model = [
    mesher.Prism(-100, 100, -100, 100, 0, 2000,
                 {'magnetization': utils.ang2vec(10, inc, dec)})
]
area = (-5000, 5000, -5000, 5000)
shape = (100, 100)
z0 = -500
x, y, z = gridder.regular(area, shape, z=z0)
tf = utils.contaminate(prism.tf(x, y, z, model, inc, dec), 1, seed=0)
# Reduce to the pole using FFT. Since there is only induced magnetization, the
# magnetization direction (sinc and sdec) is the same as the geomagnetic field
pole = transform.reduce_to_pole(x, y, tf, shape, inc, dec, sinc=inc, sdec=dec)
# Calculate the true value at the pole for comparison
true = prism.tf(x, y, z, model, 90, 0, pmag=utils.ang2vec(10, 90, 0))

fig, axes = mpl.subplots(1, 3, figsize=(14, 4))
for ax in axes:
    ax.set_aspect('equal')
mpl.sca(axes[0])
mpl.title("Original total field anomaly")
mpl.contourf(y, x, tf, shape, 30, cmap=mpl.cm.RdBu_r)
mpl.colorbar(pad=0).set_label('nT')
mpl.m2km()
mpl.sca(axes[1])
mpl.title("True value at pole")
mpl.contourf(y, x, true, shape, 30, cmap=mpl.cm.RdBu_r)
mpl.colorbar(pad=0).set_label('nT')
mpl.m2km()
mpl.sca(axes[2])
mpl.title("Reduced to the pole")
mpl.contourf(y, x, pole, shape, 30, cmap=mpl.cm.RdBu_r)
Example #2
0
    mesher.Prism(1000, 3000, 2000, 3000, 0, 1000, {'density': 900})
]
area = (-5000, 5000, -5000, 5000)
shape = (50, 50)
z0 = -100
x, y, z = gridder.regular(area, shape, z=z0)
gz = utils.contaminate(prism.gz(x, y, z, model), 0.5, seed=0)

height = 1000  # How much higher to go
gzcontf = transform.upcontinue(x, y, gz, shape, height)

# Compute the true value at the new height for comparison
gztrue = prism.gz(x, y, z - height, model)

args = dict(shape=shape, levels=20, cmap=mpl.cm.RdBu_r)
fig, axes = mpl.subplots(1, 3, figsize=(12, 3.5))
axes = axes.ravel()
mpl.sca(axes[0])
mpl.title("Original")
mpl.axis('scaled')
mpl.contourf(x, y, gz, **args)
mpl.colorbar(pad=0).set_label('mGal')
mpl.m2km()
mpl.sca(axes[1])
mpl.title('True higher')
mpl.axis('scaled')
mpl.contourf(y, x, gztrue, **args)
mpl.colorbar(pad=0).set_label('mGal')
mpl.m2km()
mpl.sca(axes[2])
mpl.title("Continued (Fourier)")
Example #3
0
# Make a model with only induced magnetization
model = [mesher.Prism(-100, 100, -100, 100, 0, 2000,
                      {'magnetization': utils.ang2vec(10, inc, dec)})]
area = (-5000, 5000, -5000, 5000)
shape = (100, 100)
z0 = -500
x, y, z = gridder.regular(area, shape, z=z0)
tf = utils.contaminate(prism.tf(x, y, z, model, inc, dec),
                       1, seed=0)
# Reduce to the pole using FFT. Since there is only induced magnetization, the
# magnetization direction (sinc and sdec) is the same as the geomagnetic field
pole = transform.reduce_to_pole(x, y, tf, shape, inc, dec, sinc=inc, sdec=dec)
# Calculate the true value at the pole for comparison
true = prism.tf(x, y, z, model, 90, 0, pmag=utils.ang2vec(10, 90, 0))

fig, axes = mpl.subplots(1, 3, figsize=(14, 4))
for ax in axes:
    ax.set_aspect('equal')
mpl.sca(axes[0])
mpl.title("Original total field anomaly")
mpl.contourf(y, x, tf, shape, 30, cmap=mpl.cm.RdBu_r)
mpl.colorbar(pad=0).set_label('nT')
mpl.m2km()
mpl.sca(axes[1])
mpl.title("True value at pole")
mpl.contourf(y, x, true, shape, 30, cmap=mpl.cm.RdBu_r)
mpl.colorbar(pad=0).set_label('nT')
mpl.m2km()
mpl.sca(axes[2])
mpl.title("Reduced to the pole")
mpl.contourf(y, x, pole, shape, 30, cmap=mpl.cm.RdBu_r)
    mesher.Prism(-1000, 1000, -1000, 1000, 0, 2000, {'density': -800}),
    mesher.Prism(1000, 3000, 2000, 3000, 0, 1000, {'density': 900})]
area = (-5000, 5000, -5000, 5000)
shape = (50, 50)
z0 = -100
x, y, z = gridder.regular(area, shape, z=z0)
gz = utils.contaminate(prism.gz(x, y, z, model), 0.5, seed=0)

height = 1000  # How much higher to go
gzcontf = transform.upcontinue(x, y, gz, shape, height)

# Compute the true value at the new height for comparison
gztrue = prism.gz(x, y, z - height, model)

args = dict(shape=shape, levels=20, cmap=mpl.cm.RdBu_r)
fig, axes = mpl.subplots(1, 3, figsize=(12, 3.5))
axes = axes.ravel()
mpl.sca(axes[0])
mpl.title("Original")
mpl.axis('scaled')
mpl.contourf(x, y, gz, **args)
mpl.colorbar(pad=0).set_label('mGal')
mpl.m2km()
mpl.sca(axes[1])
mpl.title('True higher')
mpl.axis('scaled')
mpl.contourf(y, x, gztrue, **args)
mpl.colorbar(pad=0).set_label('mGal')
mpl.m2km()
mpl.sca(axes[2])
mpl.title("Continued (Fourier)")