def __init__(self, learner, memory, simulator, settings, dqn_policy=None, rollout_policy=None): """ The learning agent is responsible for communicating and moving data between the three modules: Learner, Simulator, Memory Inputs: - learner: containes the neural network and the optimizer to train it - memory: expereince replay memory that can be minibatch sampled - simulator: simulates the environemnt - settings: hyper parameters for training - rollout_policy: rollout policy, random by default """ self.learner = learner self.memory = memory self.simulator = simulator # for populating the experience replay self.evaluator = deepcopy(simulator) # for evaluation self.dqn_policy = dqn_policy if dqn_policy is None: self.dqn_policy = DQNPolicy(learner) self.rollout_policy = rollout_policy if rollout_policy is None: self.rollout_policy = RandomPolicy(simulator.n_actions) self.set_params(settings) self.n_epochs = self.iterations / float(memory.memory_size) self.iteration = [] self.loss = [] self.q_ave = [] self.eval_iteration = [] self.r_eval = [] self.r_per_episode_eval = []
class DQNAgent(object): def __init__(self, learner, memory, simulator, settings, dqn_policy=None, rollout_policy=None): """ The learning agent is responsible for communicating and moving data between the three modules: Learner, Simulator, Memory Inputs: - learner: containes the neural network and the optimizer to train it - memory: expereince replay memory that can be minibatch sampled - simulator: simulates the environemnt - settings: hyper parameters for training - rollout_policy: rollout policy, random by default """ self.learner = learner self.memory = memory self.simulator = simulator # for populating the experience replay self.evaluator = deepcopy(simulator) # for evaluation self.dqn_policy = dqn_policy if dqn_policy is None: self.dqn_policy = DQNPolicy(learner) self.rollout_policy = rollout_policy if rollout_policy is None: self.rollout_policy = RandomPolicy(simulator.n_actions) self.set_params(settings) self.n_epochs = self.iterations / float(memory.memory_size) self.iteration = [] self.loss = [] self.q_ave = [] self.eval_iteration = [] self.r_eval = [] self.r_per_episode_eval = [] def policy(self, obs, epsilon): """ e-greedy policy with customazible rollout """ if self.random_state.rand() < epsilon: return self.rollout_policy.action(obs) else: return self.dqn_policy.action(obs) def save(self, obj, name): ''' function to save a file as pickle ''' # TODO: don't you need to close the I/O stream? pickle.dump(obj, open(name, "wb")) def load(self, name): ''' function to load a pickle file ''' return pickle.load(open(name, "rb")) def train(self, verbose=True): """ Trains the network """ learner = self.learner memory = self.memory simulator = self.simulator if self.viz: simulator.init_viz_display() # run initial exploration and populate the experience replay self.populate_memory(self.initial_exploration) # add initial observation to observatin history iobs = simulator.get_screenshot().copy() self.initial_obs(iobs) iteration = 0 # keeps track of all training iterations, ignores evaluation run_time = 0.0 start_time = timer() # mark the global beginning of training last_print = timer() while iteration < self.iterations: # for the set number of iterations # perform a single simulator step self.step() # minibatch update for DQN if iteration % self.learn_freq == 0: loss, qvals = self.batch_update() self.iteration.append(iteration) self.loss.append(loss) self.q_ave.append(np.mean(qvals)) if iteration % self.print_every == 0 and verbose: print "Iteration: %d, Loss: %.3f, Average Q-Values: %.2f, Time since print: %.2f, Total runtime: %.2f, epsilon: %.2f" % ( iteration, loss, np.mean(qvals), timer() - last_print, timer() - start_time, self.epsilon) last_print = timer() if iteration % self.save_every == 0: # saving the net, the training history, and the learner itself learner.save_net('%s/net_%d.p' % (self.save_dir, int(iteration))) np.savetxt( '%s/training_history.csv' % self.save_dir, np.asarray([self.iteration, self.loss, self.q_ave]).T) if iteration % self.eval_every == 0: # evaluation sim_r, sim_r_per_episode, sim_time = self.simulate( self.eval_iterations, self.eval_epsilon) self.eval_iteration.append(iteration) self.r_eval.append(sim_r) self.r_per_episode_eval.append(sim_r_per_episode) if verbose: print "Evaluation, total reward: %.2f, Reward per episode: %.2f" % ( sim_r, sim_r_per_episode) np.savetxt( '%s/evaluation_history.csv' % self.save_dir, np.asarray([ self.eval_iteration, self.r_eval, self.r_per_episode_eval ]).T) if iteration % self.target_net_update == 0: learner.copy_net_to_target_net() self.epsilon -= self.epsilon_decay self.epsilon = 0.1 if self.epsilon < 0.1 else self.epsilon iteration += 1 memory.close() learner.save_net('%s/net_%d.p' % (self.save_dir, int(iteration))) np.savetxt('%s/training_history.csv' % self.save_dir, np.asarray([self.iteration, self.loss, self.q_ave]).T) run_time = timer() - start_time print('Overall training + evaluation time: ' + str(run_time)) def step(self): """ Performs a single step with the DQN and updates the replay memory """ loss = 0.0 simulator = self.simulator obs = simulator.get_screenshot().copy() a = self.policy((self.ohist, self.ahist), self.epsilon) simulator.act(a) r = simulator.reward() term = False obsp = None if simulator.episode_over(): term = True obsp = obs.copy() simulator.reset_episode() iobs = simulator.get_screenshot().copy() self.empty_history() self.initial_obs(iobs) else: obsp = simulator.get_screenshot().copy() self.update_history(obsp, a) if self.viz: # move the image to the screen / shut down the game if display is closed simulator.refresh_viz_display() self.memory.store_tuple(obs, a, r, obsp, term) def batch_update(self): """ Performs a mini-batch update on the DQN """ ohist, ahist, rhist, ophist, term = self.memory.minibatch() # take the last as our action and reward a = ahist[:, -1] r = rhist[:, -1] t = term[:, -1] oahist = None # TODO: this indexing is a hack to deal with single sample history # Using the first history entry of the minibatch (there is only one) - could do this with reshape as well if self.ahist_size == 0 or self.ohist_size == 1: oahist = (ohist[:, 0], None) oaphist = (ophist[:, 0], None) else: oahist = (ohist, ahist[:self.ahist_size]) oaphist = (ophist, ahist[1:self.ahist_size]) loss, qvals = self.learner.update(oahist, a, r, oaphist, t) return loss, qvals ################################################################# ################### Some Utility Functions ###################### ################################################################# def simulate(self, nsteps, epsilon, viz=False): """ Simulates the DQN policy """ simulator = self.evaluator # use a different simulator to prevent breaks simulator.reset_episode() # add initial observation to observation history iobs = simulator.get_screenshot().copy() self.initial_eval_obs(iobs) if self.viz: simulator.init_viz_display() rtot = 0.0 r_per_episode = 0.0 episode_count = 0 start_sim = timer() for i in xrange(nsteps): # generate reward and step the simulator ohist, ahist = self.eval_ohist, self.eval_ahist a = self.policy((ohist, ahist), epsilon) simulator.act(a) r = simulator.reward() rtot += r if simulator.episode_over(): simulator.reset_episode() iobs = simulator.get_screenshot().copy() self.empty_eval_history() self.initial_eval_obs(iobs) episode_count += 1 r_per_episode = rtot else: obsp = simulator.get_screenshot().copy() self.update_eval_history(obsp, a) if self.viz: # move the image to the screen / shut down the game if display is closed simulator.refresh_viz_display() if episode_count > 0: r_per_episode /= episode_count else: r_per_episode = rtot runtime = timer() - start_sim return rtot, r_per_episode, runtime def populate_memory(self, nsamples): # TODO: do we need to copy obs and obsp? memory = self.memory simulator = self.simulator simulator.reset_episode() for i in xrange(nsamples): # generate o, a, r, o' tuples obs = simulator.get_screenshot().copy() a = self.rollout_policy.action(obs) simulator.act(a) r = simulator.reward() obsp = simulator.get_screenshot().copy() term = False if simulator.episode_over(): term = True simulator.reset_episode() # reset # store the tuples memory.store_tuple(obs, a, r, obsp, term) simulator.reset_episode() def plot_loss(self): try: from matplotlib import pyplot except ImportError: "Can not plot loss, matplotlib