Example #1
0
    def draw_basic_plot(mark_incumbent=True, show_objective=False):
        fig, ax = plt.subplots(1, 1, squeeze=True)
        ax.set_xlim(bounds["x"])
        ax.set_ylim(bounds["gp_y"])
        ax.grid()
        boplot.plot_gp(model=gp,
                       confidence_intervals=[1.0, 2.0, 3.0],
                       custom_x=x,
                       ax=ax)
        if show_objective:
            boplot.plot_objective_function(ax=ax)
        boplot.mark_observations(X_=x,
                                 Y_=y,
                                 mark_incumbent=mark_incumbent,
                                 highlight_datapoint=None,
                                 highlight_label=None,
                                 ax=ax)

        if mark_incumbent:
            boplot.highlight_output(y=np.array([ymin]),
                                    label=['$c_{inc}$'],
                                    lloc='left',
                                    ax=ax,
                                    disable_ticks=True)
            boplot.annotate_y_edge(label='$c_{inc}$',
                                   xy=(x[ymin_arg], ymin),
                                   ax=ax,
                                   align='left',
                                   yoffset=0.8)

        return fig, ax
Example #2
0
def visualize_ei(initial_design, init=None):
    """
    Visualize one-step of EI.
    :param initial_design: Method for initializing the GP, choice between 'uniform', 'random', and 'presentation'
    :param init: Number of datapoints to initialize GP with.
    :return: None
    """

    # 1. Plot GP fit on initial dataset
    # 2. Mark current incumbent
    # 3. Mark Zone of Probable Improvement
    # 4. Mark Hypothetical Real cost of a random configuration
    # 5. Display I(lambda)
    # 6. Display Vertical Normal Distribution

    # boplot.set_rcparams(**{'legend.loc': 'lower left'})

    logging.debug("Visualizing EI with initial design {} and init {}".format(initial_design, init))
    # Initialize dummy dataset
    x, y = initialize_dataset(initial_design=initial_design, init=init)
    ymin_arg = np.argmin(y)
    ymin = y[ymin_arg]
    logging.debug("Initialized dataset with:\nsamples {0}\nObservations {1}".format(x, y))

    # Fit GP to the currently available dataset
    gp = GPR(kernel=Matern())
    logging.debug("Fitting GP to\nx: {}\ny:{}".format(x, y))
    gp.fit(x, y)  # fit the model
    mu_star_t_xy = get_mu_star(gp)
    logging.info("Mu-star at time t: {}".format(mu_star_t_xy))

    # noinspection PyStringFormat
    logging.debug("Model fit to dataset.\nOriginal Inputs: {0}\nOriginal Observations: {1}\n"
                  "Predicted Means: {2}\nPredicted STDs: {3}".format(x, y, *(gp.predict(x, return_std=True))))

    # 1. Plot GP fit on initial dataset
    # -------------Plotting code -----------------
    fig, ax = plt.subplots(1, 1, squeeze=True)
    ax.set_xlim(bounds["x"])
    ax.set_ylim(bounds["gp_y"])
    ax.grid()
    boplot.plot_gp(model=gp, confidence_intervals=[2.0], custom_x=x, ax=ax)
    boplot.plot_objective_function(ax=ax)
    boplot.mark_observations(X_=x, Y_=y, mark_incumbent=False, highlight_datapoint=None, highlight_label=None, ax=ax)

    ax.legend().set_zorder(20)
    ax.set_xlabel(labels['xlabel'])
    ax.set_ylabel(labels['gp_ylabel'])
    ax.set_title(r"Visualization of $\mathcal{G}^{(t)}$", loc='left')

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig("ei_1.pdf")
    else:
        plt.show()
    # -------------------------------------------

    # 2. Mark current incumbent
    # -------------Plotting code -----------------
    fig, ax = plt.subplots(1, 1, squeeze=True)
    ax.set_xlim(bounds["x"])
    ax.set_ylim(bounds["gp_y"])
    ax.grid()
    boplot.plot_gp(model=gp, confidence_intervals=[2.0], custom_x=x, ax=ax)
    boplot.plot_objective_function(ax=ax)
    boplot.mark_observations(X_=x, Y_=y, mark_incumbent=True, highlight_datapoint=None, highlight_label=None, ax=ax)

    ax.legend().set_zorder(20)
    ax.set_xlabel(labels['xlabel'])
    ax.set_ylabel(labels['gp_ylabel'])
    ax.set_title(r"Visualization of $\mathcal{G}^{(t)}$", loc='left')

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig("ei_2.pdf")
    else:
        plt.show()
    # -------------------------------------------

