Example #1
0
def build_nn(nn_input):
    d1 = nnbuilder.denseLayer(nn_input, 100, w_init=nn.XavierNormal())
    drop = nn.dropout(d1, 0.5)
    d2 = nnbuilder.denseLayer(drop, 50, w_init=nn.XavierNormal())
    drop2 = nn.dropout(d2, 0.5)
    d3 = nnbuilder.denseLayer(drop2, 25, w_init=nn.XavierNormal())
    drop3 = nn.dropout(d3, 0.5)
    d3 = nnbuilder.denseLayer(drop3, 2, activation=nn.softmax)
    return d3
Example #2
0
def dense_model(X, w_h, w_h2, w_o, p_drop_input, p_drop_hidden):
    X = nn.dropout(X, p_drop_input)
    h = nn.rectify(cgt.dot(X, w_h))

    h = nn.dropout(h, p_drop_hidden)
    h2 = nn.rectify(cgt.dot(h, w_h2))

    h2 = nn.dropout(h2, p_drop_hidden)
    py_x = nn.softmax(cgt.dot(h2, w_o))
    return py_x
Example #3
0
def dense_model(X, w_h, w_h2, w_o, p_drop_input, p_drop_hidden):
    X = nn.dropout(X, p_drop_input)
    h = nn.rectify(cgt.dot(X, w_h))

    h = nn.dropout(h, p_drop_hidden)
    h2 = nn.rectify(cgt.dot(h, w_h2))

    h2 = nn.dropout(h2, p_drop_hidden)
    py_x = nn.softmax(cgt.dot(h2, w_o))
    return py_x
Example #4
0
def dense_model3(X, w_h, w_h2, w_h3, w_o, p_drop_input, p_drop_hidden):
    X = nn.dropout(X, p_drop_input)
    h = nn.rectify(cgt.dot(X, w_h))

    h = nn.dropout(h, p_drop_hidden[0])
    h2 = nn.rectify(cgt.dot(h, w_h2))

    h2 = nn.dropout(h2, p_drop_hidden[1])
    h3 = nn.rectify(cgt.dot(h2, w_h3))

    h3 = nn.dropout(h3, p_drop_hidden[2])
    py_x = nn.softmax(cgt.dot(h3, w_o))
    return py_x
Example #5
0
def tinyconv_model(X, w, w2, p_drop):
    l1 = nn.conv2d(X, w, kernelshape=(3, 3), pad=(1, 1), stride=(3, 3))
    l1a = nn.dropout(l1, p_drop)
    batchsize, channels, rows, cols = l1.shape
    l1flat = cgt.reshape(l1, [batchsize, channels * rows * cols])
    pyx = nn.softmax(l1flat.dot(w2))
    return l1, pyx
Example #6
0
def tinyconv_model(X, w, w2, p_drop):
    l1 = nn.conv2d(X, w, kernelshape=(3,3), pad=(1,1),stride=(3,3))
    l1a = nn.dropout(l1, p_drop)
    batchsize,channels,rows,cols = l1.shape
    l1flat = cgt.reshape(l1, [batchsize,channels*rows*cols])
    pyx = nn.softmax(l1flat.dot(w2))
    return l1, pyx
Example #7
0
def convnet_model(X, w, w2, w3, w4, w_o, p_drop_conv, p_drop_hidden):
    l1a = nn.rectify(nn.conv2d(X, w, kernelshape=(3, 3), pad=(1, 1)))
    l1 = nn.max_pool_2d(l1a, kernelshape=(2, 2), stride=(2, 2))
    l1 = nn.dropout(l1, p_drop_conv)

    l2a = nn.rectify(nn.conv2d(l1, w2, kernelshape=(3, 3), pad=(1, 1)))
    l2 = nn.max_pool_2d(l2a, kernelshape=(2, 2), stride=(2, 2))
    l2 = nn.dropout(l2, p_drop_conv)

