Example #1
0
    def graph_implementation(arg_objs, size, data=None):
        """Sum the linear expression's entries.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        axis = data[0]
        if axis is None:
            obj = lu.sum_entries(arg_objs[0])
        elif axis == 1:
            const_size = (arg_objs[0].size[1], 1)
            ones = lu.create_const(np.ones(const_size), const_size)
            obj = lu.rmul_expr(arg_objs[0], ones, size)
        else:  # axis == 0
            const_size = (1, arg_objs[0].size[0])
            ones = lu.create_const(np.ones(const_size), const_size)
            obj = lu.mul_expr(ones, arg_objs[0], size)

        return (obj, [])
Example #2
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        # min sum_entries(t) + kq
        # s.t. x <= t + q
        #      0 <= t
        x = arg_objs[0]
        k = lu.create_const(data[0], (1, 1))
        q = lu.create_var((1, 1))
        t = lu.create_var(x.size)
        sum_t = lu.sum_entries(t)
        obj = lu.sum_expr([sum_t, lu.mul_expr(k, q, (1, 1))])
        prom_q = lu.promote(q, x.size)
        constr = [lu.create_leq(x, lu.sum_expr([t, prom_q])),
                  lu.create_geq(t)]
        return (obj, constr)
Example #3
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        # min sum_entries(t) + kq
        # s.t. x <= t + q
        #      0 <= t
        x = arg_objs[0]
        k = lu.create_const(data[0], (1, 1))
        q = lu.create_var((1, 1))
        t = lu.create_var(x.size)
        sum_t = lu.sum_entries(t)
        obj = lu.sum_expr([sum_t, lu.mul_expr(k, q, (1, 1))])
        prom_q = lu.promote(q, x.size)
        constr = [lu.create_leq(x, lu.sum_expr([t, prom_q])), lu.create_geq(t)]
        return (obj, constr)
Example #4
0
    def graph_implementation(arg_objs, size, data=None):
        """Sum the linear expression's entries.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        axis = data[0]
        if axis is None:
            obj = lu.sum_entries(arg_objs[0])
        elif axis == 1:
            const_size = (arg_objs[0].size[1], 1)
            ones = lu.create_const(np.ones(const_size), const_size)
            obj = lu.rmul_expr(arg_objs[0], ones, size)
        else:  # axis == 0
            const_size = (1, arg_objs[0].size[0])
            ones = lu.create_const(np.ones(const_size), const_size)
            obj = lu.mul_expr(ones, arg_objs[0], size)

        return (obj, [])
Example #5
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        x = arg_objs[0]
        t = lu.create_var((1, 1))
        # sum(exp(x - t))
        prom_t = lu.promote(t, x.size)
        expr = lu.sub_expr(x, prom_t)
        obj, constraints = exp.graph_implementation([expr], x.size)
        obj = lu.sum_entries(obj)
        # obj <= 1
        one = lu.create_const(1, (1, 1))
        constraints += [lu.create_leq(obj, one)]
        return (t, constraints)
Example #6
0
 def test_sum(self):
     """Test sum entries op.
     """
     shape = (5, 5)
     x = create_var(shape)
     expr = sum_entries(x, (1, 1))
     self.assertEqual(expr.shape, (1, 1))
     self.assertEqual(len(expr.args), 1)
     self.assertEqual(expr.type, SUM_ENTRIES)
Example #7
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        x = arg_objs[0]
        axis = data[0]
        t = lu.create_var(size)

        # sum(exp(x - t)) <= 1
        if axis is None:
            prom_t = lu.promote(t, x.size)
            expr = lu.sub_expr(x, prom_t)
            obj, constraints = exp.graph_implementation([expr], x.size)
            obj = lu.sum_entries(obj)

        elif axis == 0:
            prom_size = (x.size[0], 1)
            ones = lu.create_const(np.ones(prom_size), prom_size)
            prom_t = lu.mul_expr(ones, t, x.size)
            expr = lu.sub_expr(x, prom_t)
            obj, constraints = exp.graph_implementation([expr], x.size)

            const_size = (1, x.size[0])
            ones = lu.create_const(np.ones(const_size), const_size)
            obj = lu.mul_expr(ones, obj, size)

        else:  # axis == 1
            prom_size = (1, x.size[1])
            ones = lu.create_const(np.ones(prom_size), prom_size)
            prom_t = lu.rmul_expr(t, ones, x.size)
            expr = lu.sub_expr(x, prom_t)
            obj, constraints = exp.graph_implementation([expr], x.size)

            const_size = (x.size[1], 1)
            ones = lu.create_const(np.ones(const_size), const_size)
            obj = lu.rmul_expr(obj, ones, size)

        ones = lu.create_const(np.ones(size), size)
        constraints += [lu.create_leq(obj, ones)]

        return (t, constraints)
Example #8
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        x = arg_objs[0]
        axis = data[0]
        t = lu.create_var(size)