    # 3. Mark Zone of Probable Improvement
    # -------------Plotting code -----------------
    fig, ax = plt.subplots(1, 1, squeeze=True)
    ax.set_xlim(bounds["x"])
    ax.set_ylim(bounds["gp_y"])
    ax.grid()
    boplot.plot_gp(model=gp, confidence_intervals=[2.0], custom_x=x, ax=ax)
    boplot.plot_objective_function(ax=ax)
    boplot.mark_observations(X_=x, Y_=y, mark_incumbent=True, highlight_datapoint=None, highlight_label=None, ax=ax)
    boplot.darken_graph(y=ymin, ax=ax)

    ax.legend().set_zorder(20)
    ax.set_xlabel(labels['xlabel'])
    ax.set_ylabel(labels['gp_ylabel'])
    ax.set_title(r"Visualization of $\mathcal{G}^{(t)}$", loc='left')

    ax.legend().remove()

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig("ei_3.pdf")
    else:
        plt.show()
    # -------------------------------------------

    # 4. Forget the underlying objective function
    # -------------------------------------------

    fig, ax = plt.subplots(1, 1, squeeze=True)
    ax.set_xlim(bounds["x"])
    ax.set_ylim(bounds["gp_y"])
    ax.grid()
    boplot.plot_gp(model=gp, confidence_intervals=[2.0], custom_x=x, ax=ax)
    # boplot.plot_objective_function(ax=ax)
    boplot.mark_observations(X_=x, Y_=y, mark_incumbent=True, highlight_datapoint=None, highlight_label=None, ax=ax)
    boplot.darken_graph(y=ymin, ax=ax)

    ax.set_xlabel(labels['xlabel'])
    ax.set_ylabel(labels['gp_ylabel'])
    ax.set_title(r"Visualization of $\mathcal{G}^{(t)}$", loc='left')

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig("ei_4.pdf")
    else:
        plt.show()

    # -------------------------------------------

    # 5. Mark Hypothetical Real cost of a random configuration
    # -------------------------------------------

    fig, ax = plt.subplots(1, 1, squeeze=True)
    ax.set_xlim(bounds["x"])
    ax.set_ylim(bounds["gp_y"])
    ax.grid()
    boplot.plot_gp(model=gp, confidence_intervals=[2.0], custom_x=x, ax=ax)
    # boplot.plot_objective_function(ax=ax)
    boplot.mark_observations(X_=x, Y_=y, mark_incumbent=True, highlight_datapoint=None, highlight_label=None, ax=ax)
    boplot.darken_graph(y=ymin, ax=ax)

    ax.legend().set_zorder(20)
    ax.set_xlabel(labels['xlabel'])
    ax.set_ylabel(labels['gp_ylabel'])
    ax.set_title(r"Visualization of $\mathcal{G}^{(t)}$", loc='left')

    candidate = 11.0
    cost = -3.5
    boplot.highlight_configuration(x=np.array([candidate]), label=r'$\lambda$', lloc='bottom', ax=ax)
    boplot.highlight_output(y=np.array([cost]), label='', lloc='left', ax=ax)
    boplot.annotate_y_edge(label=r'$c(\lambda)$', xy=(candidate, cost), align='left', ax=ax)

    ax.legend().remove()

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig("ei_5.pdf")
    else:
        plt.show()

    # -------------------------------------------

    # 6. Display I(lambda)
    # -------------------------------------------

    fig, ax = plt.subplots(1, 1, squeeze=True)
    ax.set_xlim(bounds["x"])
    ax.set_ylim(bounds["gp_y"])
    ax.grid()
    boplot.plot_gp(model=gp, confidence_intervals=[2.0], custom_x=x, ax=ax)
    # boplot.plot_objective_function(ax=ax)
    boplot.mark_observations(X_=x, Y_=y, mark_incumbent=True, highlight_datapoint=None, highlight_label=None, ax=ax)
    boplot.darken_graph(y=ymin, ax=ax)

    ax.legend().set_zorder(20)
    ax.set_xlabel(labels['xlabel'])
    ax.set_ylabel(labels['gp_ylabel'])
    ax.set_title(r"Visualization of $\mathcal{G}^{(t)}$", loc='left')

    boplot.highlight_configuration(x=np.array([candidate]), label=r'$\lambda$', lloc='bottom', ax=ax)
    boplot.highlight_output(y=np.array([cost]), label='', lloc='left', ax=ax)
    boplot.annotate_y_edge(label=r'$c(\lambda)$', xy=(candidate, cost), align='left', ax=ax)

    xmid = (x[ymin_arg][0] + candidate) / 2.
    ax.annotate(s='', xy=(xmid, cost), xytext=(xmid, ymin),
                 arrowprops={'arrowstyle': '<|-|>',})

    textx = xmid + (ax.get_xlim()[1] - ax.get_xlim()[0]) / 40
    ax.text(textx, (ymin + cost) / 2, r'$I^{(t)}(\lambda)$', weight='heavy')

    ax.legend().remove()

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig("ei_6.pdf")
    else:
        plt.show()