required" pyplot.plot(self.loss[1:]) pyplot.xlabel("Iteration") pyplot.ylabel("Loss") pyplot.show() def plot_per_sim_reward(self): try: from matplotlib import pyplot except ImportError: "Can not plot reward, matplotlib required" pyplot.plot(self.eval_every * np.arange(len(self.r_eval)), self.r_eval) pyplot.xlabel("Iteration") pyplot.ylabel("Reward") pyplot.title("Total Reward Per Evaluation") pyplot.show() def plot_per_episode_reward(self): try: from matplotlib import pyplot except ImportError: "Can not plot loss, matplotlib required" pyplot.plot(self.eval_every * np.arange(len(self.r_eval)), self.r_per_episode_eval) pyplot.xlabel("Reward") pyplot.ylabel("Loss") pyplot.title("Average Reward Per Episode") pyplot.show() def set_params(self, settings): # set up the setting parameters self.random_state = np.random.RandomState( settings.get('seed_agent', None)) # change to a new random seed self.batch_size = settings.get('batch_size', 32) self.n_frames = settings.get('n_frames', 1) self.iterations = settings.get('iterations', 1000000) self.epsilon = settings.get('epsilon', 1.0) # exploration self.epsilon_decay = settings.get('epsilon_decay', 0.00001) # decay in self.eval_epsilon = settings.get('eval_epsilon', 0.0) # exploration during evaluation self.initial_exploration = settings.get( 'initial_exploration', 10000) # of iterations during initial exploration self.viz = settings.get( 'viz', False ) # whether to visualize the state/observation, False when not supported by simulator self.eval_iterations = settings.get('eval_iterations', 500) self.eval_every = settings.get('eval_every', 5000) self.print_every = settings.get('print_every', 5000) self.save_every = settings.get('save_every', 5000) self.save_dir = settings.get('save_dir', '.') # create the directory if it doesnt exist if not os.path.isdir(self.save_dir): os.makedirs(self.save_dir) self.learn_freq = settings.get( 'learn_freq', 1) # how frequently to do back prop on a minibatch self.target_net_update = settings.get('target_net_update', 5000) self.ohist_size, self.ahist_size, self.rhist_size = settings.get( 'history_sizes', (1, 0, 0)) self.ahist_size = 1 if self.ahist_size == 0 else self.ahist_size self.ohist_size = 1 if self.ohist_size == 0 else self.ohist_size self.ohist = np.zeros((self.ohist_size, ) + self.simulator.model_dims, dtype=np.float32) self.ahist = np.zeros(self.ahist_size, dtype=np.int32) self.rev_ohist = np.zeros( (self.ohist_size, ) + self.simulator.model_dims, dtype=np.float32) self.rev_ahist = np.zeros(self.ahist_size, dtype=np.int32) self.eval_ohist = np.zeros( (self.ohist_size, ) + self.simulator.model_dims, dtype=np.float32) self.eval_ahist = np.zeros(self.ahist_size, dtype=np.int32) self.rev_eval_ohist = np.zeros( (self.ohist_size, ) + self.simulator.model_dims, dtype=np.float32) self.rev_eval_ahist = np.zeros(self.ahist_size, dtype=np.int32) ################################################################# ################# History utility functions ##################### ################################################################# """ These are messy, and could be optimized """ def update_history(self, obs, a): # roll the histories forward and replace the first entry # keep a reversed history so we can easily roll though it self.rev_ohist = np.roll(self.rev_ohist, 1, axis=0) self.rev_ahist = np.roll(self.rev_ahist, 1, axis=0) self.rev_ahist[0] = a self.rev_ohist[0] = obs # reverse to get history in [s0, s1, s2,...,sn] format self.ohist = np.flipud(self.rev_ohist) self.ahist = np.flipud(self.rev_ahist) def update_eval_history(self, obs, a): # roll the histories forward and replace the first entry self.rev_eval_ohist = np.roll(self.rev_eval_ohist, 1, axis=0) self.rev_eval_ahist = np.roll(self.rev_eval_ahist, 1, axis=0) self.rev_eval_ahist[0] = a self.rev_eval_ohist[0] = obs self.eval_ohist = np.flipud(self.rev_eval_ohist) self.eval_ahist = np.flipud(self.rev_eval_ahist) def initial_obs(self, obs): self.rev_ohist[0] = obs self.ohist[-1] = obs def initial_eval_obs(self, obs): self.rev_eval_ohist[0] = obs self.eval_ohist[-1] = obs def empty_history(self): self.ohist.fill(self.memory._emptyfloat) self.ahist.fill(self.memory._emptyint) self.rev_ohist.fill(self.memory._emptyfloat) self.rev_ahist.fill(self.memory._emptyint) def empty_eval_history(self): self.eval_ohist.fill(self.memory._emptyfloat) self.eval_ahist.fill(self.memory._emptyint) self.rev_eval_ohist.fill(self.memory._emptyfloat) self.rev_eval_ahist.fill(self.memory._emptyint)
