n' result = result + 'f-value: ' + str(bigf) + '\n' result = result + 'p-value: ' + str(p) + '\n' result = result + '===============================================\n' result = result + str(eigenDF) + '\n' result = result + '===============================================\n' result = result + '\n\n\n\n' finalDict['text'] = result resultDF.reset_index(drop=True, inplace=True) res_table = resultDF.to_html(classes="table display") res_table = res_table.replace('border="1"', 'border="0"') finalDict['res_table'] = str(res_table) nameList = list(metaDF['sample_name']) distsDF = pd.DataFrame(dists, columns=nameList, index=nameList) dist_table = distsDF.to_html(classes="table display") dist_table = dist_table.replace('border="1"', 'border="0"') finalDict['dist_table'] = str(dist_table) res = simplejson.dumps(finalDict) return HttpResponse(res, content_type='application/json')