    l3a = nn.rectify(nn.conv2d(l2, w3, kernelshape=(3, 3), pad=(1, 1)))
    l3b = nn.max_pool_2d(l3a, kernelshape=(2, 2), stride=(2, 2))
    batchsize, channels, rows, cols = l3b.shape
    l3 = cgt.reshape(l3b, [batchsize, channels * rows * cols])
    l3 = nn.dropout(l3, p_drop_conv)

    l4 = nn.rectify(cgt.dot(l3, w4))
    l4 = nn.dropout(l4, p_drop_hidden)

    pyx = nn.softmax(cgt.dot(l4, w_o))
    return pyx
Example #8
0
def convnet_model(X, w, w2, w3, w4, w_o, p_drop_conv, p_drop_hidden):
    l1a = nn.rectify(nn.conv2d(X, w, kernelshape=(3,3), pad=(1,1)))
    l1 = nn.max_pool_2d(l1a, kernelshape=(2, 2), stride=(2,2))
    l1 = nn.dropout(l1, p_drop_conv)

    l2a = nn.rectify(nn.conv2d(l1, w2, kernelshape=(3,3), pad=(1,1)))
    l2 = nn.max_pool_2d(l2a, kernelshape=(2, 2), stride=(2,2))
    l2 = nn.dropout(l2, p_drop_conv)

    l3a = nn.rectify(nn.conv2d(l2, w3, kernelshape=(3,3), pad=(1,1)))
    l3b = nn.max_pool_2d(l3a, kernelshape=(2, 2), stride=(2,2))
    batchsize,channels,rows,cols = l3b.shape
    l3 = cgt.reshape(l3b, [batchsize, channels*rows*cols])
    l3 = nn.dropout(l3, p_drop_conv)

    l4 = nn.rectify(cgt.dot(l3, w4))
    l4 = nn.dropout(l4, p_drop_hidden)
    
    pyx = nn.softmax(cgt.dot(l4, w_o))
    return pyx
Example #9
0
 def get_features_simple(nn_input, num_units=512, recurrent_layer=None):
     """ Determines how to process raw input into feature h_u. These features are then weighted at each step and used
      to determine the context vector. This is most likely problem specific.
      Though you're welcome to try the default."""
     if recurrent_layer is None:
         recurrent_layer = temporalDenseLayer
     w_init = IIDUniform(-0.1, 0.1)
     activation = cgt.sigmoid
     l1_f = recurrent_layer(nn_input=nn_input, num_units=num_units, activation=activation, w_init=w_init)
     l1_d = dropout(l1_f, 0.4)
     #l1_b = recurrent_layer(nn_input=nn_input, num_units=num_units, backwards=True, activation=activation, w_init=w_init)
     #l1_plus = l1_f + l1_b
     return l1_d
Example #10
0
    def __init__(self, n_actions):
        Serializable.__init__(self, n_actions)
        cgt.set_precision('double')
        n_in = 128
        o_no = cgt.matrix("o_no",fixed_shape=(None,n_in))
        a_n = cgt.vector("a_n",dtype='i8')
        q_n = cgt.vector("q_n")
        oldpdist_np = cgt.matrix("oldpdists")

        nhid, nhid2 = 64, 64
        h0 = (o_no - 128.0)/128.0
        d0 = nn.dropout(h1, .2)

        h1 = nn.rectify(nn.Affine(128,nhid,weight_init=nn.IIDGaussian(std=.1))(d0))
        d1 = nn.dropout(h1, .2)
        h2 = nn.rectify(nn.Affine(nhid,nhid2,weight_init=nn.IIDGaussian(std=.1))(d1))
        # d2 = nn.dropout(h2, .2)
        probs_na = nn.softmax(nn.Affine(nhid2,n_actions,weight_init=nn.IIDGaussian(std=0.01))(d2))
        logprobs_na = cgt.log(probs_na)
        b = cgt.size(o_no, 0)
        logps_n = logprobs_na[cgt.arange(b), a_n]
        surr = (logps_n*q_n).mean()
        kl = (oldpdist_np * cgt.log(oldpdist_np/probs_na)).sum(axis=1).mean()