class DQNAgent(object): def __init__(self, learner, memory, simulator, settings, dqn_policy=None, rollout_policy=None): """ The learning agent is responsible for communicating and moving data between the three modules: Learner, Simulator, Memory Inputs: - learner: containes the neural network and the optimizer to train it - memory: expereince replay memory that can be minibatch sampled - simulator: simulates the environemnt - settings: hyper parameters for training - rollout_policy: rollout policy, random by default """ self.learner = learner self.memory = memory self.simulator = simulator # for populating the experience replay self.evaluator = deepcopy(simulator) # for evaluation self.dqn_policy = dqn_policy if dqn_policy is None: self.dqn_policy = DQNPolicy(learner) self.rollout_policy = rollout_policy if rollout_policy is None: self.rollout_policy = RandomPolicy(simulator.n_actions) self.set_params(settings) self.n_epochs = self.iterations / float(memory.memory_size) self.iteration = [] self.loss = [] self.q_ave = [] self.eval_iteration = [] self.r_eval = [] self.r_per_episode_eval = [] def policy(self, obs, epsilon): """ e-greedy policy with customazible rollout """ if self.random_state.rand() < epsilon: return self.rollout_policy.action(obs) else: return self.dqn_policy.action(obs) def save(self,obj,name): ''' function to save a file as pickle ''' # TODO: don't you need to close the I/O stream? pickle.dump(obj, open(name, "wb")) def load(self,name): ''' function to load a pickle file ''' return pickle.load(open(name, "rb")) def train(self, verbose=True): """ Trains the network """ learner = self.learner memory = self.memory simulator = self.simulator if self.viz: simulator.init_viz_display() # run initial exploration and populate the experience replay self.populate_memory(self.initial_exploration) # add initial observation to observatin history iobs = simulator.get_screenshot().copy() self.initial_obs(iobs) iteration = 0 # keeps track of all training iterations, ignores evaluation run_time = 0.0 start_time = timer() # mark the global beginning of training last_print = timer() while iteration < self.iterations: # for the set number of iterations # perform a single simulator step self.step() # minibatch update for DQN if iteration % self.learn_freq == 0: loss, qvals = self.batch_update() self.iteration.append(iteration) self.loss.append(loss) self.q_ave.append(np.mean(qvals)) if iteration % self.print_every == 0 and verbose: print "Iteration: %d, Loss: %.3f, Average Q-Values: %.2f, Time since print: %.2f, Total runtime: %.2f, epsilon: %.2f" % (iteration, loss, np.mean(qvals), timer() - last_print, timer() - start_time, self.epsilon) last_print = timer() if iteration % self.save_every == 0: # saving the net, the training history, and the learner itself learner.save_net('%s/net_%d.p' % (self.save_dir,int(iteration))) np.savetxt('%s/training_history.csv' % self.save_dir, np.asarray([self.iteration, self.loss, self.q_ave]).T) if iteration % self.eval_every == 0: # evaluation sim_r, sim_r_per_episode, sim_time = self.simulate(self.eval_iterations, self.eval_epsilon) self.eval_iteration.append(iteration) self.r_eval.append(sim_r) self.r_per_episode_eval.append(sim_r_per_episode) if verbose: print "Evaluation, total reward: %.2f, Reward per episode: %.2f" % (sim_r, sim_r_per_episode) np.savetxt('%s/evaluation_history.csv' % self.save_dir, np.asarray([self.eval_iteration, self.r_eval, self.r_per_episode_eval]).T) if iteration % self.target_net_update == 0: learner.copy_net_to_target_net() self.epsilon -= self.epsilon_decay self.epsilon = 0.1 if self.epsilon < 0.1 else self.epsilon iteration += 1 memory.close() learner.save_net('%s/net_%d.p' % (self.save_dir,int(iteration))) np.savetxt('%s/training_history.csv' % self.save_dir, np.asarray([self.iteration, self.loss, self.q_ave]).T) run_time = timer() - start_time print('Overall training + evaluation time: '+ str(run_time)) def step(self): """ Performs a single step with the DQN and updates the replay