    # -------------------------------------------


    # 7. Display Vertical Normal Distribution
    # -------------------------------------------

    fig, ax = plt.subplots(1, 1, squeeze=True)
    ax.set_xlim(bounds["x"])
    ax.set_ylim(bounds["gp_y"])
    ax.grid()
    boplot.plot_gp(model=gp, confidence_intervals=[2.0], custom_x=x, ax=ax)
    # boplot.plot_objective_function(ax=ax)
    boplot.mark_observations(X_=x, Y_=y, mark_incumbent=True, highlight_datapoint=None, highlight_label=None, ax=ax)
    boplot.darken_graph(y=ymin, ax=ax)

    ax.legend().set_zorder(20)
    ax.set_xlabel(labels['xlabel'])
    ax.set_ylabel(labels['gp_ylabel'])
    ax.set_title(r"Visualization of $\mathcal{G}^{(t)}$", loc='left')

    boplot.highlight_configuration(x=np.array([candidate]), label=r'$\lambda$', lloc='bottom', ax=ax)
    boplot.highlight_output(y=np.array([cost]), label='', lloc='left', ax=ax)
    boplot.annotate_y_edge(label=r'$c(\lambda)$', xy=(candidate, cost), align='left', ax=ax)

    xmid = (x[ymin_arg][0] + candidate) / 2.
    ax.annotate(s='', xy=(xmid, cost), xytext=(xmid, ymin),
                 arrowprops={'arrowstyle': '<|-|>',})

    textx = xmid + (ax.get_xlim()[1] - ax.get_xlim()[0]) / 40
    ax.text(textx, (ymin + cost) / 2, r'$I^{(t)}(\lambda)$', weight='heavy')

    vcurve_x, vcurve_y, mu = boplot.draw_vertical_normal(
        gp=gp, incumbenty=ymin, ax=ax, xtest=candidate,
        xscale=2.0, yscale=1.0
    )

    ann_x = candidate + 0.3 * (np.max(vcurve_x) - candidate) / 2
    ann_y = ymin - (mu - ymin) / 2

    arrow_x = ann_x + 0.5
    arrow_y = ann_y - 3.0

    # label = "{:.2f}".format(candidate)
    label = '\lambda'

    ax.annotate(
        s=r'$PI^{(t)}(%s)$' % label, xy=(ann_x, ann_y), xytext=(arrow_x, arrow_y),
        arrowprops={'arrowstyle': 'fancy'},
        weight='heavy', color='darkgreen', zorder=15
    )

    ax.legend().remove()

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig("ei_7.pdf")
    else:
        plt.show()
Example #3
0
def visualize_lcb(initial_design, init=None):
    """
    Visualize one-step of LCB.
    :param initial_design: Method for initializing the GP, choice between 'uniform', 'random', and 'presentation'
    :param init: Number of datapoints to initialize GP with.
    :return: None
    """

    # 1. Plot 3 different confidence envelopes
    # 2. Plot only LCB for one confidence envelope
    # 3. Mark next sample

    boplot.set_rcparams(**{'legend.loc': 'lower right'})

    logging.debug("Visualizing PI with initial design {} and init {}".format(
        initial_design, init))
    # Initialize dummy dataset
    x, y = initialize_dataset(initial_design=initial_design, init=init)
    logging.debug(
        "Initialized dataset with:\nsamples {0}\nObservations {1}".format(
            x, y))

    # Fit GP to the currently available dataset
    gp = GPR(kernel=Matern())
    logging.debug("Fitting GP to\nx: {}\ny:{}".format(x, y))
    gp.fit(x, y)  # fit the model

    # noinspection PyStringFormat
    logging.debug(
        "Model fit to dataset.\nOriginal Inputs: {0}\nOriginal Observations: {1}\n"
        "Predicted Means: {2}\nPredicted STDs: {3}".format(
            x, y, *(gp.predict(x, return_std=True))))

    # 1. Plot 3 different confidence envelopes
    # -------------Plotting code -----------------

    fig, ax = plt.subplots(1, 1, squeeze=True)
    ax.set_xlim(bounds["x"])
    ax.set_ylim(bounds["gp_y"])
    ax.grid()
    boplot.plot_gp(model=gp,
                   confidence_intervals=[1.0, 2.0, 3.0],
                   type='both',
                   custom_x=x,
                   ax=ax)
    boplot.plot_objective_function(ax=ax)
    boplot.mark_observations(X_=x,
                             Y_=y,
                             mark_incumbent=False,
                             highlight_datapoint=None,
                             highlight_label=None,
                             ax=ax)

    ax.legend().set_zorder(20)
    ax.set_xlabel(labels['xlabel'])
    ax.set_ylabel(labels['gp_ylabel'])
    ax.set_title(r"Visualization of $\mathcal{G}^{(t)}$", loc='left')

