def __init__(self, args, stored_command=None): self.stored = (args is None and isinstance(stored_command, StoredCommand)) self.args = args if not self.stored else stored_command.args self.resume = not self.stored and '--resume' in self.args self.defaults_file = (None if not self.stored else os.path.join(stored_command.output_dir, DEFAULTS_FILE)) self.user_defaults = get_user_defaults(self.defaults_file) self.command = (a.get_command_message(self.args) if not self.stored else stored_command.command) self.parser, self.common_options = create_parser( general_defaults=self.user_defaults, constants={'NOW': a.NOW, 'MAX_MODELS': MAX_MODELS, 'PLURALITY': PLURALITY}) self.flags, self.train_stdin, self.test_stdin = a.get_flags(self.args)
def main(args=sys.argv[1:]): """Main process """ (flags, train_stdin, test_stdin) = a.get_flags(args) # If --clear-logs the log files are cleared if "--clear-logs" in args: for log_file in LOG_FILES: try: open(log_file, 'w', 0).close() except IOError: pass message = a.get_command_message(args) # Resume calls are not logged if not "--resume" in args: with open(COMMAND_LOG, "a", 0) as command_log: command_log.write(message) resume = False user_defaults = get_user_defaults() parser = create_parser(defaults=get_user_defaults(), constants={'NOW': a.NOW, 'MAX_MODELS': MAX_MODELS, 'PLURALITY': PLURALITY}) # Parses command line arguments. command_args = a.parse_and_check(parser, args, train_stdin, test_stdin) default_output = ('evaluation' if command_args.evaluate else 'predictions.csv') if command_args.resume: # Restore the args of the call to resume from the command log file debug = command_args.debug command = u.get_log_reversed(COMMAND_LOG, command_args.stack_level) args = shlex.split(command)[1:] try: position = args.index("--train") train_stdin = (position == (len(args) - 1) or args[position + 1].startswith("--")) except ValueError: pass try: position = args.index("--test") test_stdin = (position == (len(args) - 1) or args[position + 1].startswith("--")) except ValueError: pass output_dir = u.get_log_reversed(DIRS_LOG, command_args.stack_level) defaults_file = "%s%s%s" % (output_dir, os.sep, DEFAULTS_FILE) user_defaults = get_user_defaults(defaults_file) parser = create_parser(defaults=user_defaults, constants={'NOW': a.NOW, 'MAX_MODELS': MAX_MODELS, 'PLURALITY': PLURALITY}) # Parses resumed arguments. command_args = a.parse_and_check(parser, args, train_stdin, test_stdin) if command_args.predictions is None: command_args.predictions = ("%s%s%s" % (output_dir, os.sep, default_output)) # Logs the issued command and the resumed command session_file = "%s%s%s" % (output_dir, os.sep, SESSIONS_LOG) u.log_message(message, log_file=session_file) message = "\nResuming command:\n%s\n\n" % command u.log_message(message, log_file=session_file, console=True) try: defaults_handler = open(defaults_file, 'r') contents = defaults_handler.read() message = "\nUsing the following defaults:\n%s\n\n" % contents u.log_message(message, log_file=session_file, console=True) defaults_handler.close() except IOError: pass resume = True else: if command_args.output_dir is None: command_args.output_dir = a.NOW if command_args.predictions is None: command_args.predictions = ("%s%s%s" % (command_args.output_dir, os.sep, default_output)) if len(os.path.dirname(command_args.predictions).strip()) == 0: command_args.predictions = ("%s%s%s" % (command_args.output_dir, os.sep, command_args.predictions)) directory = u.check_dir(command_args.predictions) session_file = "%s%s%s" % (directory, os.sep, SESSIONS_LOG) u.log_message(message + "\n", log_file=session_file) try: defaults_file = open(DEFAULTS_FILE, 'r') contents = defaults_file.read() defaults_file.close() defaults_copy = open("%s%s%s" % (directory, os.sep, DEFAULTS_FILE), 'w', 0) defaults_copy.write(contents) defaults_copy.close() except IOError: pass with open(DIRS_LOG, "a", 0) as directory_log: directory_log.write("%s\n" % os.path.abspath(directory)) # Creates the corresponding api instance if resume and debug: command_args.debug = True api = a.get_api_instance(command_args, u.check_dir(session_file)) # Selects the action to perform: delete or create resources if command_args.delete: delete_resources(command_args, api) elif (command_args.training_set or has_test(command_args) or command_args.source or command_args.dataset or command_args.datasets or command_args.votes_dirs): output_args = a.get_output_args(api, train_stdin, test_stdin, command_args, resume) a.transform_args(command_args, flags, api, user_defaults) compute_output(**output_args) u.log_message("_" * 80 + "\n", log_file=session_file)
