Example #1
0
    def memory_check(self, snapsmemsize=0):
        """Check if the required amount of memory (RAM) is available on the host and GPU if specified.

        Args:
            snapsmemsize (int): amount of memory (bytes) required to store all requested snapshots
        """

        # Check if model can be built and/or run on host
        if self.memoryusage > self.hostinfo['ram']:
            raise GeneralError(
                'Memory (RAM) required ~{} exceeds {} detected!\n'.format(
                    human_size(self.memoryusage),
                    human_size(self.hostinfo['ram'],
                               a_kilobyte_is_1024_bytes=True)))

        # Check if model can be run on specified GPU if required
        if self.gpu is not None:
            if self.memoryusage - snapsmemsize > self.gpu.totalmem:
                raise GeneralError(
                    'Memory (RAM) required ~{} exceeds {} detected on specified {} - {} GPU!\n'
                    .format(
                        human_size(self.memoryusage),
                        human_size(self.gpu.totalmem,
                                   a_kilobyte_is_1024_bytes=True),
                        self.gpu.deviceID, self.gpu.name))

            # If the required memory without the snapshots will fit on the GPU then transfer and store snaphots on host
            if snapsmemsize != 0 and self.memoryusage - snapsmemsize < self.gpu.totalmem:
                self.snapsgpu2cpu = True
Example #2
0
def run_mpi_no_spawn_sim(args, inputfile, usernamespace, optparams=None):
    """
    Alternate MPI implementation that avoids using the MPI spawn mechanism.
    This implementation is designed to be used as
    e.g. 'mpirun -n 5 python -m gprMax user_models/mymodel.in -n 10 --mpi-no-spawn'

    Run mixed mode MPI/OpenMP simulation - MPI task farm for models with
    each model parallelised using either OpenMP (CPU) or CUDA (GPU)

    Args:
        args (dict): Namespace with command line arguments
        inputfile (object): File object for the input file.
        usernamespace (dict): Namespace that can be accessed by user in any
                Python code blocks in input file.
        optparams (dict): Optional argument. For Taguchi optimisation it
                provides the parameters to optimise and their values.
    """

    from mpi4py import MPI

    # Define MPI message tags
    tags = Enum('tags', {'READY': 0, 'DONE': 1, 'EXIT': 2, 'START': 3})

    # Initializations and preliminaries
    comm = MPI.COMM_WORLD
    size = comm.Get_size()  # total number of processes
    rank = comm.Get_rank()  # rank of this process
    status = MPI.Status()  # get MPI status object
    hostname = MPI.Get_processor_name()  # get name of processor/host

    # Set range for number of models to run
    modelstart = args.restart if args.restart else 1
    modelend = modelstart + args.n
    numbermodelruns = args.n
    currentmodelrun = modelstart  # can use -task argument to start numbering from something other than 1
    numworkers = size - 1

    ##################
    # Master process #
    ##################
    if rank == 0:
        tsimstart = perf_counter()
        mpimasterstr = '=== MPI master ({}, rank: {}) on {} using {} workers...\n'.format(
            comm.name, comm.Get_rank(), hostname, numworkers)
        print('{} {}\n'.format(
            mpimasterstr,
            '=' * (get_terminal_width() - 1 - len(mpimasterstr))))

        closedworkers = 0
        while closedworkers < numworkers:
            comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=status)
            source = status.Get_source()
            tag = status.Get_tag()

            # Worker is ready, so send it a task
            if tag == tags.READY.value:
                if currentmodelrun < modelend:
                    comm.send(currentmodelrun,
                              dest=source,
                              tag=tags.START.value)
                    currentmodelrun += 1
                else:
                    comm.send(None, dest=source, tag=tags.EXIT.value)

            # Worker has completed a task
            elif tag == tags.DONE.value:
                pass

            # Worker has completed all tasks
            elif tag == tags.EXIT.value:
                closedworkers += 1

        tsimend = perf_counter()
        simcompletestr = '\n=== MPI master ({}, rank: {}) on {} completed simulation in [HH:MM:SS]: {}'.format(
            comm.name, comm.Get_rank(), hostname,
            datetime.timedelta(seconds=tsimend - tsimstart))
        print('{} {}\n'.format(
            simcompletestr,
            '=' * (get_terminal_width() - 1 - len(simcompletestr))))

    ##################
    # Worker process #
    ##################
    else:
        # Get info and setup device ID for GPU(s)
        gpuinfo = ''
        if args.gpu is not None:
            # Set device ID based on rank from list of GPUs
            deviceID = (rank - 1) % len(args.gpu)
            args.gpu = next(gpu for gpu in args.gpu
                            if gpu.deviceID == deviceID)
            gpuinfo = ' using {} - {}, {}'.format(
                args.gpu.deviceID, args.gpu.name,
                human_size(args.gpu.totalmem, a_kilobyte_is_1024_bytes=True))

        while True:
            comm.send(None, dest=0, tag=tags.READY.value)
            # Receive a model number to run from the master
            currentmodelrun = comm.recv(source=0,
                                        tag=MPI.ANY_TAG,
                                        status=status)
            tag = status.Get_tag()

            # Run a model
            if tag == tags.START.value:

                # If Taguchi optimistaion, add specific value for each parameter
                # to optimise for each experiment to user accessible namespace
                if optparams:
                    tmp = {}
                    tmp.update((key, value[currentmodelrun - 1])
                               for key, value in optparams.items())
                    modelusernamespace = usernamespace.copy()
                    modelusernamespace.update({'optparams': tmp})
                else:
                    modelusernamespace = usernamespace

                # Run the model
                print(
                    'MPI worker (parent: {}, rank: {}) on {} starting model {}/{}{}\n'
                    .format(comm.name, rank, hostname, currentmodelrun,
                            numbermodelruns, gpuinfo))
                run_model(args, currentmodelrun, modelend - 1, numbermodelruns,
                          inputfile, modelusernamespace)
                comm.send(None, dest=0, tag=tags.DONE.value)

            # Break out of loop when work receives exit message
            elif tag == tags.EXIT.value:
                break

        comm.send(None, dest=0, tag=tags.EXIT.value)
Example #3
0
def run_mpi_sim(args, inputfile, usernamespace, optparams=None):
    """
    Run mixed mode MPI/OpenMP simulation - MPI task farm for models with
    each model parallelised using either OpenMP (CPU) or CUDA (GPU)

    Args:
        args (dict): Namespace with command line arguments
        inputfile (object): File object for the input file.
        usernamespace (dict): Namespace that can be accessed by user in any
                Python code blocks in input file.
        optparams (dict): Optional argument. For Taguchi optimisation it
                provides the parameters to optimise and their values.
    """

    from mpi4py import MPI

    status = MPI.Status()
    hostname = MPI.Get_processor_name()

    # Set range for number of models to run
    modelstart = args.restart if args.restart else 1
    modelend = modelstart + args.n
    numbermodelruns = args.n

    # Command line flag used to indicate a spawned worker instance
    workerflag = '--mpi-worker'
    numworkers = args.mpi - 1

    ##################
    # Master process #
    ##################
    if workerflag not in sys.argv:
        # N.B Spawned worker flag (--mpi-worker) applied to sys.argv when MPI.Spawn is called

        # See if the MPI communicator object is being passed as an argument (likely from a MPI.Split)
        if hasattr(args, 'mpicomm'):
            comm = args.mpicomm
        else:
            comm = MPI.COMM_WORLD
        tsimstart = perf_counter()
        mpimasterstr = '=== MPI master ({}, rank: {}) on {} spawning {} workers...'.format(
            comm.name, comm.Get_rank(), hostname, numworkers)
        print('{} {}\n'.format(
            mpimasterstr,
            '=' * (get_terminal_width() - 1 - len(mpimasterstr))))

        # Assemble a sys.argv replacement to pass to spawned worker
        # N.B This is required as sys.argv not available when gprMax is called via api()
        # Ignore mpicomm object if it exists as only strings can be passed via spawn
        myargv = []
        for key, value in vars(args).items():
            if value:
                # Input file name always comes first
                if 'inputfile' in key:
                    myargv.append(value)
                elif 'gpu' in key:
                    myargv.append('-' + key)
                    # Add GPU device ID(s) from GPU objects
                    for gpu in args.gpu:
                        myargv.append(str(gpu.deviceID))
                elif 'mpicomm' in key:
                    pass
                elif '_' in key:
                    key = key.replace('_', '-')
                    myargv.append('--' + key)
                else:
                    myargv.append('-' + key)
                    if value is not True:
                        myargv.append(str(value))