        # sum(exp(x - t)) <= 1
        if axis is None:
            prom_t = lu.promote(t, x.size)
            expr = lu.sub_expr(x, prom_t)
            obj, constraints = exp.graph_implementation([expr], x.size)
            obj = lu.sum_entries(obj)

        elif axis == 0:
            prom_size = (x.size[0], 1)
            ones = lu.create_const(np.ones(prom_size), prom_size)
            prom_t = lu.mul_expr(ones, t, x.size)
            expr = lu.sub_expr(x, prom_t)
            obj, constraints = exp.graph_implementation([expr], x.size)

            const_size = (1, x.size[0])
            ones = lu.create_const(np.ones(const_size), const_size)
            obj = lu.mul_expr(ones, obj, size)

        else:  # axis == 1
            prom_size = (1, x.size[1])
            ones = lu.create_const(np.ones(prom_size), prom_size)
            prom_t = lu.rmul_expr(t, ones, x.size)
            expr = lu.sub_expr(x, prom_t)
            obj, constraints = exp.graph_implementation([expr], x.size)

            const_size = (x.size[1], 1)
            ones = lu.create_const(np.ones(const_size), const_size)
            obj = lu.rmul_expr(obj, ones, size)

        ones = lu.create_const(np.ones(size), size)
        constraints += [lu.create_leq(obj, ones)]

        return (t, constraints)
Example #9
0
    def graph_implementation(arg_objs, size, data=None):
        """Sum the linear expression's entries.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        return (lu.sum_entries(arg_objs[0]), [])
Example #10
0
    def graph_implementation(arg_objs, size, data=None):
        """Sum the linear expression's entries.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        return (lu.sum_entries(arg_objs[0]), [])
Example #11
0
    def graph_implementation(self,
                             arg_objs,
                             shape: Tuple[int, ...],
                             data=None) -> Tuple[lo.LinOp, List[Constraint]]:
        """Sum the linear expression's entries.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        shape : tuple
            The shape of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        axis = data[0]
        keepdims = data[1]
        if axis is None:
            obj = lu.sum_entries(arg_objs[0], shape=shape)
        elif axis == 1:
            if keepdims:
                const_shape = (arg_objs[0].shape[1], 1)
            else:
                const_shape = (arg_objs[0].shape[1], )
            ones = lu.create_const(np.ones(const_shape), const_shape)
            obj = lu.rmul_expr(arg_objs[0], ones, shape)
        else:  # axis == 0
            if keepdims:
                const_shape = (1, arg_objs[0].shape[0])
            else:
                const_shape = (arg_objs[0].shape[0], )
            ones = lu.create_const(np.ones(const_shape), const_shape)
            obj = lu.mul_expr(ones, arg_objs[0], shape)

        return (obj, [])
Example #12
0
    def graph_implementation(arg_objs, shape, data=None):
        """Sum the linear expression's entries.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        shape : tuple
            The shape of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        obj = lu.sum_entries(arg_objs[0],
                             shape=shape,
                             axis=data[0],
                             keepdims=data[1])
        return (obj, [])
Example #13
0
    def graph_implementation(arg_objs, size, data=None):
        r"""Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)

        Notes
        -----

        Implementation notes.

        - For general :math:`p \geq 1`, the inequality :math:`\|x\|_p \leq t`
          is equivalent to the following convex inequalities:

          .. math::

              |x_i| &\leq r_i^{1/p} t^{1 - 1/p}\\
              \sum_i r_i &= t.

          These inequalities happen to also be correct for :math:`p = +\infty`,
          if we interpret :math:`1/\infty` as :math:`0`.

        - For general :math:`0 < p < 1`, the inequality :math:`\|x\|_p \geq t`
          is equivalent to the following convex inequalities:

          .. math::

              r_i &\leq x_i^{p} t^{1 - p}\\
              \sum_i r_i &= t.