def main(args=sys.argv[1:]): """Main process """ (flags, train_stdin, test_stdin) = a.get_flags(args) # If --clear-logs the log files are cleared if "--clear-logs" in args: for log_file in LOG_FILES: try: open(log_file, 'w', 0).close() except IOError: pass message = a.get_command_message(args) # Resume calls are not logged if not "--resume" in args: with open(COMMAND_LOG, "a", 0) as command_log: command_log.write(message) resume = False user_defaults = get_user_defaults() parser = create_parser(defaults=get_user_defaults(), constants={ 'NOW': a.NOW, 'MAX_MODELS': MAX_MODELS, 'PLURALITY': PLURALITY }) # Parses command line arguments. command_args = a.parse_and_check(parser, args, train_stdin, test_stdin) default_output = ('evaluation' if command_args.evaluate else 'predictions.csv') if command_args.resume: # Restore the args of the call to resume from the command log file debug = command_args.debug command = u.get_log_reversed(COMMAND_LOG, command_args.stack_level) args = shlex.split(command)[1:] try: position = args.index("--train") train_stdin = (position == (len(args) - 1) or args[position + 1].startswith("--")) except ValueError: pass try: position = args.index("--test") test_stdin = (position == (len(args) - 1) or args[position + 1].startswith("--")) except ValueError: pass output_dir = u.get_log_reversed(DIRS_LOG, command_args.stack_level) defaults_file = "%s%s%s" % (output_dir, os.sep, DEFAULTS_FILE) user_defaults = get_user_defaults(defaults_file) parser = create_parser(defaults=user_defaults, constants={ 'NOW': a.NOW, 'MAX_MODELS': MAX_MODELS, 'PLURALITY': PLURALITY }) # Parses resumed arguments. command_args = a.parse_and_check(parser, args, train_stdin, test_stdin) if command_args.predictions is None: command_args.predictions = ("%s%s%s" % (output_dir, os.sep, default_output)) # Logs the issued command and the resumed command session_file = "%s%s%s" % (output_dir, os.sep, SESSIONS_LOG) u.log_message(message, log_file=session_file) message = "\nResuming command:\n%s\n\n" % command u.log_message(message, log_file=session_file, console=True) try: defaults_handler = open(defaults_file, 'r') contents = defaults_handler.read() message = "\nUsing the following defaults:\n%s\n\n" % contents u.log_message(message, log_file=session_file, console=True) defaults_handler.close() except IOError: pass resume = True else: if command_args.output_dir is None: command_args.output_dir = a.NOW if command_args.predictions is None: command_args.predictions = ( "%s%s%s" % (command_args.output_dir, os.sep, default_output)) if len(os.path.dirname(command_args.predictions).strip()) == 0: command_args.predictions = ( "%s%s%s" % (command_args.output_dir, os.sep, command_args.predictions)) directory = u.check_dir(command_args.predictions) session_file = "%s%s%s" % (directory, os.sep, SESSIONS_LOG) u.log_message(message + "\n", log_file=session_file) try: defaults_file = open(DEFAULTS_FILE, 'r') contents = defaults_file.read() defaults_file.close() defaults_copy = open("%s%s%s" % (directory, os.sep, DEFAULTS_FILE), 'w', 0) defaults_copy.write(contents) defaults_copy.close() except IOError: pass with open(DIRS_LOG, "a", 0) as directory_log: directory_log.write("%s\n" % os.path.abspath(directory)) # Creates the corresponding api instance if resume and debug: command_args.debug = True api = a.get_api_instance(command_args, u.check_dir(session_file)) # Selects the action to perform: delete or create resources if command_args.delete: delete_resources(command_args, api) elif (command_args.training_set or has_test(command_args) or command_args.source or command_args.dataset or command_args.datasets or command_args.votes_dirs): output_args = a.get_output_args(api, train_stdin, test_stdin, command_args, resume) a.transform_args(command_args, flags, api, user_defaults) compute_output(**output_args) u.log_message("_" * 80 + "\n", log_file=session_file)