        # Create a list of work
        worklist = []
        for model in range(modelstart, modelend):
            workobj = dict()
            workobj['currentmodelrun'] = model
            workobj['mpicommname'] = comm.name
            if optparams:
                workobj['optparams'] = optparams
            worklist.append(workobj)
        # Add stop sentinels
        worklist += ([StopIteration] * numworkers)

        # Spawn workers
        newcomm = comm.Spawn(sys.executable,
                             args=['-m', 'gprMax'] + myargv + [workerflag],
                             maxprocs=numworkers)

        # Reply to whoever asks until done
        for work in worklist:
            newcomm.recv(source=MPI.ANY_SOURCE, status=status)
            newcomm.send(obj=work, dest=status.Get_source())

        # Shutdown communicators
        newcomm.Disconnect()

        tsimend = perf_counter()
        simcompletestr = '\n=== MPI master ({}, rank: {}) on {} completed simulation in [HH:MM:SS]: {}'.format(
            comm.name, comm.Get_rank(), hostname,
            datetime.timedelta(seconds=tsimend - tsimstart))
        print('{} {}\n'.format(
            simcompletestr,
            '=' * (get_terminal_width() - 1 - len(simcompletestr))))

    ##################
    # Worker process #
    ##################
    elif workerflag in sys.argv:
        # Connect to parent to get communicator
        try:
            comm = MPI.Comm.Get_parent()
            rank = comm.Get_rank()
        except ValueError:
            raise ValueError('MPI worker could not connect to parent')

        # Select GPU and get info
        gpuinfo = ''
        if args.gpu is not None:
            # Set device ID based on rank from list of GPUs
            args.gpu = args.gpu[rank]
            gpuinfo = ' using {} - {}, {} RAM '.format(
                args.gpu.deviceID, args.gpu.name,
                human_size(args.gpu.totalmem, a_kilobyte_is_1024_bytes=True))

        # Ask for work until stop sentinel
        for work in iter(lambda: comm.sendrecv(0, dest=0), StopIteration):
            currentmodelrun = work['currentmodelrun']

            # If Taguchi optimisation, add specific value for each parameter to
            # optimise for each experiment to user accessible namespace
            if 'optparams' in work:
                tmp = {}
                tmp.update((key, value[currentmodelrun - 1])
                           for key, value in work['optparams'].items())
                modelusernamespace = usernamespace.copy()
                modelusernamespace.update({'optparams': tmp})
            else:
                modelusernamespace = usernamespace

            # Run the model
            print(
                'MPI spawned worker (parent: {}, rank: {}) on {} starting model {}/{}{}\n'
                .format(work['mpicommname'], rank, hostname, currentmodelrun,
                        numbermodelruns, gpuinfo))
            run_model(args, currentmodelrun, modelend - 1, numbermodelruns,
                      inputfile, modelusernamespace)

        # Shutdown
        comm.Disconnect()
Example #4
0
def run_main(args):
    """
    Top-level function that controls what mode of simulation (standard/optimsation/benchmark etc...) is run.

    Args:
        args (dict): Namespace with input arguments from command line or api.
    """

    # Print gprMax logo, version, and licencing/copyright information
    logo(__version__ + ' (' + codename + ')')

    with open_path_file(args.inputfile) as inputfile:

        # Get information about host machine
        hostinfo = get_host_info()
        hyperthreading = ', {} cores with Hyper-Threading'.format(
            hostinfo['logicalcores']) if hostinfo['hyperthreading'] else ''
        print('\nHost: {} | {} | {} x {} ({} cores{}) | {} RAM | {}'.format(
            hostinfo['hostname'], hostinfo['machineID'], hostinfo['sockets'],
            hostinfo['cpuID'], hostinfo['physicalcores'], hyperthreading,
            human_size(hostinfo['ram'],
                       a_kilobyte_is_1024_bytes=True), hostinfo['osversion']))

        # Get information/setup any Nvidia GPU(s)
        if args.gpu is not None:
            # Flatten a list of lists
            if any(isinstance(element, list) for element in args.gpu):
                args.gpu = [val for sublist in args.gpu for val in sublist]
            gpus, allgpustext = detect_check_gpus(args.gpu)
            print('GPU(s) detected: {}'.format(' | '.join(allgpustext)))

            # If in MPI mode or benchmarking provide list of GPU objects, otherwise
            # provide single GPU object
            if args.mpi or args.mpi_no_spawn or args.benchmark:
                args.gpu = gpus
            else:
                args.gpu = gpus[0]

        # Create a separate namespace that users can access in any Python code blocks in the input file
        usernamespace = {
            'c': c,
            'e0': e0,
            'm0': m0,
            'z0': z0,
            'number_model_runs': args.n,
            'inputfile': os.path.abspath(inputfile.name)
        }

        #######################################
        # Process for benchmarking simulation #
        #######################################
        if args.benchmark:
            if args.mpi or args.opt_taguchi or args.task or args.n > 1:
                raise GeneralError(
                    'Benchmarking mode cannot be combined with MPI, job array, or Taguchi optimisation modes, or multiple model runs.'
                )
            run_benchmark_sim(args, inputfile, usernamespace)

        ####################################################
        # Process for simulation with Taguchi optimisation #
        ####################################################
        elif args.opt_taguchi:
            if args.mpi_worker:  # Special case for MPI spawned workers - they do not need to enter the Taguchi optimisation mode
                run_mpi_sim(args, inputfile, usernamespace)
            else:
                from gprMax.optimisation_taguchi import run_opt_sim
                run_opt_sim(args, inputfile, usernamespace)

        ################################################
        # Process for standard simulation (CPU or GPU) #
        ################################################
        else:
            # Mixed mode MPI with OpenMP or CUDA - MPI task farm for models with each model parallelised with OpenMP (CPU) or CUDA (GPU)
            if args.mpi:
                if args.n == 1:
                    raise GeneralError(
                        'MPI is not beneficial when there is only one model to run'
                    )
                if args.task:
                    raise GeneralError(
                        'MPI cannot be combined with job array mode')
                run_mpi_sim(args, inputfile, usernamespace)

            # Alternate MPI configuration that does not use MPI spawn mechanism
            elif args.mpi_no_spawn:
                if args.n == 1:
                    raise GeneralError(
                        'MPI is not beneficial when there is only one model to run'
                    )
                if args.task:
                    raise GeneralError(
                        'MPI cannot be combined with job array mode')
                run_mpi_no_spawn_sim(args, inputfile, usernamespace)

            # Standard behaviour - models run serially with each model parallelised with OpenMP (CPU) or CUDA (GPU)
            else:
                if args.task and args.restart:
                    raise GeneralError(
                        'Job array and restart modes cannot be used together')
                run_std_sim(args, inputfile, usernamespace)
Example #5
0
def run_model(args, currentmodelrun, modelend, numbermodelruns, inputfile, usernamespace):
    """Runs a model - processes the input file; builds the Yee cells; calculates update coefficients; runs main FDTD loop.

    Args:
        args (dict): Namespace with command line arguments
        currentmodelrun (int): Current model run number.
        modelend (int): Number of last model to run.
        numbermodelruns (int): Total number of model runs.
        inputfile (object): File object for the input file.
        usernamespace (dict): Namespace that can be accessed by user
                in any Python code blocks in input file.

    Returns:
        tsolve (int): Length of time (seconds) of main FDTD calculations
    """

    # Monitor memory usage
    p = psutil.Process()

    # Declare variable to hold FDTDGrid class
    global G

    # Used for naming geometry and output files
    appendmodelnumber = '' if numbermodelruns == 1 and not args.task and not args.restart else '_'+str(currentmodelrun)
    appendmodelnumberGeometry = '' if numbermodelruns == 1 and not args.task and not args.restart or args.geometry_fixed else '_'+str(currentmodelrun)

    # Normal model reading/building process; bypassed if geometry information to be reused
    if 'G' not in globals():

        # Initialise an instance of the FDTDGrid class
        G = FDTDGrid()

        # Get information about host machine
        # (need to save this info to FDTDGrid instance after it has been created)
        G.hostinfo = get_host_info()

        # Single GPU object
        if args.gpu:
            G.gpu = args.gpu

        G.inputfilename = os.path.split(inputfile.name)[1]
        G.inputdirectory = os.path.dirname(os.path.abspath(inputfile.name))
        inputfilestr = '\n--- Model {}/{}, input file: {}'.format(currentmodelrun, modelend, inputfile.name)
        if G.messages:
            print(Fore.GREEN + '{} {}\n'.format(inputfilestr, '-' * (get_terminal_width() - 1 - len(inputfilestr))) + Style.RESET_ALL)

        # Add the current model run to namespace that can be accessed by
        # user in any Python code blocks in input file
        usernamespace['current_model_run'] = currentmodelrun