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig("lcb_1.pdf")
    else:
        plt.show()
    # -------------------------------------------

    # 2. Plot only LCB for one confidence envelope
    # -------------Plotting code -----------------

    boplot.set_rcparams(**{'legend.loc': 'upper left'})
    kappa = 3.0

    fig, ax = plt.subplots(1, 1, squeeze=True)
    ax.set_xlim(bounds["x"])
    ax.set_ylim(bounds["gp_y"])
    ax.grid()
    boplot.plot_gp(model=gp,
                   confidence_intervals=[kappa],
                   type='lower',
                   custom_x=x,
                   ax=ax)
    boplot.plot_objective_function(ax=ax)
    boplot.mark_observations(X_=x,
                             Y_=y,
                             mark_incumbent=True,
                             highlight_datapoint=None,
                             highlight_label=None,
                             ax=ax)

    ax.legend().set_zorder(20)
    ax.set_xlabel(labels['xlabel'])
    ax.set_ylabel(labels['gp_ylabel'])
    ax.set_title(r"Visualization of $\mathcal{G}^{(t)}$", loc='left')

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig("lcb_2.pdf")
    else:
        plt.show()
    # -------------------------------------------

    # 3. Show LCB in parallel
    # -------------Plotting code -----------------

    if TOGGLE_PRINT:
        fig, (ax1, ax2) = plt.subplots(2, 1, squeeze=True, figsize=(18, 9))
    else:
        fig, (ax1, ax2) = plt.subplots(2, 1, squeeze=True)

    ax1.set_xlim(bounds["x"])
    ax1.set_ylim(bounds["gp_y"])
    ax1.grid()
    boplot.plot_gp(model=gp,
                   confidence_intervals=[kappa],
                   type='lower',
                   custom_x=x,
                   ax=ax1)
    boplot.plot_objective_function(ax=ax1)
    boplot.mark_observations(X_=x,
                             Y_=y,
                             mark_incumbent=True,
                             highlight_datapoint=None,
                             highlight_label=None,
                             ax=ax1)

    lcb_max = get_lcb_maximum(gp, kappa)
    logging.info("LCB Maximum at:{}".format(lcb_max))
    boplot.highlight_configuration(x=lcb_max[0],
                                   label=None,
                                   lloc='bottom',
                                   ax=ax1)
    ax1.set_xlabel(labels['xlabel'])
    ax1.set_ylabel(labels['gp_ylabel'])
    ax1.set_title(r"Visualization of $\mathcal{G}^{(t)}$", loc='left')

    ax2.set_xlim(bounds["x"])
    ax2.set_ylim(bounds["acq_y"])
    ax2.grid()
    ax2.set_xlabel(labels['xlabel'])
    ax2.set_ylabel(labels['acq_ylabel'])
    ax2.set_title(r"Visualization of $LCB$", loc='left')

    boplot.highlight_configuration(x=lcb_max[0],
                                   label=None,
                                   lloc='bottom',
                                   ax=ax2)
    boplot.plot_acquisition_function(acquisition_functions['LCB'],
                                     0.0,
                                     gp,
                                     kappa,
                                     ax=ax2)

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig("lcb_3.pdf")
    else:
        plt.show()
    # -------------------------------------------

    # 4. Mark next sample
    # -------------Plotting code -----------------
    fig, ax = plt.subplots(1, 1, squeeze=True)
    ax.set_xlim(bounds["x"])
    ax.set_ylim(bounds["gp_y"])
    ax.grid()
    boplot.plot_gp(model=gp,
                   confidence_intervals=[3.0],
                   type='lower',
                   custom_x=x,
                   ax=ax)
    boplot.plot_objective_function(ax=ax)
    boplot.mark_observations(X_=x,
                             Y_=y,
                             mark_incumbent=True,
                             highlight_datapoint=None,
                             highlight_label=None,
                             ax=ax)

    lcb_max = get_lcb_maximum(gp, 3.0)
    logging.info("LCB Maximum at:{}".format(lcb_max))
    boplot.highlight_configuration(x=lcb_max[0],
                                   label=None,
                                   lloc='bottom',
                                   ax=ax)
    boplot.highlight_output(y=lcb_max[1], label='', lloc='left', ax=ax)
    boplot.annotate_y_edge(label=r'${\hat{c}}^{(t)}(%.2f)$' % lcb_max[0],
                           xy=lcb_max,
                           align='left',
                           ax=ax)

    ax.legend().set_zorder(20)
    ax.set_xlabel(labels['xlabel'])
    ax.set_ylabel(labels['gp_ylabel'])
    ax.set_title(r"Visualization of $\mathcal{G}^{(t)}$", loc='left')

    ax.legend().remove()