        params = nn.get_parameters(surr)
        gradsurr = cgt.grad(surr, params)
        flatgrad = cgt.concatenate([p.flatten() for p in gradsurr])

        lam = cgt.scalar()
        penobj = surr - lam * kl
        self._f_grad_lagrangian = cgt.function([lam, oldpdist_np, o_no, a_n, q_n], 
            cgt.concatenate([p.flatten() for p in cgt.grad(penobj,params)]))
        self.f_pdist = cgt.function([o_no], probs_na)

        self.f_probs = cgt.function([o_no], probs_na)
        self.f_surr_kl = cgt.function([oldpdist_np, o_no, a_n, q_n], [surr, kl])
        self.f_gradlogp = cgt.function([oldpdist_np, o_no, a_n, q_n], flatgrad)

        self.pc = ParamCollection(params)
Example #11
0
def dropoutLayer(nn_input, p=0):
    return dropout(nn_input, p)
Example #12
0
            output = [cgt.broadcast("+", X.dot(W), b, "xx,1x")]
        elif layer.type == "ReLU":
            output = [nn.rectify(inputs[0])]
        elif layer.type == "Softmax":
            output = [nn.softmax(inputs[0])]
        elif layer.type == "LRN":
            # XXX needs params
            param = layer.lrn_param
            output = [
                nn.lrn(inputs[0], param.alpha, param.beta, param.local_size)
            ]
        elif layer.type == "Concat":
            param = layer.concat_param
            output = [cgt.concatenate(inputs, param.concat_dim)]
        elif layer.type == "Dropout":
            output = [nn.dropout(inputs[0])]
        elif layer.type == "SoftmaxWithLoss":
            output = [nn.loglik_softmax(inputs[0], inputs[1])]
        elif layer.type == "Accuracy":
            output = [nn.zero_one_loss(inputs[0], inputs[1])]
        else:
            cgt.error("unrecognized layer type %s" % layer.type)

        assert output is not None

        # assert isinstance(output, cgt.Node)
        for i in xrange(len(layer.top)):
            name2node[layer.top[i]] = output[i]
        print "stored", layer.top[0]
        if layer.type != "Data":
            print "shape", layer.type, infer_shape(
Example #13
0
            b = name2node[bname] = cgt.shared(bval, name=bname, fixed_shape_mask="all")
            yname = layer.top[0]
            output = [cgt.broadcast("+",X.dot(W), b, "xx,1x")          ]
        elif layer.type == "ReLU":
            output = [nn.rectify(inputs[0])]
        elif layer.type == "Softmax":
            output = [nn.softmax(inputs[0])]
        elif layer.type == "LRN":
            # XXX needs params
            param = layer.lrn_param
            output = [nn.lrn(inputs[0], param.alpha,param.beta, param.local_size)]
        elif layer.type == "Concat":
            param = layer.concat_param
            output = [cgt.concatenate(inputs, param.concat_dim)            ]
        elif layer.type == "Dropout":
            output = [nn.dropout(inputs[0])]
        elif layer.type == "SoftmaxWithLoss":
            output = [nn.loglik_softmax(inputs[0], inputs[1])]
        elif layer.type == "Accuracy":
            output = [nn.zero_one_loss(inputs[0], inputs[1])]
        else:
            cgt.error("unrecognized layer type %s"%layer.type)

        assert output is not None

        # assert isinstance(output, cgt.Node)
        for i in xrange(len(layer.top)): name2node[layer.top[i]] = output[i]
        print "stored", layer.top[0]
        if layer.type != "Data":
            print "shape",layer.type, infer_shape(name2node[layer.bottom[0]]), infer_shape(name2node[layer.top[0]])