        # Read input file and process any Python and include file commands
        processedlines = process_python_include_code(inputfile, usernamespace)

        # Print constants/variables in user-accessable namespace
        uservars = ''
        for key, value in sorted(usernamespace.items()):
            if key != '__builtins__':
                uservars += '{}: {}, '.format(key, value)
        if G.messages:
            print('Constants/variables used/available for Python scripting: {{{}}}\n'.format(uservars[:-2]))

        # Write a file containing the input commands after Python or include file commands have been processed
        if args.write_processed:
            write_processed_file(processedlines, appendmodelnumber, G)

        # Check validity of command names and that essential commands are present
        singlecmds, multicmds, geometry = check_cmd_names(processedlines)

        # Create built-in materials
        m = Material(0, 'pec')
        m.se = float('inf')
        m.type = 'builtin'
        m.averagable = False
        G.materials.append(m)
        m = Material(1, 'free_space')
        m.type = 'builtin'
        G.materials.append(m)

        # Process parameters for commands that can only occur once in the model
        process_singlecmds(singlecmds, G)

        # Process parameters for commands that can occur multiple times in the model
        if G.messages: print()
        process_multicmds(multicmds, G)

        # Estimate and check memory (RAM) usage
        G.memory_estimate_basic()
        #G.memory_check()
        #if G.messages:
        #    if G.gpu is None:
        #        print('\nMemory (RAM) required: ~{}\n'.format(human_size(G.memoryusage)))
        #    else:
        #        print('\nMemory (RAM) required: ~{} host + ~{} GPU\n'.format(human_size(G.memoryusage), human_size(G.memoryusage)))

        # Initialise an array for volumetric material IDs (solid), boolean
        # arrays for specifying materials not to be averaged (rigid),
        # an array for cell edge IDs (ID)
        G.initialise_geometry_arrays()

        # Initialise arrays for the field components
        if G.gpu is None:
            G.initialise_field_arrays()

        # Process geometry commands in the order they were given
        process_geometrycmds(geometry, G)

        # Build the PMLs and calculate initial coefficients
        if G.messages: print()
        if all(value == 0 for value in G.pmlthickness.values()):
            if G.messages:
                print('PML: switched off')
            pass  # If all the PMLs are switched off don't need to build anything
        else:
            # Set default CFS parameters for PML if not given
            if not G.cfs:
                G.cfs = [CFS()]
            if G.messages:
                if all(value == G.pmlthickness['x0'] for value in G.pmlthickness.values()):
                    pmlinfo = str(G.pmlthickness['x0'])
                else:
                    pmlinfo = ''
                    for key, value in G.pmlthickness.items():
                        pmlinfo += '{}: {}, '.format(key, value)
                    pmlinfo = pmlinfo[:-2] + ' cells'
                print('PML: formulation: {}, order: {}, thickness: {}'.format(G.pmlformulation, len(G.cfs), pmlinfo))
            pbar = tqdm(total=sum(1 for value in G.pmlthickness.values() if value > 0), desc='Building PML boundaries', ncols=get_terminal_width() - 1, file=sys.stdout, disable=not G.progressbars)
            build_pmls(G, pbar)
            pbar.close()

        # Build the model, i.e. set the material properties (ID) for every edge
        # of every Yee cell
        if G.messages: print()
        pbar = tqdm(total=2, desc='Building main grid', ncols=get_terminal_width() - 1, file=sys.stdout, disable=not G.progressbars)
        build_electric_components(G.solid, G.rigidE, G.ID, G)
        pbar.update()
        build_magnetic_components(G.solid, G.rigidH, G.ID, G)
        pbar.update()
        pbar.close()

        # Add PEC boundaries to invariant direction in 2D modes
        # N.B. 2D modes are a single cell slice of 3D grid
        if '2D TMx' in G.mode:
            # Ey & Ez components
            G.ID[1, 0, :, :] = 0
            G.ID[1, 1, :, :] = 0
            G.ID[2, 0, :, :] = 0
            G.ID[2, 1, :, :] = 0
        elif '2D TMy' in G.mode:
            # Ex & Ez components
            G.ID[0, :, 0, :] = 0
            G.ID[0, :, 1, :] = 0
            G.ID[2, :, 0, :] = 0
            G.ID[2, :, 1, :] = 0
        elif '2D TMz' in G.mode:
            # Ex & Ey components
            G.ID[0, :, :, 0] = 0
            G.ID[0, :, :, 1] = 0
            G.ID[1, :, :, 0] = 0
            G.ID[1, :, :, 1] = 0

        # Process any voltage sources (that have resistance) to create a new
        # material at the source location
        for voltagesource in G.voltagesources:
            voltagesource.create_material(G)

        # Initialise arrays of update coefficients to pass to update functions
        G.initialise_std_update_coeff_arrays()

        # Initialise arrays of update coefficients and temporary values if
        # there are any dispersive materials
        if Material.maxpoles != 0:
            # Update estimated memory (RAM) usage
            G.memoryusage += int(3 * Material.maxpoles * (G.nx + 1) * (G.ny + 1) * (G.nz + 1) * np.dtype(complextype).itemsize)
            G.memory_check()
            if G.messages:
                print('\nMemory (RAM) required - updated (dispersive): ~{}\n'.format(human_size(G.memoryusage)))

            G.initialise_dispersive_arrays()

        # Check there is sufficient memory to store any snapshots
        if G.snapshots:
            snapsmemsize = 0
            for snap in G.snapshots:
                # 2 x required to account for electric and magnetic fields
                snapsmemsize += (2 * snap.datasizefield)
            G.memoryusage += int(snapsmemsize)
            G.memory_check(snapsmemsize=int(snapsmemsize))
            if G.messages:
                print('\nMemory (RAM) required - updated (snapshots): ~{}\n'.format(human_size(G.memoryusage)))

        # Process complete list of materials - calculate update coefficients,
        # store in arrays, and build text list of materials/properties
        materialsdata = process_materials(G)
        if G.messages:
            print('\nMaterials:')
            materialstable = AsciiTable(materialsdata)
            materialstable.outer_border = False
            materialstable.justify_columns[0] = 'right'
            print(materialstable.table)

        # Check to see if numerical dispersion might be a problem
        results = dispersion_analysis(G)
        if results['error'] and G.messages:
            print(Fore.RED + "\nWARNING: Numerical dispersion analysis not carried out as {}".format(results['error']) + Style.RESET_ALL)
        elif results['N'] < G.mingridsampling:
            raise GeneralError("Non-physical wave propagation: Material '{}' has wavelength sampled by {} cells, less than required minimum for physical wave propagation. Maximum significant frequency estimated as {:g}Hz".format(results['material'].ID, results['N'], results['maxfreq']))
        elif results['deltavp'] and np.abs(results['deltavp']) > G.maxnumericaldisp and G.messages:
            print(Fore.RED + "\nWARNING: Potentially significant numerical dispersion. Estimated largest physical phase-velocity error is {:.2f}% in material '{}' whose wavelength sampled by {} cells. Maximum significant frequency estimated as {:g}Hz".format(results['deltavp'], results['material'].ID, results['N'], results['maxfreq']) + Style.RESET_ALL)
        elif results['deltavp'] and G.messages:
            print("\nNumerical dispersion analysis: estimated largest physical phase-velocity error is {:.2f}% in material '{}' whose wavelength sampled by {} cells. Maximum significant frequency estimated as {:g}Hz".format(results['deltavp'], results['material'].ID, results['N'], results['maxfreq']))

    # If geometry information to be reused between model runs
    else:
        inputfilestr = '\n--- Model {}/{}, input file (not re-processed, i.e. geometry fixed): {}'.format(currentmodelrun, modelend, inputfile.name)
        if G.messages:
            print(Fore.GREEN + '{} {}\n'.format(inputfilestr, '-' * (get_terminal_width() - 1 - len(inputfilestr))) + Style.RESET_ALL)

        if G.gpu is None:
            # Clear arrays for field components
            G.initialise_field_arrays()