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig("lcb_4.pdf")
    else:
        plt.show()
Example #4
0
def visualize_look_ahead(initial_design, init=None):
    """
    Visualize one-step of look-ahead.
    :param initial_design: Method for initializing the GP, choice between 'uniform', 'random', and 'presentation'
    :param init: Number of datapoints to initialize GP with.
    :return: None
    """

    # boplot.set_rcparams(**{'legend.loc': 'lower left'})

    logging.debug(
        "Visualizing Look-Ahead with initial design {} and init {}".format(
            initial_design, init))
    # Initialize dummy dataset
    x, y = initialize_dataset(initial_design=initial_design, init=init)
    logging.debug(
        "Initialized dataset with:\nsamples {0}\nObservations {1}".format(
            x, y))

    # Fit GP to the currently available dataset
    gp = GPR(kernel=Matern())
    logging.debug("Fitting GP to\nx: {}\ny:{}".format(x, y))
    gp.fit(x, y)  # fit the model
    mu_star_t_xy = get_mu_star(gp)
    logging.info("Mu-star at time t: {}".format(mu_star_t_xy))

    # noinspection PyStringFormat
    logging.debug(
        "Model fit to dataset.\nOriginal Inputs: {0}\nOriginal Observations: {1}\n"
        "Predicted Means: {2}\nPredicted STDs: {3}".format(
            x, y, *(gp.predict(x, return_std=True))))

    # Assume next evaluation location
    x_ = np.array([[5.0]])
    print(x_)
    y_ = f(x_[0])

    # Update dataset with new observation
    X2_ = np.append(x, x_, axis=0)
    Y2_ = y + [y_]

    logging.info("x: {}, y: {}".format(x_, y_))

    # Fit GP to the updated dataset
    gp2 = GPR(kernel=Matern())
    logging.debug("Fitting GP to\nx: {}\ny:{}".format(X2_, Y2_))
    gp2.fit(X2_, Y2_)  # fit the model
    mu_star_t1_xy = get_mu_star(gp2)
    logging.info("Mu-star at time t+1: {}".format(mu_star_t1_xy))

    # -------------------------Plotting madness begins---------------------------

    def draw_basic_figure(tgp=gp,
                          tx=x,
                          tX_=x,
                          tY_=y,
                          title='',
                          highlight_datapoint=None,
                          highlight_label="",
                          ax=None):
        if ax is None:
            fig, ax = plt.subplots(1, 1, squeeze=True)
            plt.subplots_adjust(0.05, 0.15, 0.95, 0.85)
            figflag = True
        else:
            figflag = False

        ax.set_xlim(bounds["x"])
        ax.set_ylim(bounds["gp_y"])
        if title:
            ax.set_title(title, loc='left')
        ax.grid()
        boplot.plot_objective_function(ax=ax)
        boplot.plot_gp(model=tgp,
                       confidence_intervals=[1.0, 2.0, 3.0],
                       ax=ax,
                       custom_x=tx)
        if highlight_datapoint:
            boplot.mark_observations(X_=tX_,
                                     Y_=tY_,
                                     mark_incumbent=False,
                                     ax=ax,
                                     highlight_datapoint=highlight_datapoint,
                                     highlight_label=highlight_label)
        else:
            boplot.mark_observations(X_=tX_,
                                     Y_=tY_,
                                     mark_incumbent=False,
                                     ax=ax)

        if figflag:
            return fig, ax
        else:
            return ax

    def perform_finishing_tasks(ax, filename="", remove_legend=True):
        ax.legend().set_zorder(zorders['legend'])
        ax.set_xlabel(labels['xlabel'])

        if remove_legend:
            ax.legend().remove()

        # plt.tight_layout()
        if TOGGLE_PRINT:
            # plt.savefig(f"{OUTPUT_DIR}/{filename}", bbox_inches='tight')
            plt.savefig(f"{OUTPUT_DIR}/{filename}")
        else:
            plt.show()

    # ---------------------------------------
    # Draw look ahead 1.

    labels['gp_mean'] = r'Mean: $\mu^{(t)}(\cdot)$'

    fig, ax = draw_basic_figure(title="")
    perform_finishing_tasks(ax=ax,
                            filename="look_ahead_1.pdf",
                            remove_legend=False)

    # ---------------------------------------
    # Draw look ahead 2
    fig, ax = draw_basic_figure(title="")

    logging.debug("Placing vertical on configuration: {}".format(x_))
    # boplot.highlight_configuration(x=x_, label='', lloc='bottom', ax=ax, ha='center')
    boplot.highlight_configuration(x=x_,
                                   label='',
                                   lloc='bottom',
                                   ax=ax,
                                   disable_ticks=True)
    boplot.annotate_x_edge(label=r'$\lambda$',
                           xy=(x_, y_),
                           align='bottom',
                           ax=ax)

    perform_finishing_tasks(ax=ax,
                            filename="look_ahead_2.pdf",
                            remove_legend=True)

