Example #1
0
def diag_indices_from(arr):
    """
    Return the indices to access the main diagonal of an n-dimensional array.

    See `diag_indices` for full details.

    Parameters
    ----------
    arr : array, at least 2-D

    See Also
    --------
    diag_indices

    Notes
    -----
    .. versionadded:: 1.4.0

    """

    if not arr.ndim >= 2:
        raise ValueError("input array must be at least 2-d")
    # For more than d=2, the strided formula is only valid for arrays with
    # all dimensions equal, so we check first.
    if not alltrue(diff(arr.shape) == 0):
        raise ValueError("All dimensions of input must be of equal length")

    return diag_indices(arr.shape[0], arr.ndim)
Example #2
0
def diag_indices_from(arr):
    """
    Return the indices to access the main diagonal of an n-dimensional array.

    See `diag_indices` for full details.

    Parameters
    ----------
    arr : array, at least 2-D

    See Also
    --------
    diag_indices

    Notes
    -----
    .. versionadded:: 1.4.0

    """

    if not arr.ndim >= 2:
        raise ValueError("input array must be at least 2-d")
    # For more than d=2, the strided formula is only valid for arrays with
    # all dimensions equal, so we check first.
    if not alltrue(diff(arr.shape) == 0):
        raise ValueError("All dimensions of input must be of equal length")

    return diag_indices(arr.shape[0], arr.ndim)
Example #3
0
def fill_diagonal(a, val, wrap=False):
    """Fill the main diagonal of the given array of any dimensionality.

    For an array `a` with ``a.ndim > 2``, the diagonal is the list of
    locations with indices ``a[i, i, ..., i]`` all identical. This function
    modifies the input array in-place, it does not return a value.

    Parameters
    ----------
    a : array, at least 2-D.
      Array whose diagonal is to be filled, it gets modified in-place.

    val : scalar
      Value to be written on the diagonal, its type must be compatible with
      that of the array a.

    wrap: bool For tall matrices in NumPy version up to 1.6.2, the
      diagonal "wrapped" after N columns. You can have this behavior
      with this option. This affect only tall matrices.

    See also
    --------
    diag_indices, diag_indices_from

    Notes
    -----
    .. versionadded:: 1.4.0

    This functionality can be obtained via `diag_indices`, but internally
    this version uses a much faster implementation that never constructs the
    indices and uses simple slicing.

    Examples
    --------
    >>> a = np.zeros((3, 3), int)
    >>> np.fill_diagonal(a, 5)
    >>> a
    array([[5, 0, 0],
           [0, 5, 0],
           [0, 0, 5]])

    The same function can operate on a 4-D array:

    >>> a = np.zeros((3, 3, 3, 3), int)
    >>> np.fill_diagonal(a, 4)

    We only show a few blocks for clarity:

    >>> a[0, 0]
    array([[4, 0, 0],
           [0, 0, 0],
           [0, 0, 0]])
    >>> a[1, 1]
    array([[0, 0, 0],
           [0, 4, 0],
           [0, 0, 0]])
    >>> a[2, 2]
    array([[0, 0, 0],
           [0, 0, 0],
           [0, 0, 4]])

    # tall matrices no wrap
    >>> a = np.zeros((5, 3),int)
    >>> fill_diagonal(a, 4)
    array([[4, 0, 0],
           [0, 4, 0],
           [0, 0, 4],
           [0, 0, 0],
           [0, 0, 0]])

    # tall matrices wrap
    >>> a = np.zeros((5, 3),int)
    >>> fill_diagonal(a, 4)
    array([[4, 0, 0],
           [0, 4, 0],
           [0, 0, 4],
           [0, 0, 0],
           [4, 0, 0]])

    # wide matrices
    >>> a = np.zeros((3, 5),int)
    >>> fill_diagonal(a, 4)
    array([[4, 0, 0, 0, 0],
           [0, 4, 0, 0, 0],
           [0, 0, 4, 0, 0]])