memory """ loss = 0.0 simulator = self.simulator obs = simulator.get_screenshot().copy() a = self.policy((self.ohist, self.ahist), self.epsilon) simulator.act(a) r = simulator.reward() term = False obsp = None if simulator.episode_over(): term = True obsp = obs.copy() simulator.reset_episode() iobs = simulator.get_screenshot().copy() self.empty_history() self.initial_obs(iobs) else: obsp = simulator.get_screenshot().copy() self.update_history(obsp, a) if self.viz: # move the image to the screen / shut down the game if display is closed simulator.refresh_viz_display() self.memory.store_tuple(obs, a, r, obsp, term) def batch_update(self): """ Performs a mini-batch update on the DQN """ ohist, ahist, rhist, ophist, term = self.memory.minibatch() # take the last as our action and reward a = ahist[:,-1] r = rhist[:,-1] t = term[:,-1] oahist = None # TODO: this indexing is a hack to deal with single sample history # Using the first history entry of the minibatch (there is only one) - could do this with reshape as well if self.ahist_size == 0 or self.ohist_size == 1: oahist = (ohist[:,0], None) oaphist = (ophist[:,0], None) else: oahist = (ohist, ahist[:self.ahist_size]) oaphist = (ophist, ahist[1:self.ahist_size]) loss, qvals = self.learner.update(oahist, a, r, oaphist, t) return loss, qvals ################################################################# ################### Some Utility Functions ###################### ################################################################# def simulate(self, nsteps, epsilon, viz=False): """ Simulates the DQN policy """ simulator = self.evaluator # use a different simulator to prevent breaks simulator.reset_episode() # add initial observation to observation history iobs = simulator.get_screenshot().copy() self.initial_eval_obs(iobs) if self.viz: simulator.init_viz_display() rtot = 0.0 r_per_episode = 0.0 episode_count = 0 start_sim = timer() for i in xrange(nsteps): # generate reward and step the simulator ohist, ahist = self.eval_ohist, self.eval_ahist a = self.policy((ohist, ahist), epsilon) simulator.act(a) r = simulator.reward() rtot += r if simulator.episode_over(): simulator.reset_episode() iobs = simulator.get_screenshot().copy() self.empty_eval_history() self.initial_eval_obs(iobs) episode_count += 1 r_per_episode = rtot else: obsp = simulator.get_screenshot().copy() self.update_eval_history(obsp, a) if self.viz: # move the image to the screen / shut down the game if display is closed simulator.refresh_viz_display() if episode_count > 0: r_per_episode /= episode_count else: r_per_episode = rtot runtime = timer() - start_sim return rtot, r_per_episode, runtime def populate_memory(self, nsamples): # TODO: do we need to copy obs and obsp? memory = self.memory simulator = self.simulator simulator.reset_episode() for i in xrange(nsamples): # generate o, a, r, o' tuples obs = simulator.get_screenshot().copy() a = self.rollout_policy.action(obs) simulator.act(a) r = simulator.reward() obsp = simulator.get_screenshot().copy() term = False if simulator.episode_over(): term = True simulator.reset_episode() # reset # store the tuples memory.store_tuple(obs, a, r, obsp, term) simulator.reset_episode() def plot_loss(self): try: from matplotlib import pyplot except ImportError: "Can not plot loss, matplotlib required" pyplot.plot(self.loss[1:]) pyplot.xlabel("Iteration") pyplot.ylabel("Loss") pyplot.show() def plot_per_sim_reward(self): try: from matplotlib import pyplot except ImportError: "Can not plot reward, matplotlib required" pyplot.plot(self.eval_every * np.arange(len(self.r_eval)), self.r_eval) pyplot.xlabel("Iteration") pyplot.ylabel("Reward") pyplot.title("Total Reward Per Evaluation") pyplot.show() def plot_per_episode_reward(self): try: from matplotlib import pyplot except ImportError: "Can not plot loss, matplotlib required" pyplot.plot(self.eval_every * np.arange(len(self.r_eval)), self.r_per_episode_eval) pyplot.xlabel("Reward") pyplot.ylabel("Loss") pyplot.title("Average Reward Per Episode") pyplot.show() def set_params(self, settings): # set up the setting parameters self.random_state = np.random.RandomState(settings.get('seed_agent', None)) # change to a new random seed self.batch_size = settings.get('batch_size', 32) self.n_frames = settings.get('n_frames', 1) self.iterations = settings.get('iterations', 1000000) self.epsilon = settings.get('epsilon', 1.0) # exploration self.epsilon_decay = settings.get('epsilon_decay', 0.00001) # decay in self.eval_epsilon = settings.get('eval_epsilon', 0.0) # exploration during evaluation self.initial_exploration = settings.get('initial_exploration', 10000) # of iterations during initial exploration self.viz = settings.get('viz', False) # whether to visualize the state/observation, False when not supported by simulator self.eval_iterations = settings.get('eval_iterations', 500) self.eval_every = settings.get('eval_every', 5000) self.print_every = settings.get('print_every', 5000) self.save_every = settings.get('save_every', 5000) self.save_dir = settings.get('save_dir', '.') # create the directory if it doesnt exist if not os.path.isdir(self.save_dir): os.makedirs(self.save_dir) self.learn_freq = settings.get('learn_freq', 1) # how frequently to do back prop on a minibatch self.target_net_update = settings.get('target_net_update', 5000) self.ohist_size, self.ahist_size, self.rhist_size = settings.get('history_sizes', (1,0,0)) self.ahist_size = 1 if self.ahist_size == 0 else self.ahist_size self.ohist_size = 1 if self.ohist_size == 0 else self.ohist_size self.ohist = np.zeros((self.ohist_size,) + self.simulator.model_dims, dtype=np.float32) self.ahist = np.zeros(self.ahist_size, dtype=np.int32) self.rev_ohist = np.zeros((self.ohist_size,) + self.simulator.model_dims, dtype=np.float32) self.rev_ahist = np.zeros(self.ahist_size, dtype=np.int32) self.eval_ohist = np.zeros((self.ohist_size,) + self.simulator.model_dims, dtype=np.float32) self.eval_ahist = np.zeros(self.ahist_size, dtype=np.int32) self.rev_eval_ohist = np.zeros((self.ohist_size,) + self.simulator.model_dims, dtype=np.float32) self.rev_eval_ahist = np.zeros(self.ahist_size, dtype=np.int32) ################################################################# ################# History utility functions ##################### ################################################################# """ These are messy, and could be optimized """ def update_history(self, obs, a): # roll the histories forward and replace the first entry # keep a reversed history so we can easily roll though it self.rev_ohist = np.roll(self.rev_ohist, 1, axis=0) self.rev_ahist = np.roll(self.rev_ahist, 1, axis=0) self.rev_ahist[0] = a self.rev_ohist[0] = obs # reverse to get history in [s0, s1, s2,...,sn] format self.ohist = np.flipud(self.rev_ohist) self.ahist = np.flipud(self.rev_ahist) def update_eval_history(self, obs, a): # roll the histories forward and replace the first entry self.rev_eval_ohist = np.roll(self.rev_eval_ohist, 1, axis=0) self.rev_eval_ahist = np.roll(self.rev_eval_ahist, 1, axis=0) self.rev_eval_ahist[0] = a self.rev_eval_ohist[0] = obs self.eval_ohist = np.flipud(self.rev_eval_ohist) self.eval_ahist = np.flipud(self.rev_eval_ahist) def initial_obs(self, obs): self.rev_ohist[0] = obs self.ohist[-1] = obs def initial_eval_obs(self, obs): self.rev_eval_ohist[0] = obs self.eval_ohist[-1] = obs def empty_history(self): self.ohist.fill(self.memory._emptyfloat) self.ahist.fill(self.memory._emptyint) self.rev_ohist.fill(self.memory._emptyfloat) self.rev_ahist.fill(self.memory._emptyint) def empty_eval_history(self): self.eval_ohist.fill(self.memory._emptyfloat) self.eval_ahist.fill(self.memory._emptyint) self.rev_eval_ohist.fill(self.memory._emptyfloat) self.rev_eval_ahist.fill(self.memory._emptyint)
# run the simulation input_state = np.zeros((1, 2), dtype=np.float32) for i in xrange(nsteps): state = simulator.get_screenshot() input_state[0] = state a = policy.action((input_state, None)) simulator.act(a) r = simulator.reward() rtot += r xpos[i], vel[i] = state if simulator.episode_over(): break return rtot, xpos, vel mdp = MountainCar() simulator = MDPSimulator(mdp) net = pickle.load(open("../chimp/pre_trained_nets/mountain_car.net", "rb")) backend = ChainerBackend(settings) backend.set_net(net) learner = DQNLearner(settings, backend) policy = DQNPolicy(learner) r, xtrace, vtrace = car_sim(300, simulator, policy, verbose=True) p.plot(xtrace) p.plot(10.0 * vtrace) p.show()