        - For general :math:`p < 0`, the inequality :math:`\|x\|_p \geq t`
          is equivalent to the following convex inequalities:

          .. math::

              t &\leq x_i^{-p/(1-p)} r_i^{1/(1 - p)}\\
              \sum_i r_i &= t.




        Although the inequalities above are correct, for a few special cases, we can represent the p-norm
        more efficiently and with fewer variables and inequalities.

        - For :math:`p = 1`, we use the representation

            .. math::

                x_i &\leq r_i\\
                -x_i &\leq r_i\\
                \sum_i r_i &= t

        - For :math:`p = \infty`, we use the representation

            .. math::

                x_i &\leq t\\
                -x_i &\leq t

          Note that we don't need the :math:`r` variable or the sum inequality.

        - For :math:`p = 2`, we use the natural second-order cone representation

            .. math::

                \|x\|_2 \leq t

          Note that we could have used the set of inequalities given above if we wanted an alternate decomposition
          of a large second-order cone into into several smaller inequalities.

        """
        p = data[0]
        x = arg_objs[0]
        t = lu.create_var((1, 1))
        constraints = []

        # first, take care of the special cases of p = 2, inf, and 1
        if p == 2:
            return t, [SOC(t, [x])]

        if p == np.inf:
            t_ = lu.promote(t, x.size)
            return t, [lu.create_leq(x, t_), lu.create_geq(lu.sum_expr([x, t_]))]

        # we need an absolute value constraint for the symmetric convex branches (p >= 1)
        # we alias |x| as x from this point forward to make the code pretty :)
        if p >= 1:
            absx = lu.create_var(x.size)
            constraints += [lu.create_leq(x, absx), lu.create_geq(lu.sum_expr([x, absx]))]
            x = absx

        if p == 1:
            return lu.sum_entries(x), constraints

        # now, we take care of the remaining convex and concave branches
        # to create the rational powers, we need a new variable, r, and
        # the constraint sum(r) == t
        r = lu.create_var(x.size)
        t_ = lu.promote(t, x.size)
        constraints += [lu.create_eq(lu.sum_entries(r), t)]

        # make p a fraction so that the input weight to gm_constrs
        # is a nice tuple of fractions.
        p = Fraction(p)
        if p < 0:
            constraints += gm_constrs(t_, [x, r], (-p / (1 - p), 1 / (1 - p)))
        if 0 < p < 1:
            constraints += gm_constrs(r, [x, t_], (p, 1 - p))
        if p > 1:
            constraints += gm_constrs(x, [r, t_], (1 / p, 1 - 1 / p))

        return t, constraints
Example #14
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Creates the equivalent problem::

           maximize    sum(log(D[i, i]))
           subject to: D diagonal
                       diag(D) = diag(Z)
                       Z is upper triangular.
                       [D Z; Z.T A] is positive semidefinite

        The problem computes the LDL factorization:

        .. math::

           A = (Z^TD^{-1})D(D^{-1}Z)

        This follows from the inequality:

        .. math::

           \det(A) >= \det(D) + \det([D, Z; Z^T, A])/\det(D)
                   >= \det(D)

        because (Z^TD^{-1})D(D^{-1}Z) is a feasible D, Z that achieves
        det(A) = det(D) and the objective maximizes det(D).

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        A = arg_objs[0]  # n by n matrix.
        n, _ = A.size
        X = lu.create_var((2 * n, 2 * n))
        X, constraints = Semidef(2 * n).canonical_form
        Z = lu.create_var((n, n))
        D = lu.create_var((n, 1))
        # Require that X and A are PSD.
        constraints += [SDP(A)]
        # Fix Z as upper triangular, D as diagonal,
        # and diag(D) as diag(Z).
        Z_lower_tri = lu.upper_tri(lu.transpose(Z))
        constraints.append(lu.create_eq(Z_lower_tri))
        # D[i, i] = Z[i, i]
        constraints.append(lu.create_eq(D, lu.diag_mat(Z)))
        # Fix X using the fact that A must be affine by the DCP rules.
        # X[0:n, 0:n] == D
        index.block_eq(X, lu.diag_vec(D), constraints, 0, n, 0, n)
        # X[0:n, n:2*n] == Z,
        index.block_eq(X, Z, constraints, 0, n, n, 2 * n)
        # X[n:2*n, n:2*n] == A
        index.block_eq(X, A, constraints, n, 2 * n, n, 2 * n)
        # Add the objective sum(log(D[i, i])
        obj, constr = log.graph_implementation([D], (n, 1))
        return (lu.sum_entries(obj), constraints + constr)
Example #15
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Creates the equivalent problem::

           maximize    sum(log(D[i, i]))
           subject to: D diagonal
                       diag(D) = diag(Z)
                       Z is upper triangular.
                       [D Z; Z.T A] is positive semidefinite