    """
    if a.ndim < 2:
        raise ValueError("array must be at least 2-d")
    end = None
    if a.ndim == 2:
        # Explicit, fast formula for the common case.  For 2-d arrays, we
        # accept rectangular ones.
        step = a.shape[1] + 1
        #This is needed to don't have tall matrix have the diagonal wrap.
        if not wrap:
            end = a.shape[1] * a.shape[1]
    else:
        # For more than d=2, the strided formula is only valid for arrays with
        # all dimensions equal, so we check first.
        if not alltrue(diff(a.shape) == 0):
            raise ValueError("All dimensions of input must be of equal length")
        step = 1 + (cumprod(a.shape[:-1])).sum()

    # Write the value out into the diagonal.
    a.flat[:end:step] = val
Example #4
0
def fill_diagonal(a, val, wrap=False):
    """Fill the main diagonal of the given array of any dimensionality.

    For an array `a` with ``a.ndim > 2``, the diagonal is the list of
    locations with indices ``a[i, i, ..., i]`` all identical. This function
    modifies the input array in-place, it does not return a value.

    Parameters
    ----------
    a : array, at least 2-D.
      Array whose diagonal is to be filled, it gets modified in-place.

    val : scalar
      Value to be written on the diagonal, its type must be compatible with
      that of the array a.

    wrap: bool For tall matrices in NumPy version up to 1.6.2, the
      diagonal "wrapped" after N columns. You can have this behavior
      with this option. This affect only tall matrices.

    See also
    --------
    diag_indices, diag_indices_from

    Notes
    -----
    .. versionadded:: 1.4.0

    This functionality can be obtained via `diag_indices`, but internally
    this version uses a much faster implementation that never constructs the
    indices and uses simple slicing.

    Examples
    --------
    >>> a = np.zeros((3, 3), int)
    >>> np.fill_diagonal(a, 5)
    >>> a
    array([[5, 0, 0],
           [0, 5, 0],
           [0, 0, 5]])

    The same function can operate on a 4-D array:

    >>> a = np.zeros((3, 3, 3, 3), int)
    >>> np.fill_diagonal(a, 4)

    We only show a few blocks for clarity:

    >>> a[0, 0]
    array([[4, 0, 0],
           [0, 0, 0],
           [0, 0, 0]])
    >>> a[1, 1]
    array([[0, 0, 0],
           [0, 4, 0],
           [0, 0, 0]])
    >>> a[2, 2]
    array([[0, 0, 0],
           [0, 0, 0],
           [0, 0, 4]])

    # tall matrices no wrap
    >>> a = np.zeros((5, 3),int)
    >>> fill_diagonal(a, 4)
    array([[4, 0, 0],
           [0, 4, 0],
           [0, 0, 4],
           [0, 0, 0],
           [0, 0, 0]])

    # tall matrices wrap
    >>> a = np.zeros((5, 3),int)
    >>> fill_diagonal(a, 4)
    array([[4, 0, 0],
           [0, 4, 0],
           [0, 0, 4],
           [0, 0, 0],
           [4, 0, 0]])

    # wide matrices
    >>> a = np.zeros((3, 5),int)
    >>> fill_diagonal(a, 4)
    array([[4, 0, 0, 0, 0],
           [0, 4, 0, 0, 0],
           [0, 0, 4, 0, 0]])

    """
    if a.ndim < 2:
        raise ValueError("array must be at least 2-d")
    end = None
    if a.ndim == 2:
        # Explicit, fast formula for the common case.  For 2-d arrays, we
        # accept rectangular ones.
        step = a.shape[1] + 1
        # This is needed to don't have tall matrix have the diagonal wrap.
        if not wrap:
            end = a.shape[1] * a.shape[1]
    else:
        # For more than d=2, the strided formula is only valid for arrays with
        # all dimensions equal, so we check first.
        if not alltrue(diff(a.shape) == 0):
            raise ValueError("All dimensions of input must be of equal length")
        step = 1 + (cumprod(a.shape[:-1])).sum()

    # Write the value out into the diagonal.
    a.flat[:end:step] = val
def fill_diagonal(a, val):
    """Fill the main diagonal of the given array of any dimensionality.