            # Clear arrays for fields in PML
            for pml in G.pmls:
                pml.initialise_field_arrays()

    # Adjust position of simple sources and receivers if required
    if G.srcsteps[0] != 0 or G.srcsteps[1] != 0 or G.srcsteps[2] != 0:
        for source in itertools.chain(G.hertziandipoles, G.magneticdipoles):
            if currentmodelrun == 1:
                if source.xcoord + G.srcsteps[0] * modelend < 0 or source.xcoord + G.srcsteps[0] * modelend > G.nx or source.ycoord + G.srcsteps[1] * modelend < 0 or source.ycoord + G.srcsteps[1] * modelend > G.ny or source.zcoord + G.srcsteps[2] * modelend < 0 or source.zcoord + G.srcsteps[2] * modelend > G.nz:
                    raise GeneralError('Source(s) will be stepped to a position outside the domain.')
            source.xcoord = source.xcoordorigin + (currentmodelrun - 1) * G.srcsteps[0]
            source.ycoord = source.ycoordorigin + (currentmodelrun - 1) * G.srcsteps[1]
            source.zcoord = source.zcoordorigin + (currentmodelrun - 1) * G.srcsteps[2]
    if G.rxsteps[0] != 0 or G.rxsteps[1] != 0 or G.rxsteps[2] != 0:
        for receiver in G.rxs:
            if currentmodelrun == 1:
                if receiver.xcoord + G.rxsteps[0] * modelend < 0 or receiver.xcoord + G.rxsteps[0] * modelend > G.nx or receiver.ycoord + G.rxsteps[1] * modelend < 0 or receiver.ycoord + G.rxsteps[1] * modelend > G.ny or receiver.zcoord + G.rxsteps[2] * modelend < 0 or receiver.zcoord + G.rxsteps[2] * modelend > G.nz:
                    raise GeneralError('Receiver(s) will be stepped to a position outside the domain.')
            receiver.xcoord = receiver.xcoordorigin + (currentmodelrun - 1) * G.rxsteps[0]
            receiver.ycoord = receiver.ycoordorigin + (currentmodelrun - 1) * G.rxsteps[1]
            receiver.zcoord = receiver.zcoordorigin + (currentmodelrun - 1) * G.rxsteps[2]

    # Write files for any geometry views and geometry object outputs
    if not (G.geometryviews or G.geometryobjectswrite) and args.geometry_only and G.messages:
        print(Fore.RED + '\nWARNING: No geometry views or geometry objects to output found.' + Style.RESET_ALL)
    if G.geometryviews and (not args.geometry_fixed or currentmodelrun == 1):
        if G.messages: print()
        for i, geometryview in enumerate(G.geometryviews):
            geometryview.set_filename(appendmodelnumberGeometry, G)
            pbar = tqdm(total=geometryview.datawritesize, unit='byte', unit_scale=True, desc='Writing geometry view file {}/{}, {}'.format(i + 1, len(G.geometryviews), os.path.split(geometryview.filename)[1]), ncols=get_terminal_width() - 1, file=sys.stdout, disable=not G.progressbars)
            geometryview.write_vtk(G, pbar)
            pbar.close()
    if G.geometryobjectswrite:
        for i, geometryobject in enumerate(G.geometryobjectswrite):
            pbar = tqdm(total=geometryobject.datawritesize, unit='byte', unit_scale=True, desc='Writing geometry object file {}/{}, {}'.format(i + 1, len(G.geometryobjectswrite), os.path.split(geometryobject.filename)[1]), ncols=get_terminal_width() - 1, file=sys.stdout, disable=not G.progressbars)
            geometryobject.write_hdf5(G, pbar)
            pbar.close()

    # If only writing geometry information
    if args.geometry_only:
        tsolve = 0

    # Run simulation
    else:
        # Output filename
        inputdirectory, inputfilename = os.path.split(os.path.join(G.inputdirectory, G.inputfilename))
        if G.outputdirectory is None:
            outputdir = inputdirectory
        else:
            outputdir = G.outputdirectory
        # Save current directory
        curdir = os.getcwd()
        os.chdir(inputdirectory)
        outputdir = os.path.abspath(outputdir)
        if not os.path.isdir(outputdir):
            os.mkdir(outputdir)
            if G.messages:
                print('\nCreated output directory: {}'.format(outputdir))
        # Restore current directory
        os.chdir(curdir)
        basename, ext = os.path.splitext(inputfilename)
        outputfile = os.path.join(outputdir, basename + appendmodelnumber + '.out')
        if G.messages:
            print('\nOutput file: {}\n'.format(outputfile))

        # Main FDTD solving functions for either CPU or GPU
        if G.gpu is None:
            tsolve = solve_cpu(currentmodelrun, modelend, G)
        else:
            tsolve, memsolve = solve_gpu(currentmodelrun, modelend, G)

        # Write an output file in HDF5 format
        write_hdf5_outputfile(outputfile, G)

        # Write any snapshots to file
        if G.snapshots:
            # Create directory and construct filename from user-supplied name and model run number
            snapshotdir = os.path.join(G.inputdirectory, os.path.splitext(G.inputfilename)[0] + '_snaps' + appendmodelnumber)
            if not os.path.exists(snapshotdir):
                os.mkdir(snapshotdir)

            if G.messages: print()
            for i, snap in enumerate(G.snapshots):
                snap.filename = os.path.abspath(os.path.join(snapshotdir, snap.basefilename + '.vti'))
                pbar = tqdm(total=snap.vtkdatawritesize, leave=True, unit='byte', unit_scale=True, desc='Writing snapshot file {} of {}, {}'.format(i + 1, len(G.snapshots), os.path.split(snap.filename)[1]), ncols=get_terminal_width() - 1, file=sys.stdout, disable=not G.progressbars)
                snap.write_vtk_imagedata(pbar, G)
                pbar.close()
            if G.messages: print()

        if G.messages:
            if G.gpu is None:
                print('Memory (RAM) used: ~{}'.format(human_size(p.memory_info().rss)))
            else:
                print('Memory (RAM) used: ~{} host + ~{} GPU'.format(human_size(p.memory_info().rss), human_size(memsolve)))
            print('Solving time [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=tsolve)))

    # If geometry information to be reused between model runs then FDTDGrid
    # class instance must be global so that it persists
    if not args.geometry_fixed or currentmodelrun is modelend:
        del G

    return tsolve
Example #6
0
def run_model(args, modelrun, numbermodelruns, inputfile, usernamespace):
    """Runs a model - processes the input file; builds the Yee cells; calculates update coefficients; runs main FDTD loop.
        
    Args:
        args (dict): Namespace with command line arguments
        modelrun (int): Current model run number.
        numbermodelruns (int): Total number of model runs.
        inputfile (str): Name of the input file to open.
        usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.
    """

    # Monitor memory usage
    p = psutil.Process()

    print('\n{}\n\nModel input file: {}\n'.format(68 * '*', inputfile))

    # Add the current model run to namespace that can be accessed by user in any Python code blocks in input file
    usernamespace['current_model_run'] = modelrun
    print('Constants/variables available for Python scripting: {}\n'.format(
        usernamespace))

    # Process any user input Python commands
    processedlines = python_code_blocks(inputfile, usernamespace)

    # Write a file containing the input commands after Python blocks have been processed
    if args.write_python:
        write_python_processed(inputfile, modelrun, numbermodelruns,
                               processedlines)

    # Check validity of command names & that essential commands are present
    singlecmds, multicmds, geometry = check_cmd_names(processedlines)

    # Initialise an instance of the FDTDGrid class
    G = FDTDGrid()
    G.inputdirectory = usernamespace['inputdirectory']

    # Process parameters for commands that can only occur once in the model
    process_singlecmds(singlecmds, multicmds, G)

    # Process parameters for commands that can occur multiple times in the model
    process_multicmds(multicmds, G)

    # Initialise an array for volumetric material IDs (solid), boolean arrays for specifying materials not to be averaged (rigid),
    # an array for cell edge IDs (ID), and arrays for the field components.
    G.initialise_std_arrays()

    # Process the geometry commands in the order they were given
    tinputprocstart = perf_counter()
    process_geometrycmds(geometry, G)
    tinputprocend = perf_counter()
    print('\nInput file processed in [HH:MM:SS]: {}'.format(
        datetime.timedelta(seconds=int(tinputprocend - tinputprocstart))))

    # Build the PML and calculate initial coefficients
    build_pml(G)

    # Build the model, i.e. set the material properties (ID) for every edge of every Yee cell
    tbuildstart = perf_counter()
    build_electric_components(G.solid, G.rigidE, G.ID, G)
    build_magnetic_components(G.solid, G.rigidH, G.ID, G)
    tbuildend = perf_counter()
    print('\nModel built in [HH:MM:SS]: {}'.format(
        datetime.timedelta(seconds=int(tbuildend - tbuildstart))))

    # Process any voltage sources (that have resistance) to create a new material at the source location
    for voltagesource in G.voltagesources:
        voltagesource.create_material(G)

    # Initialise arrays of update coefficients to pass to update functions
    G.initialise_std_updatecoeff_arrays(len(G.materials))

    # Initialise arrays of update coefficients and temporary values if there are any dispersive materials
    if Material.maxpoles != 0:
        G.initialise_dispersive_arrays(len(G.materials))