        The problem computes the LDL factorization:

        .. math::

           A = (Z^TD^{-1})D(D^{-1}Z)

        This follows from the inequality:

        .. math::

           \det(A) >= \det(D) + \det([D, Z; Z^T, A])/\det(D)
                   >= \det(D)

        because (Z^TD^{-1})D(D^{-1}Z) is a feasible D, Z that achieves
        det(A) = det(D) and the objective maximizes det(D).

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        A = arg_objs[0] # n by n matrix.
        n, _ = A.size
        X = lu.create_var((2*n, 2*n))
        Z = lu.create_var((n, n))
        D = lu.create_var((n, n))
        # Require that X and A are PSD.
        constraints = [SDP(X), SDP(A)]
        # Fix Z as upper triangular, D as diagonal,
        # and diag(D) as diag(Z).
        for i in xrange(n):
            for j in xrange(n):
                if i != j:
                    # D[i, j] == 0
                    Dij = index.get_index(D, constraints, i, j)
                    constraints.append(lu.create_eq(Dij))
                if i > j:
                    # Z[i, j] == 0
                    Zij = index.get_index(Z, constraints, i, j)
                    constraints.append(lu.create_eq(Zij))
        # D[i, i] = Z[i, i]
        constraints.append(lu.create_eq(lu.diag_mat(D), lu.diag_mat(Z)))
        # Fix X using the fact that A must be affine by the DCP rules.
        # X[0:n, 0:n] == D
        index.block_eq(X, D, constraints, 0, n, 0, n)
        # X[0:n, n:2*n] == Z,
        index.block_eq(X, Z, constraints, 0, n, n, 2*n)
        # X[n:2*n, n:2*n] == A
        index.block_eq(X, A, constraints, n, 2*n, n, 2*n)
        # Add the objective sum(log(D[i, i])
        diag = lu.diag_mat(D)
        obj, constr = log.graph_implementation([diag], (n, 1))
        return (lu.sum_entries(obj), constraints + constr)
Example #16
0
    def graph_implementation(arg_objs, size, data=None):
        r"""Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)

        Notes
        -----

        Implementation notes.

        For general ``p``, the p-norm is equivalent to the following convex inequalities:

        .. math::

            x_i &\leq r_i\\
            -x_i &\leq r_i\\
            r_i &\leq s_i^{1/p} t^{1 - 1/p}\\
            \sum_i s_i &\leq t,

        where :math:`p \geq 1`.

        These inequalities are also correct for :math:`p = +\infty` if we interpret :math:`1/\infty` as :math:`0`.


        Although the inequalities above are correct, for a few special cases, we can represent the p-norm
        more efficiently and with fewer variables and inequalities.

        - For :math:`p = 1`, we use the representation

            .. math::

                x_i &\leq r_i\\
                -x_i &\leq r_i\\
                \sum_i r_i &\leq t

        - For :math:`p = \infty`, we use the representation

            .. math::

                x_i &\leq t\\
                -x_i &\leq t

          Note that we don't need the :math:`s` variables or the sum inequality.

        - For :math:`p = 2`, we use the natural second-order cone representation

            .. math::

                \|x\|_2 \leq t

          Note that we could have used the set of inequalities given above if we wanted an alternate decomposition
          of a large second-order cone into into several smaller inequalities.

        """
        p, w = data
        x = arg_objs[0]
        t = None  # dummy value so linter won't complain about initialization
        if p != 1:
            t = lu.create_var((1, 1))

        if p == 2:
            return t, [SOC(t, [x])]

        if p == np.inf:
            r = lu.promote(t, x.size)
        else:
            r = lu.create_var(x.size)

        constraints = [lu.create_geq(lu.sum_expr([x, r])),
                       lu.create_leq(x, r)]

        if p == 1:
            return lu.sum_entries(r), constraints

        if p == np.inf:
            return t, constraints

        # otherwise do case of general p
        s = lu.create_var(x.size)
        # todo: no need to run gm_constr to form the tree each time. we only need to form the tree once
        constraints += gm_constrs(r, [s, lu.promote(t, x.size)], w)
        constraints += [lu.create_leq(lu.sum_entries(s), t)]
        return t, constraints