    For an array with ndim > 2, the diagonal is the list of locations with
    indices a[i,i,...,i], all identical.

    This function modifies the input array in-place, it does not return a
    value.

    This functionality can be obtained via diag_indices(), but internally this
    version uses a much faster implementation that never constructs the indices
    and uses simple slicing.

    Parameters
    ----------
    a : array, at least 2-dimensional.
      Array whose diagonal is to be filled, it gets modified in-place.

    val : scalar
      Value to be written on the diagonal, its type must be compatible with
      that of the array a.

    See also
    --------
    diag_indices, diag_indices_from

    Notes
    -----
    .. versionadded:: 1.4.0

    Examples
    --------
    >>> a = zeros((3,3),int)
    >>> fill_diagonal(a,5)
    >>> a
    array([[5, 0, 0],
           [0, 5, 0],
           [0, 0, 5]])

    The same function can operate on a 4-d array:
    >>> a = zeros((3,3,3,3),int)
    >>> fill_diagonal(a,4)

    We only show a few blocks for clarity:
    >>> a[0,0]
    array([[4, 0, 0],
           [0, 0, 0],
           [0, 0, 0]])
    >>> a[1,1]
    array([[0, 0, 0],
           [0, 4, 0],
           [0, 0, 0]])
    >>> a[2,2]
    array([[0, 0, 0],
           [0, 0, 0],
           [0, 0, 4]])

    """
    if a.ndim < 2:
        raise ValueError("array must be at least 2-d")
    if a.ndim == 2:
        # Explicit, fast formula for the common case.  For 2-d arrays, we
        # accept rectangular ones.
        step = a.shape[1] + 1
    else:
        # For more than d=2, the strided formula is only valid for arrays with
        # all dimensions equal, so we check first.
        if not alltrue(diff(a.shape) == 0):
            raise ValueError("All dimensions of input must be of equal length")
        step = 1 + (cumprod(a.shape[:-1])).sum()

    # Write the value out into the diagonal.
    a.flat[::step] = val
def fill_diagonal(a, val):
    """Fill the main diagonal of the given array of any dimensionality.

    For an array with ndim > 2, the diagonal is the list of locations with
    indices a[i,i,...,i], all identical.

    This function modifies the input array in-place, it does not return a
    value.

    This functionality can be obtained via diag_indices(), but internally this
    version uses a much faster implementation that never constructs the indices
    and uses simple slicing.

    Parameters
    ----------
    a : array, at least 2-dimensional.
      Array whose diagonal is to be filled, it gets modified in-place.

    val : scalar
      Value to be written on the diagonal, its type must be compatible with
      that of the array a.

    See also
    --------
    diag_indices, diag_indices_from

    Notes
    -----
    .. versionadded:: 1.4.0

    Examples
    --------
    >>> a = zeros((3,3),int)
    >>> fill_diagonal(a,5)
    >>> a
    array([[5, 0, 0],
           [0, 5, 0],
           [0, 0, 5]])

    The same function can operate on a 4-d array:
    >>> a = zeros((3,3,3,3),int)
    >>> fill_diagonal(a,4)

    We only show a few blocks for clarity:
    >>> a[0,0]
    array([[4, 0, 0],
           [0, 0, 0],
           [0, 0, 0]])
    >>> a[1,1]
    array([[0, 0, 0],
           [0, 4, 0],
           [0, 0, 0]])
    >>> a[2,2]
    array([[0, 0, 0],
           [0, 0, 0],
           [0, 0, 4]])

    """
    if a.ndim < 2:
        raise ValueError("array must be at least 2-d")
    if a.ndim == 2:
        # Explicit, fast formula for the common case.  For 2-d arrays, we
        # accept rectangular ones.
        step = a.shape[1] + 1
    else:
        # For more than d=2, the strided formula is only valid for arrays with
        # all dimensions equal, so we check first.
        if not alltrue(diff(a.shape) == 0):
            raise ValueError("All dimensions of input must be of equal length")
        step = 1 + (cumprod(a.shape[:-1])).sum()

    # Write the value out into the diagonal.
    a.flat[::step] = val