    # Calculate update coefficients, store in arrays, and list materials in model
    if G.messages:
        print('\nMaterials:\n')
        print('ID\tName\t\tProperties')
        print('{}'.format('-' * 50))
    for material in G.materials:

        # Calculate update coefficients for material
        material.calculate_update_coeffsE(G)
        material.calculate_update_coeffsH(G)

        # Store all update coefficients together
        G.updatecoeffsE[
            material.
            numID, :] = material.CA, material.CBx, material.CBy, material.CBz, material.srce
        G.updatecoeffsH[
            material.
            numID, :] = material.DA, material.DBx, material.DBy, material.DBz, material.srcm

        # Store coefficients for any dispersive materials
        if Material.maxpoles != 0:
            z = 0
            for pole in range(Material.maxpoles):
                G.updatecoeffsdispersive[
                    material.numID,
                    z:z + 3] = e0 * material.eqt2[pole], material.eqt[
                        pole], material.zt[pole]
                z += 3

        if G.messages:
            if material.deltaer and material.tau:
                tmp = 'delta_epsr={}, tau={} secs; '.format(
                    ', '.join('{:g}'.format(deltaer)
                              for deltaer in material.deltaer),
                    ', '.join('{:g}'.format(tau) for tau in material.tau))
            else:
                tmp = ''
            if material.average:
                dielectricsmoothing = 'dielectric smoothing permitted.'
            else:
                dielectricsmoothing = 'dielectric smoothing not permitted.'
            print(
                '{:3}\t{:12}\tepsr={:g}, sig={:g} S/m; mur={:g}, sig*={:g} S/m; '
                .format(material.numID, material.ID, material.er, material.se,
                        material.mr, material.sm) + tmp + dielectricsmoothing)

    # Check to see if numerical dispersion might be a problem
    if dispersion_check(G.waveforms, G.materials, G.dx, G.dy, G.dz):
        print(
            '\nWARNING: Potential numerical dispersion in the simulation. Check the spatial discretisation against the smallest wavelength present.'
        )

    # Write files for any geometry views
    if not G.geometryviews and args.geometry_only:
        raise GeneralError('No geometry views found.')
    elif G.geometryviews:
        tgeostart = perf_counter()
        for geometryview in G.geometryviews:
            geometryview.write_file(modelrun, numbermodelruns, G)
        tgeoend = perf_counter()
        print('\nGeometry file(s) written in [HH:MM:SS]: {}'.format(
            datetime.timedelta(seconds=int(tgeoend - tgeostart))))

    # Run simulation if not doing only geometry
    if not args.geometry_only:

        # Prepare any snapshot files
        for snapshot in G.snapshots:
            snapshot.prepare_file(modelrun, numbermodelruns, G)

        # Prepare output file
        inputfileparts = os.path.splitext(inputfile)
        if numbermodelruns == 1:
            outputfile = inputfileparts[0] + '.out'
        else:
            outputfile = inputfileparts[0] + str(modelrun) + '.out'
        sys.stdout.write('\nOutput to file: {}\n'.format(outputfile))
        sys.stdout.flush()
        f = prepare_output_file(outputfile, G)

        # Adjust position of sources and receivers if required
        if G.srcstepx > 0 or G.srcstepy > 0 or G.srcstepz > 0:
            for source in itertools.chain(G.hertziandipoles, G.magneticdipoles,
                                          G.voltagesources,
                                          G.transmissionlines):
                source.xcoord += (modelrun - 1) * G.srcstepx
                source.ycoord += (modelrun - 1) * G.srcstepy
                source.zcoord += (modelrun - 1) * G.srcstepz
        if G.rxstepx > 0 or G.rxstepy > 0 or G.rxstepz > 0:
            for receiver in G.rxs:
                receiver.xcoord += (modelrun - 1) * G.rxstepx
                receiver.ycoord += (modelrun - 1) * G.rxstepy
                receiver.zcoord += (modelrun - 1) * G.rxstepz

        ##################################
        #   Main FDTD calculation loop   #
        ##################################
        tsolvestart = perf_counter()
        # Absolute time
        abstime = 0

        for timestep in range(G.iterations):
            if timestep == 0:
                tstepstart = perf_counter()

            # Write field outputs to file
            write_output(f, timestep, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz, G)

            # Write any snapshots to file
            for snapshot in G.snapshots:
                if snapshot.time == timestep + 1:
                    snapshot.write_snapshot(G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz,
                                            G)

            # Update electric field components
            if Material.maxpoles == 0:  # All materials are non-dispersive so do standard update
                update_electric(G.nx, G.ny, G.nz, G.nthreads, G.updatecoeffsE,
                                G.ID, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz)
            elif Material.maxpoles == 1:  # If there are any dispersive materials do 1st part of dispersive update (it is split into two parts as it requires present and updated electric field values).
                update_electric_dispersive_1pole_A(G.nx, G.ny, G.nz,
                                                   G.nthreads, G.updatecoeffsE,
                                                   G.updatecoeffsdispersive,
                                                   G.ID, G.Tx, G.Ty, G.Tz,
                                                   G.Ex, G.Ey, G.Ez, G.Hx,
                                                   G.Hy, G.Hz)
            elif Material.maxpoles > 1:
                update_electric_dispersive_multipole_A(
                    G.nx, G.ny, G.nz, G.nthreads, Material.maxpoles,
                    G.updatecoeffsE, G.updatecoeffsdispersive, G.ID, G.Tx,
                    G.Ty, G.Tz, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz)

            # Update electric field components with the PML correction
            update_electric_pml(G)

            # Update electric field components from sources
            for voltagesource in G.voltagesources:
                voltagesource.update_electric(abstime, G.updatecoeffsE, G.ID,
                                              G.Ex, G.Ey, G.Ez, G)
            for transmissionline in G.transmissionlines:
                transmissionline.update_electric(abstime, G.Ex, G.Ey, G.Ez, G)
            for hertziandipole in G.hertziandipoles:  # Update any Hertzian dipole sources last
                hertziandipole.update_electric(abstime, G.updatecoeffsE, G.ID,
                                               G.Ex, G.Ey, G.Ez, G)

            # If there are any dispersive materials do 2nd part of dispersive update (it is split into two parts as it requires present and updated electric field values). Therefore it can only be completely updated after the electric field has been updated by the PML and source updates.
            if Material.maxpoles == 1:
                update_electric_dispersive_1pole_B(G.nx, G.ny, G.nz,
                                                   G.nthreads,
                                                   G.updatecoeffsdispersive,
                                                   G.ID, G.Tx, G.Ty, G.Tz,
                                                   G.Ex, G.Ey, G.Ez)
            elif Material.maxpoles > 1:
                update_electric_dispersive_multipole_B(
                    G.nx, G.ny, G.nz, G.nthreads, Material.maxpoles,
                    G.updatecoeffsdispersive, G.ID, G.Tx, G.Ty, G.Tz, G.Ex,
                    G.Ey, G.Ez)

            # Increment absolute time value
            abstime += 0.5 * G.dt

            # Update magnetic field components
            update_magnetic(G.nx, G.ny, G.nz, G.nthreads, G.updatecoeffsH,
                            G.ID, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz)

            # Update magnetic field components with the PML correction
            update_magnetic_pml(G)

            # Update magnetic field components from sources
            for transmissionline in G.transmissionlines:
                transmissionline.update_magnetic(abstime, G.Hx, G.Hy, G.Hz, G)
            for magneticdipole in G.magneticdipoles:
                magneticdipole.update_magnetic(abstime, G.updatecoeffsH, G.ID,
                                               G.Hx, G.Hy, G.Hz, G)

            # Increment absolute time value
            abstime += 0.5 * G.dt

            # Calculate time for two iterations, used to estimate overall runtime
            if timestep == 1:
                tstepend = perf_counter()
                runtime = datetime.timedelta(
                    seconds=int((tstepend - tstepstart) / 2 * G.iterations))
                sys.stdout.write(
                    'Estimated runtime [HH:MM:SS]: {}\n'.format(runtime))
                sys.stdout.write('Solving for model run {} of {}...\n'.format(
                    modelrun, numbermodelruns))
                sys.stdout.flush()
            elif timestep > 1:
                update_progress((timestep + 1) / G.iterations)

        # Close output file
        f.close()
        tsolveend = perf_counter()
        print('\n\nSolving took [HH:MM:SS]: {}'.format(
            datetime.timedelta(seconds=int(tsolveend - tsolvestart))))
        print('Peak memory (approx) used: {}'.format(
            human_size(p.memory_info().rss)))
Example #7
0
def run_mpi_sim(args, inputfile, usernamespace, optparams=None):
    """
    Run mixed mode MPI/OpenMP simulation - MPI task farm for models with
    each model parallelised using either OpenMP (CPU) or CUDA (GPU)

