Example #1
0
    def __init__(self, p, modulus, name=None):
        """
        Create a finite field of characteristic `p` defined by the
        polynomial ``modulus``, with distinguished generator called
        ``name``.

        EXAMPLE::

            sage: from sage.rings.finite_rings.finite_field_pari_ffelt import FiniteField_pari_ffelt
            sage: R.<x> = PolynomialRing(GF(3))
            sage: k = FiniteField_pari_ffelt(3, x^2 + 2*x + 2, 'a'); k
            Finite Field in a of size 3^2
        """
        n = modulus.degree()
        if n < 2:
            raise ValueError("the degree must be at least 2")

        FiniteField.__init__(self, base=GF(p), names=name, normalize=True)

        self._modulus = modulus
        self._degree = n
        self._kwargs = {}

        self._gen_pari = modulus._pari_with_name(self._names[0]).ffgen()
        self._zero_element = self.element_class(self, 0)
        self._one_element = self.element_class(self, 1)
        self._gen = self.element_class(self, self._gen_pari)
Example #2
0
    def __init__(self, p, modulus, name=None):
        """
        Create a finite field of characteristic `p` defined by the
        polynomial ``modulus``, with distinguished generator called
        ``name``.

        EXAMPLE::

            sage: from sage.rings.finite_rings.finite_field_pari_ffelt import FiniteField_pari_ffelt
            sage: R.<x> = PolynomialRing(GF(3))
            sage: k = FiniteField_pari_ffelt(3, x^2 + 2*x + 2, 'a'); k
            Finite Field in a of size 3^2
        """
        n = modulus.degree()
        if n < 2:
            raise ValueError("the degree must be at least 2")

        FiniteField.__init__(self, base=GF(p), names=name, normalize=True)

        self._modulus = modulus
        self._degree = n
        self._kwargs = {}

        self._gen_pari = modulus._pari_with_name(self._names[0]).ffgen()
        self._zero_element = self.element_class(self, 0)
        self._one_element = self.element_class(self, 1)
        self._gen = self.element_class(self, self._gen_pari)
    def __init__(self, p, modulus, name=None):
        """
        Create a finite field of characteristic `p` defined by the
        polynomial ``modulus``, with distinguished generator called
        ``name``.

        EXAMPLE::

            sage: from sage.rings.finite_rings.finite_field_pari_ffelt import FiniteField_pari_ffelt
            sage: R.<x> = PolynomialRing(GF(3))
            sage: k = FiniteField_pari_ffelt(3, x^2 + 2*x + 2, 'a'); k
            Finite Field in a of size 3^2
        """
        import constructor
        from sage.libs.pari.all import pari
        from sage.rings.integer import Integer
        from sage.structure.proof.all import arithmetic
        proof = arithmetic()

        p = Integer(p)
        if ((p < 2)
            or (proof and not p.is_prime())
            or (not proof and not p.is_pseudoprime())):
            raise ArithmeticError("p must be a prime number")
        Fp = constructor.FiniteField(p)

        if name is None:
            name = modulus.variable_name()

        FiniteField.__init__(self, base=Fp, names=name, normalize=True)

        modulus = self.polynomial_ring()(modulus)
        n = modulus.degree()
        if n < 2:
            raise ValueError("the degree must be at least 2")

        self._modulus = modulus
        self._degree = n
        self._card = p ** n
        self._kwargs = {}

        self._gen_pari = pari(modulus).ffgen()
        self._zero_element = self.element_class(self, 0)
        self._one_element = self.element_class(self, 1)
        self._gen = self.element_class(self, self._gen_pari)
Example #4
0
    def __init__(self, p, modulus, name=None):
        """
        Create a finite field of characteristic `p` defined by the
        polynomial ``modulus``, with distinguished generator called
        ``name``.

        EXAMPLE::

            sage: from sage.rings.finite_rings.finite_field_pari_ffelt import FiniteField_pari_ffelt
            sage: R.<x> = PolynomialRing(GF(3))
            sage: k = FiniteField_pari_ffelt(3, x^2 + 2*x + 2, 'a'); k
            Finite Field in a of size 3^2
        """
        import constructor
        from sage.libs.pari.all import pari
        from sage.rings.integer import Integer
        from sage.structure.proof.all import arithmetic
        proof = arithmetic()

        p = Integer(p)
        if ((p < 2) or (proof and not p.is_prime())
                or (not proof and not p.is_pseudoprime())):
            raise ArithmeticError("p must be a prime number")
        Fp = constructor.FiniteField(p)

        if name is None:
            name = modulus.variable_name()

        FiniteField.__init__(self, base=Fp, names=name, normalize=True)

        modulus = self.polynomial_ring()(modulus)
        n = modulus.degree()
        if n < 2:
            raise ValueError("the degree must be at least 2")

        self._modulus = modulus
        self._degree = n
        self._card = p**n
        self._kwargs = {}

        self._gen_pari = pari(modulus).ffgen()
        self._zero_element = self.element_class(self, 0)
        self._one_element = self.element_class(self, 1)
        self._gen = self.element_class(self, self._gen_pari)