    # ---------------------------------------
    # Draw look ahead 3

    fig, ax = draw_basic_figure(title="")

    boplot.highlight_configuration(x=x_,
                                   label='',
                                   lloc='bottom',
                                   ax=ax,
                                   ha='right')
    boplot.annotate_x_edge(label=r'$\lambda$',
                           xy=(x_, y_),
                           align='bottom',
                           ax=ax)

    boplot.highlight_output(y_, label='', lloc='right', ax=ax, fontsize=28)
    boplot.annotate_y_edge(label=r'$c(\lambda)$',
                           xy=(x_, y_),
                           align='right',
                           ax=ax)

    ax.scatter(x_,
               y_,
               color=colors['highlighted_observations'],
               marker='X',
               label=r"Hypothetical Observation $<\lambda, c(\lambda)>$",
               zorder=zorders['annotations_normal'])

    perform_finishing_tasks(ax=ax,
                            filename="look_ahead_3.pdf",
                            remove_legend=True)

    # ---------------------------------------
    # Draw look ahead 4.

    labels['gp_mean'] = r'Mean: $\mu^{(t+1)}(\cdot)|_\lambda$'

    fig, ax = draw_basic_figure(
        tgp=gp2,
        tx=x,
        tX_=X2_,
        tY_=Y2_,
        title='',
        highlight_datapoint=np.where(np.isclose(X2_, x_))[0],
        highlight_label=r"Hypothetical Observation $<\lambda, c(\lambda)>$")

    perform_finishing_tasks(ax=ax,
                            filename="look_ahead_4.pdf",
                            remove_legend=False)

    # ---------------------------------------
    # Vertical comparison of look-ahead at any given x

    def draw_vertical_comparison(imaginary_lambda, ax1, ax2):
        tx_ = np.array([[imaginary_lambda]])
        ty_ = f(tx_[0])

        # Update dataset with new observation
        tX_ = np.append(x, tx_, axis=0)
        tY_ = y + [ty_]

        logging.info("x: {}, y: {}".format(tx_, ty_))

        # Fit GP to the updated dataset
        tgp = GPR(kernel=Matern())
        logging.debug("Fitting GP to\nx: {}\ny:{}".format(tX_, tY_))
        tgp.fit(tX_, tY_)  # fit the model
        tmu_star_t1_xy = get_mu_star(tgp)

        # Draw the left hand figure using the old gp on ax1
        draw_basic_figure(tgp=gp, title=r"$\hat{c}^{(t)}$", ax=ax1)

        logging.debug("Placing vertical on configuration: {}".format(tx_))

        ax1.scatter(tx_,
                    ty_,
                    color=colors['highlighted_observations'],
                    marker='X',
                    label=r"Hypothetical Observation $<\lambda, c(\lambda)>$",
                    zorder=zorders["annotations_normal"])

        ax1.legend().remove()

        # Draw the right hand figure using the hypothetical gp tgp on ax2
        draw_basic_figure(
            tgp=tgp,
            tx=tX_,
            tX_=tX_,
            tY_=tY_,
            title=r"$\hat{c}^{(t+1)}|_\lambda$",
            highlight_datapoint=np.where(np.isclose(tX_, tx_))[0],
            highlight_label=r"Hypothetical Observation $<\lambda, c(\lambda)>$",
            ax=ax2)

    def finishing_touches_parallel(ax1, ax2, filename=""):
        ax1.set_xlabel(labels['xlabel'])
        ax2.set_xlabel(labels['xlabel'])

        plt.tight_layout()
        if TOGGLE_PRINT:
            plt.savefig(f"{OUTPUT_DIR}/{filename}")
        else:
            plt.show()

    # ---------------------------------------
    # Draw look ahead 5

    fig, (ax1, ax2) = plt.subplots(1, 2, squeeze=True, figsize=(22, 9))
    draw_vertical_comparison(imaginary_lambda=5.0, ax1=ax1, ax2=ax2)
    finishing_touches_parallel(ax1=ax1, ax2=ax2, filename="look_ahead_5.pdf")

    # ---------------------------------------
    # Draw look ahead 6

    fig, (ax1, ax2) = plt.subplots(1, 2, squeeze=True, figsize=(22, 9))
    draw_vertical_comparison(imaginary_lambda=5.5, ax1=ax1, ax2=ax2)
    finishing_touches_parallel(ax1=ax1, ax2=ax2, filename="look_ahead_6.pdf")

    # ---------------------------------------
    # Draw look ahead 5

    fig, (ax1, ax2) = plt.subplots(1, 2, squeeze=True, figsize=(22, 9))
    draw_vertical_comparison(imaginary_lambda=3.5, ax1=ax1, ax2=ax2)
    finishing_touches_parallel(ax1=ax1, ax2=ax2, filename="look_ahead_7.pdf")