    Args:
        args (dict): Namespace with command line arguments
        inputfile (object): File object for the input file.
        usernamespace (dict): Namespace that can be accessed by user in any
                Python code blocks in input file.
        optparams (dict): Optional argument. For Taguchi optimisation it
                provides the parameters to optimise and their values.
    """

    from mpi4py import MPI

    # Get name of processor/host
    name = MPI.Get_processor_name()

    # Set range for number of models to run
    modelstart = args.restart if args.restart else 1
    modelend = modelstart + args.n
    numbermodelruns = args.n

    # Number of workers and command line flag to indicate a spawned worker
    worker = '--mpi-worker'
    numberworkers = args.mpi - 1

    # Master process
    if worker not in sys.argv:

        tsimstart = perf_counter()

        print('MPI master rank (PID {}) on {} using {} workers'.format(os.getpid(), name, numberworkers))

        # Create a list of work
        worklist = []
        for model in range(modelstart, modelend):
            workobj = dict()
            workobj['currentmodelrun'] = model
            if optparams:
                workobj['optparams'] = optparams
            worklist.append(workobj)
        # Add stop sentinels
        worklist += ([StopIteration] * numberworkers)

        # Spawn workers
        comm = MPI.COMM_WORLD.Spawn(sys.executable, args=['-m', 'gprMax', '-n', str(args.n)] + sys.argv[1::] + [worker], maxprocs=numberworkers)

        # Reply to whoever asks until done
        status = MPI.Status()
        for work in worklist:
            comm.recv(source=MPI.ANY_SOURCE, status=status)
            comm.send(obj=work, dest=status.Get_source())

        # Shutdown
        comm.Disconnect()

        tsimend = perf_counter()
        simcompletestr = '\n=== Simulation completed in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=tsimend - tsimstart))
        print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))

    # Worker process
    elif worker in sys.argv:

        # Connect to parent
        try:
            comm = MPI.Comm.Get_parent() # get MPI communicator object
            rank = comm.Get_rank()  # rank of this process
        except:
            raise ValueError('Could not connect to parent')

        # Ask for work until stop sentinel
        for work in iter(lambda: comm.sendrecv(0, dest=0), StopIteration):
            currentmodelrun = work['currentmodelrun']

            # Get info and setup device ID for GPU(s)
            gpuinfo = ''
            if args.gpu is not None:
                # Set device ID for multiple GPUs
                if isinstance(args.gpu, list):
                    deviceID = (rank - 1) % len(args.gpu)
                    args.gpu = next(gpu for gpu in args.gpu if gpu.deviceID == deviceID)
                gpuinfo = ' using {} - {}, {} RAM '.format(args.gpu.deviceID, args.gpu.name, human_size(args.gpu.totalmem, a_kilobyte_is_1024_bytes=True))

            print('MPI worker rank {} (PID {}) starting model {}/{}{} on {}'.format(rank, os.getpid(), currentmodelrun, numbermodelruns, gpuinfo, name))

            # If Taguchi optimistaion, add specific value for each parameter to
            # optimise for each experiment to user accessible namespace
            if 'optparams' in work:
                tmp = {}
                tmp.update((key, value[currentmodelrun - 1]) for key, value in work['optparams'].items())
                modelusernamespace = usernamespace.copy()
                modelusernamespace.update({'optparams': tmp})
            else:
                modelusernamespace = usernamespace

            # Run the model
            run_model(args, currentmodelrun, modelend - 1, numbermodelruns, inputfile, modelusernamespace)

        # Shutdown
        comm.Disconnect()
Example #8
0
def run_main(args):
    """
    Top-level function that controls what mode of simulation (standard/optimsation/benchmark etc...) is run.

    Args:
        args (dict): Namespace with input arguments from command line or api.
    """

    with open_path_file(args.inputfile) as inputfile:

        # Get information about host machine
        hostinfo = get_host_info()
        hyperthreading = ', {} cores with Hyper-Threading'.format(hostinfo['logicalcores']) if hostinfo['hyperthreading'] else ''
        print('\nHost: {}; {} x {} ({} cores{}); {} RAM; {}'.format(hostinfo['machineID'], hostinfo['sockets'], hostinfo['cpuID'], hostinfo['physicalcores'], hyperthreading, human_size(hostinfo['ram'], a_kilobyte_is_1024_bytes=True), hostinfo['osversion']))

        # Get information/setup Nvidia GPU(s)
        if args.gpu is not None:
            # Extract first item of list, either True to automatically determine device ID,
            # or an integer to manually specify device ID
            args.gpu = args.gpu[0]
            gpus = detect_gpus()

            # If a device ID is specified check it is valid
            if not isinstance(args.gpu, bool):
                if args.gpu > len(gpus) - 1:
                    raise GeneralError('GPU with device ID {} does not exist'.format(args.gpu))
                # Set args.gpu to GPU object to access elsewhere
                args.gpu = next(gpu for gpu in gpus if gpu.deviceID == args.gpu)

            # If no device ID is specified
            else:
                # If in MPI mode then set args.gpu to list of available GPUs
                if args.mpi:
                    if args.mpi - 1 > len(gpus):
                        raise GeneralError('Too many MPI tasks requested ({}). The number of MPI tasks requested can only be a maximum of the number of GPU(s) detected plus one, i.e. {} GPU worker tasks + 1 CPU master task'.format(args.mpi, len(gpus)))
                    args.gpu = gpus
                # If benchmarking mode then set args.gpu to list of available GPUs
                elif args.benchmark:
                    args.gpu = gpus
                # Otherwise set args.gpu to GPU object with default device ID (0) to access elsewhere
                else:
                    args.gpu = next(gpu for gpu in gpus if gpu.deviceID == 0)

        # Create a separate namespace that users can access in any Python code blocks in the input file
        usernamespace = {'c': c, 'e0': e0, 'm0': m0, 'z0': z0, 'number_model_runs': args.n, 'inputfile': os.path.abspath(inputfile.name)}

        #######################################
        # Process for benchmarking simulation #
        #######################################
        if args.benchmark:
            if args.mpi or args.opt_taguchi or args.task or args.n > 1:
                raise GeneralError('Benchmarking mode cannot be combined with MPI, job array, or Taguchi optimisation modes, or multiple model runs.')
            run_benchmark_sim(args, inputfile, usernamespace)

        ####################################################
        # Process for simulation with Taguchi optimisation #
        ####################################################
        elif args.opt_taguchi:
            if args.mpi_worker: # Special case for MPI spawned workers - they do not need to enter the Taguchi optimisation mode
                run_mpi_sim(args, inputfile, usernamespace)
            else:
                from gprMax.optimisation_taguchi import run_opt_sim
                run_opt_sim(args, inputfile, usernamespace)

        ################################################
        # Process for standard simulation (CPU or GPU) #
        ################################################
        else:
            # Mixed mode MPI with OpenMP or CUDA - MPI task farm for models with each model parallelised with OpenMP (CPU) or CUDA (GPU)
            if args.mpi:
                if args.n == 1:
                    raise GeneralError('MPI is not beneficial when there is only one model to run')
                if args.task:
                    raise GeneralError('MPI cannot be combined with job array mode')
                run_mpi_sim(args, inputfile, usernamespace)

            # Standard behaviour - models run serially with each model parallelised with OpenMP (CPU) or CUDA (GPU)
            else:
                if args.task and args.restart:
                    raise GeneralError('Job array and restart modes cannot be used together')
                run_std_sim(args, inputfile, usernamespace)
def process_singlecmds(singlecmds, G):
    """Checks the validity of command parameters and creates instances of classes of parameters.
        
    Args:
        singlecmds (dict): Commands that can only occur once in the model.
        G (class): Grid class instance - holds essential parameters describing the model.
    """
    
    # Check validity of command parameters in order needed
    # messages
    cmd = '#messages'
    if singlecmds[cmd] != 'None':
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1:
            raise CmdInputError(cmd + ' requires exactly one parameter')
        if singlecmds[cmd].lower() == 'y':
            G.messages = True
        elif singlecmds[cmd].lower() == 'n':
            G.messages = False
        else:
            raise CmdInputError(cmd + ' requires input values of either y or n')


    # Title
    cmd = '#title'
    if singlecmds[cmd] != 'None':
        G.title = singlecmds[cmd]
        if G.messages:
            print('Model title: {}'.format(G.title))


    # Number of processors to run on (OpenMP)
    cmd = '#num_threads'
    os.environ['OMP_WAIT_POLICY'] = 'active'
    os.environ['OMP_DYNAMIC'] = 'false'
    os.environ['OMP_PROC_BIND'] = 'true'

    if singlecmds[cmd] != 'None':
        tmp = tuple(int(x) for x in singlecmds[cmd].split())
        if len(tmp) != 1:
            raise CmdInputError(cmd + ' requires exactly one parameter to specify the number of threads to use')
        if tmp[0] < 1:
            raise CmdInputError(cmd + ' requires the value to be an integer not less than one')
        G.nthreads = tmp[0]
        os.environ['OMP_NUM_THREADS'] = str(G.nthreads)
    elif os.environ.get('OMP_NUM_THREADS'):
        G.nthreads = int(os.environ.get('OMP_NUM_THREADS'))
    else:
        # Set number of threads to number of physical CPU cores, i.e. avoid hyperthreading with OpenMP
        G.nthreads = psutil.cpu_count(logical=False)
        os.environ['OMP_NUM_THREADS'] = str(G.nthreads)

    if G.messages:
        print('Number of threads: {}'.format(G.nthreads))
    if G.nthreads > psutil.cpu_count(logical=False):
        print('\nWARNING: You have specified more threads ({}) than available physical CPU cores ({}). This may lead to degraded performance.'.format(G.nthreads, psutil.cpu_count(logical=False)))


    # Spatial discretisation
    cmd = '#dx_dy_dz'
    tmp = [float(x) for x in singlecmds[cmd].split()]
    if len(tmp) != 3:
        raise CmdInputError(cmd + ' requires exactly three parameters')
    if tmp[0] <= 0:
        raise CmdInputError(cmd + ' requires the x-direction spatial step to be greater than zero')
    if tmp[1] <= 0:
        raise CmdInputError(cmd + ' requires the y-direction spatial step to be greater than zero')
    if tmp[2] <= 0:
        raise CmdInputError(cmd + ' requires the z-direction spatial step to be greater than zero')
    G.dx = tmp[0]
    G.dy = tmp[1]
    G.dz = tmp[2]
    if G.messages:
        print('Spatial discretisation: {:g} x {:g} x {:g}m'.format(G.dx, G.dy, G.dz))


    # Domain
    cmd = '#domain'
    tmp = [float(x) for x in singlecmds[cmd].split()]
    if len(tmp) != 3:
        raise CmdInputError(cmd + ' requires exactly three parameters')
    G.nx = round_value(tmp[0]/G.dx)
    G.ny = round_value(tmp[1]/G.dy)
    G.nz = round_value(tmp[2]/G.dz)
    if G.nx == 0 or G.ny == 0 or G.nz == 0:
        raise CmdInputError(cmd + ' requires at least one cell in every dimension')
    if G.messages:
        print('Domain size: {:g} x {:g} x {:g}m ({:d} x {:d} x {:d} = {:g} cells)'.format(tmp[0], tmp[1], tmp[2], G.nx, G.ny, G.nz, (G.nx * G.ny * G.nz)))
        # Guesstimate at memory usage
        mem = (((G.nx + 1) * (G.ny + 1) * (G.nz + 1) * 13 * np.dtype(floattype).itemsize + (G.nx + 1) * (G.ny + 1) * (G.nz + 1) * 18) * 1.1) + 30e6
        print('Memory (RAM) usage: ~{} required, {} available'.format(human_size(mem), human_size(psutil.virtual_memory().total)))


    # Time step CFL limit (use either 2D or 3D) and default PML thickness
    if G.nx == 1:
        G.dt = 1 / (c * np.sqrt((1 / G.dy) * (1 / G.dy) + (1 / G.dz) * (1 / G.dz)))
        G.dtlimit = '2D'
        G.pmlthickness = (0, G.pmlthickness, G.pmlthickness, 0, G.pmlthickness, G.pmlthickness)
    elif G.ny == 1:
        G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dz) * (1 / G.dz)))
        G.dtlimit = '2D'
        G.pmlthickness = (G.pmlthickness, 0, G.pmlthickness, G.pmlthickness, 0, G.pmlthickness)
    elif G.nz == 1:
        G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dy) * (1 / G.dy)))
        G.dtlimit = '2D'
        G.pmlthickness = (G.pmlthickness, G.pmlthickness, 0, G.pmlthickness, G.pmlthickness, 0)
    else:
        G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dy) * (1 / G.dy) + (1 / G.dz) * (1 / G.dz)))
        G.dtlimit = '3D'
        G.pmlthickness = (G.pmlthickness, G.pmlthickness, G.pmlthickness, G.pmlthickness, G.pmlthickness, G.pmlthickness)

    # Round down time step to nearest float with precision one less than hardware maximum. Avoids inadvertently exceeding the CFL due to binary representation of floating point number.
    G.dt = round_value(G.dt, decimalplaces=d.getcontext().prec - 1)

    if G.messages:
        print('Time step (at {} CFL limit): {:g} secs'.format(G.dtlimit, G.dt))


    # Time step stability factor
    cmd = '#time_step_stability_factor'
    if singlecmds[cmd] != 'None':
        tmp = tuple(float(x) for x in singlecmds[cmd].split())
        if len(tmp) != 1:
            raise CmdInputError(cmd + ' requires exactly one parameter')
        if tmp[0] <= 0 or tmp[0] > 1:
            raise CmdInputError(cmd + ' requires the value of the time step stability factor to be between zero and one')
        G.dt = G.dt * tmp[0]
        if G.messages:
            print('Time step (modified): {:g} secs'.format(G.dt))


    # Time window
    cmd = '#time_window'
    tmp = singlecmds[cmd].split()
    if len(tmp) != 1:
        raise CmdInputError(cmd + ' requires exactly one parameter to specify the time window. Either in seconds or number of iterations.')
    tmp = tmp[0].lower()

    # If number of iterations given
    try:
        tmp = int(tmp)
        G.timewindow = (tmp - 1) * G.dt
        G.iterations = tmp
    # If real floating point value given
    except:
        tmp = float(tmp)
        if tmp > 0:
            G.timewindow = tmp
            G.iterations = round_value((tmp / G.dt)) + 1
        else:
            raise CmdInputError(cmd + ' must have a value greater than zero')
    if G.messages:
        print('Time window: {:g} secs ({} iterations)'.format(G.timewindow, G.iterations))


    # PML
    cmd = '#pml_cells'
    if singlecmds[cmd] != 'None':
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1 and len(tmp) != 6:
            raise CmdInputError(cmd + ' requires either one or six parameters')
        if len(tmp) == 1:
            G.pmlthickness = (int(tmp[0]), int(tmp[0]), int(tmp[0]), int(tmp[0]), int(tmp[0]), int(tmp[0]))
        else:
            G.pmlthickness = (int(tmp[0]), int(tmp[1]), int(tmp[2]), int(tmp[3]), int(tmp[4]), int(tmp[5]))
    if 2*G.pmlthickness[0] >= G.nx or 2*G.pmlthickness[1] >= G.ny or 2*G.pmlthickness[2] >= G.nz or 2*G.pmlthickness[3] >= G.nx or 2*G.pmlthickness[4] >= G.ny or 2*G.pmlthickness[5] >= G.nz:
        raise CmdInputError(cmd + ' has too many cells for the domain size')

    
    # src_steps
    cmd = '#src_steps'
    if singlecmds[cmd] != 'None':
        tmp = singlecmds[cmd].split()
        if len(tmp) != 3:
            raise CmdInputError(cmd + ' requires exactly three parameters')
        G.srcstepx = round_value(float(tmp[0])/G.dx)
        G.srcstepy = round_value(float(tmp[1])/G.dy)
        G.srcstepz = round_value(float(tmp[2])/G.dz)
        if G.messages:
            print('Simple sources will step {:g}m, {:g}m, {:g}m for each model run.'.format(G.srcstepx * G.dx, G.srcstepy * G.dy, G.srcstepz * G.dz))


    # rx_steps
    cmd = '#rx_steps'
    if singlecmds[cmd] != 'None':
        tmp = singlecmds[cmd].split()
        if len(tmp) != 3:
            raise CmdInputError(cmd + ' requires exactly three parameters')
        G.rxstepx = round_value(float(tmp[0])/G.dx)
        G.rxstepy = round_value(float(tmp[1])/G.dy)
        G.rxstepz = round_value(float(tmp[2])/G.dz)
        if G.messages:
            print('All receivers will step {:g}m, {:g}m, {:g}m for each model run.'.format(G.rxstepx * G.dx, G.rxstepy * G.dy, G.rxstepz * G.dz))