    # ---------------------------------------
    # Draw KG 1

    labels['gp_mean'] = r'Mean: $\mu^{(t)}(\cdot)$'

    fig, ax = draw_basic_figure(title="")
    perform_finishing_tasks(ax=ax, filename="kg_1.pdf", remove_legend=False)

    # ---------------------------------------
    # Draw kg 2
    fig, ax = draw_basic_figure(title="")

    boplot.highlight_configuration(mu_star_t_xy[0],
                                   lloc='bottom',
                                   ax=ax,
                                   disable_ticks=True)
    boplot.annotate_x_edge(label="%.2f" % mu_star_t_xy[0],
                           xy=mu_star_t_xy,
                           ax=ax,
                           align='bottom',
                           offset_param=1.5)
    boplot.highlight_output(mu_star_t_xy[1],
                            label='',
                            lloc='right',
                            ax=ax,
                            fontsize=30,
                            disable_ticks=True)
    boplot.annotate_y_edge(label=r'${(\mu^*)}^{(t)}$',
                           xy=mu_star_t_xy,
                           align='right',
                           ax=ax,
                           yoffset=1.5)

    perform_finishing_tasks(ax=ax, filename="kg_2.pdf", remove_legend=True)

    # ---------------------------------------
    # Draw kg 3

    fig, ax = draw_basic_figure(
        tgp=gp2,
        tx=x,
        tX_=X2_,
        tY_=Y2_,
        title='',
        highlight_datapoint=np.where(np.isclose(X2_, x_))[0],
        highlight_label=r"Hypothetical Observation $<\lambda, c(\lambda)>$")

    perform_finishing_tasks(ax=ax, filename="kg_3.pdf", remove_legend=True)

    # ---------------------------------------
    # Draw kg 4

    fig, ax = draw_basic_figure(
        tgp=gp2,
        tx=x,
        tX_=X2_,
        tY_=Y2_,
        title='',
        highlight_datapoint=np.where(np.isclose(X2_, x_))[0],
        highlight_label=r"Hypothetical Observation $<\lambda, c(\lambda)>$")

    boplot.highlight_configuration(mu_star_t1_xy[0],
                                   lloc='bottom',
                                   ax=ax,
                                   disable_ticks=True)
    boplot.annotate_x_edge(label="%.2f" % mu_star_t1_xy[0],
                           xy=mu_star_t1_xy,
                           ax=ax,
                           align='bottom',
                           offset_param=1.5)

    boplot.highlight_output(mu_star_t1_xy[1],
                            label='',
                            lloc='right',
                            ax=ax,
                            fontsize=28)
    boplot.annotate_y_edge(label=r'${(\mu^*)}^{(t+1)}|_\lambda$',
                           xy=mu_star_t1_xy,
                           align='right',
                           ax=ax,
                           yoffset=1.5)

    perform_finishing_tasks(ax=ax, filename="kg_4.pdf", remove_legend=True)

    # ---------------------------------------
    # Draw kg 5

    fig, (ax1, ax2) = plt.subplots(1, 2, squeeze=True, figsize=(22, 9))
    draw_vertical_comparison(imaginary_lambda=x_.squeeze(), ax1=ax1, ax2=ax2)

    boplot.highlight_output(mu_star_t_xy[1],
                            label='',
                            lloc='right',
                            ax=ax1,
                            fontsize=30)
    boplot.annotate_y_edge(label='${(\mu^*)}^{(t)}$',
                           xy=mu_star_t_xy,
                           align='right',
                           ax=ax1,
                           yoffset=1.5)

    boplot.highlight_output(mu_star_t1_xy[1],
                            label='',
                            lloc='right',
                            ax=ax2,
                            fontsize=28)
    boplot.annotate_y_edge(label='${(\mu^*)}^{(t+1)}|_\lambda$',
                           xy=mu_star_t1_xy,
                           align='left',
                           ax=ax2,
                           yoffset=1.5)

    finishing_touches_parallel(ax1=ax1, ax2=ax2, filename="kg_5.pdf")

    return
Example #5
0
def visualize_ts(initial_design, init=None):
    """
    Visualize one-step of TS.
    :param initial_design: Method for initializing the GP, choice between 'uniform', 'random', and 'presentation'
    :param init: Number of datapoints to initialize GP with.
    :return: None
    """

    # 1. Plot GP fit on initial dataset
    # 2. Plot one sample
    # 3. Mark minimum of sample

    boplot.set_rcparams(**{'legend.loc': 'upper left'})

    logging.debug("Visualizing EI with initial design {} and init {}".format(
        initial_design, init))
    # Initialize dummy dataset
    x, y = initialize_dataset(initial_design=initial_design, init=init)
    ymin_arg = np.argmin(y)
    ymin = y[ymin_arg]
    logging.debug(
        "Initialized dataset with:\nsamples {0}\nObservations {1}".format(
            x, y))

    # Fit GP to the currently available dataset
    gp = GPR(kernel=Matern())
    logging.debug("Fitting GP to\nx: {}\ny:{}".format(x, y))
    gp.fit(x, y)  # fit the model

    # noinspection PyStringFormat
    logging.debug(
        "Model fit to dataset.\nOriginal Inputs: {0}\nOriginal Observations: {1}\n"
        "Predicted Means: {2}\nPredicted STDs: {3}".format(
            x, y, *(gp.predict(x, return_std=True))))

    # 1. Plot GP fit on initial dataset
    # -------------Plotting code -----------------
    fig, ax = plt.subplots(1, 1, squeeze=True)
    ax.set_xlim(bounds["x"])
    ax.set_ylim(bounds["gp_y"])
    ax.grid()
    boplot.plot_gp(model=gp,
                   confidence_intervals=[1.0, 2.0, 3.0],
                   custom_x=x,
                   ax=ax)
    boplot.plot_objective_function(ax=ax)
    boplot.mark_observations(X_=x,
                             Y_=y,
                             mark_incumbent=False,
                             highlight_datapoint=None,
                             highlight_label=None,
                             ax=ax)

    ax.legend().set_zorder(zorders['legend'])
    ax.set_xlabel(labels['xlabel'])

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig(f"{OUTPUT_DIR}/ts_1.pdf")
    else:
        plt.show()
    # -------------------------------------------

    # 2. Plot one sample
    # -------------Plotting code -----------------
    fig, ax = plt.subplots(1, 1, squeeze=True)
    ax.set_xlim(bounds["x"])
    ax.set_ylim(bounds["gp_y"])
    ax.grid()
    boplot.plot_gp(model=gp,
                   confidence_intervals=[1.0, 2.0, 3.0],
                   custom_x=x,
                   ax=ax)
    boplot.plot_objective_function(ax=ax)
    boplot.mark_observations(X_=x,
                             Y_=y,
                             mark_incumbent=False,
                             highlight_datapoint=None,
                             highlight_label=None,
                             ax=ax)

    # Sample from the GP
    nsamples = 1
    seed2 = 2
    seed3 = 1375
    X_ = boplot.get_plot_domain(precision=None)
    mu = gp.sample_y(X=X_, n_samples=nsamples, random_state=seed3)
    boplot.plot_gp_samples(mu=mu,
                           nsamples=nsamples,
                           precision=None,
                           custom_x=X_,
                           show_min=False,
                           ax=ax,
                           seed=seed2)

    ax.legend().set_zorder(zorders['legend'])
    ax.set_xlabel(labels['xlabel'])

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig(f"{OUTPUT_DIR}/ts_2.pdf")
    else:
        plt.show()
    # -------------------------------------------

    # 3. Mark minimum of sample
    # -------------Plotting code -----------------
    fig, ax = plt.subplots(1, 1, squeeze=True)
    ax.set_xlim(bounds["x"])
    ax.set_ylim(bounds["gp_y"])
    ax.grid()
    # boplot.plot_gp(model=gp, confidence_intervals=[2.0], custom_x=x, ax=ax)
    boplot.plot_objective_function(ax=ax)
    boplot.mark_observations(X_=x,
                             Y_=y,
                             mark_incumbent=False,
                             highlight_datapoint=None,
                             highlight_label=None,
                             ax=ax)

    # Sample from the GP
    nsamples = 1
    X_ = boplot.get_plot_domain(precision=None)
    mu = gp.sample_y(X=X_, n_samples=nsamples, random_state=seed3)
    colors['highlighted_observations'] = 'red'  # Special for Thompson Sampling
    boplot.plot_gp_samples(mu=mu,
                           nsamples=nsamples,
                           precision=None,
                           custom_x=X_,
                           show_min=True,
                           ax=ax,
                           seed=seed2)

    min_idx = np.argmin(mu, axis=0)
    candidate = X_[min_idx]
    cost = mu[min_idx]

    boplot.highlight_configuration(x=np.array([candidate]),
                                   label='',
                                   lloc='bottom',
                                   disable_ticks=True,
                                   ax=ax)
    boplot.annotate_x_edge(label=r'$\lambda^{(t)}$',
                           xy=(candidate, cost),
                           align='top',
                           ax=ax)
    boplot.highlight_output(y=np.array([cost]),
                            label='',
                            lloc='left',
                            disable_ticks=True,
                            ax=ax)
    boplot.annotate_y_edge(label=r'$g(\lambda^{(t)})$',
                           xy=(candidate, cost),
                           align='left',
                           ax=ax)

    ax.legend().set_zorder(zorders['legend'])
    ax.set_xlabel(labels['xlabel'])

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig(f"{OUTPUT_DIR}/ts_3.pdf")
    else:
        plt.show()