    # Excitation file for user-defined source waveforms
    cmd = '#excitation_file'
    if singlecmds[cmd] != 'None':
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1:
            raise CmdInputError(cmd + ' requires exactly one parameter')
        excitationfile = tmp[0]

        # See if file exists at specified path and if not try input file directory
        if not os.path.isfile(excitationfile):
            excitationfile = os.path.abspath(os.path.join(G.inputdirectory, excitationfile))

        # Get waveform names
        with open(excitationfile, 'r') as f:
            waveformIDs = f.readline().split()
        
        # Read all waveform values into an array
        waveformvalues = np.loadtxt(excitationfile, skiprows=1, dtype=floattype)

        for waveform in range(len(waveformIDs)):
            if any(x.ID == waveformIDs[waveform] for x in G.waveforms):
                raise CmdInputError('Waveform with ID {} already exists'.format(waveformIDs[waveform]))
            w = Waveform()
            w.ID = waveformIDs[waveform]
            w.type = 'user'
            if len(waveformvalues.shape) == 1:
                w.uservalues = waveformvalues[:]
            else:
                w.uservalues = waveformvalues[:,waveform]
        
            if G.messages:
                print('User waveform {} created.'.format(w.ID))

            G.waveforms.append(w)
Example #10
0
args = parser.parse_args()

# Load base result
baseresult = dict(np.load(args.baseresult))

# Get machine/CPU/OS details
hostinfo = get_host_info()
try:
    machineIDlong = str(baseresult['machineID'])
    # machineIDlong = 'Dell PowerEdge R630; Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz; Linux (3.10.0-327.18.2.el7.x86_64)' # Use to manually describe machine
    machineID = machineIDlong.split(';')[0]
    cpuID = machineIDlong.split(';')[1]
    cpuID = cpuID.split('GHz')[0].split('x')[1][1::] + 'GHz'
except KeyError:
    hyperthreading = ', {} cores with Hyper-Threading'.format(hostinfo['logicalcores']) if hostinfo['hyperthreading'] else ''
    machineIDlong = '{}; {} x {} ({} cores{}); {} RAM; {}'.format(hostinfo['machineID'], hostinfo['sockets'], hostinfo['cpuID'], hostinfo['physicalcores'], hyperthreading, human_size(hostinfo['ram'], a_kilobyte_is_1024_bytes=True), hostinfo['osversion'])
print('Host: {}'.format(machineIDlong))

# Base result - general info
print('Model: {}'.format(args.baseresult))
cells = np.array([baseresult['numcells'][0]]) # Length of cubic model side for cells per second metric
baseplotlabel = os.path.splitext(os.path.split(args.baseresult)[1])[0] + '.in'

# Base result - CPU threads and times info from Numpy archive
if baseresult['cputhreads'].size != 0:
    for i in range(len(baseresult['cputhreads'])):
        print('{} CPU (OpenMP) thread(s): {:g} s'.format(baseresult['cputhreads'][i], baseresult['cputimes'][i]))
    cpucellspersec = np.array([(baseresult['numcells'][0] * baseresult['numcells'][1] * baseresult['numcells'][2] * baseresult['iterations']) / baseresult['cputimes'][0]])

# Base result - GPU time info
gpuIDs = baseresult['gpuIDs'].tolist()
Example #11
0
def run_main(args):
    """Top-level function that controls what mode of simulation (standard/optimsation/benchmark etc...) is run.

    Args:
        args (dict): Namespace with input arguments from command line or api.
    """
    
    with open_path_file(args.inputfile) as inputfile:

        # Get information about host machine
        hostinfo = get_host_info()
        hyperthreading = ', {} cores with Hyper-Threading'.format(hostinfo['logicalcores']) if hostinfo['hyperthreading'] else ''
        print('\nHost: {}; {} x {} ({} cores{}); {} RAM; {}'.format(hostinfo['machineID'], hostinfo['sockets'], hostinfo['cpuID'], hostinfo['physicalcores'], hyperthreading, human_size(hostinfo['ram'], a_kilobyte_is_1024_bytes=True), hostinfo['osversion']))

        # Create a separate namespace that users can access in any Python code blocks in the input file
        usernamespace = {'c': c, 'e0': e0, 'm0': m0, 'z0': z0, 'number_model_runs': args.n, 'inputfile': os.path.abspath(inputfile.name)}

        #######################################
        # Process for benchmarking simulation #
        #######################################
        if args.benchmark:
            if args.mpi or args.opt_taguchi or args.task or args.n > 1:
                raise GeneralError('Benchmarking mode cannot be combined with MPI, job array, or Taguchi optimisation modes, or multiple model runs.')
            run_benchmark_sim(args, inputfile, usernamespace)

        ####################################################
        # Process for simulation with Taguchi optimisation #
        ####################################################
        elif args.opt_taguchi:
            if args.mpi_worker: # Special case for MPI spawned workers - they do not need to enter the Taguchi optimisation mode
                run_mpi_sim(args, inputfile, usernamespace)
            else:
                from gprMax.optimisation_taguchi import run_opt_sim
                run_opt_sim(args, inputfile, usernamespace)

        ################################################
        # Process for standard simulation (CPU or GPU) #
        ################################################
        else:
            # Mixed mode MPI with OpenMP or CUDA - MPI task farm for models with each model parallelised with OpenMP (CPU) or CUDA (GPU)
            if args.mpi:
                if args.n == 1:
                    raise GeneralError('MPI is not beneficial when there is only one model to run')
                if args.task:
                    raise GeneralError('MPI cannot be combined with job array mode')
                run_mpi_sim(args, inputfile, usernamespace)
        
            # Standard behaviour - models run serially with each model parallelised with OpenMP (CPU) or CUDA (GPU)
            else:
                if args.task and args.restart:
                    raise GeneralError('Job array and restart modes cannot be used together')
                run_std_sim(args, inputfile, usernamespace)
Example #12
0
def process_singlecmds(singlecmds, G):
    """Checks the validity of command parameters and creates instances of classes of parameters.

    Args:
        singlecmds (dict): Commands that can only occur once in the model.
        G (class): Grid class instance - holds essential parameters describing the model.
    """

    # Check validity of command parameters in order needed
    # messages
    cmd = '#messages'
    if singlecmds[cmd] != 'None':
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1:
            raise CmdInputError(cmd + ' requires exactly one parameter')
        if singlecmds[cmd].lower() == 'y':
            G.messages = True
        elif singlecmds[cmd].lower() == 'n':
            G.messages = False
        else:
            raise CmdInputError(cmd + ' requires input values of either y or n')

    # Title
    cmd = '#title'
    if singlecmds[cmd] != 'None':
        G.title = singlecmds[cmd]
        if G.messages:
            print('Model title: {}'.format(G.title))

    # Number of threads (OpenMP) to use
    cmd = '#num_threads'
    if sys.platform == 'darwin':
        os.environ['OMP_WAIT_POLICY'] = 'ACTIVE'  # What to do with threads when they are waiting; can drastically effect performance
    os.environ['OMP_DYNAMIC'] = 'FALSE'
    os.environ['OMP_PROC_BIND'] = 'TRUE'  # Bind threads to physical cores

    if singlecmds[cmd] != 'None':
        tmp = tuple(int(x) for x in singlecmds[cmd].split())
        if len(tmp) != 1:
            raise CmdInputError(cmd + ' requires exactly one parameter to specify the number of threads to use')
        if tmp[0] < 1:
            raise CmdInputError(cmd + ' requires the value to be an integer not less than one')
        G.nthreads = tmp[0]
        os.environ['OMP_NUM_THREADS'] = str(G.nthreads)
    elif os.environ.get('OMP_NUM_THREADS'):
        G.nthreads = int(os.environ.get('OMP_NUM_THREADS'))
    else:
        # Set number of threads to number of physical CPU cores, i.e. avoid hyperthreading with OpenMP
        G.nthreads = psutil.cpu_count(logical=False)
        os.environ['OMP_NUM_THREADS'] = str(G.nthreads)

    if G.messages:
        machineID, cpuID, osversion = get_machine_cpu_os()
        print('Number of threads: {} ({})'.format(G.nthreads, cpuID))
    if G.nthreads > psutil.cpu_count(logical=False):
        print(Fore.RED + 'WARNING: You have specified more threads ({}) than available physical CPU cores ({}). This may lead to degraded performance.'.format(G.nthreads, psutil.cpu_count(logical=False)) + Style.RESET_ALL)

    # Spatial discretisation
    cmd = '#dx_dy_dz'
    tmp = [float(x) for x in singlecmds[cmd].split()]
    if len(tmp) != 3:
        raise CmdInputError(cmd + ' requires exactly three parameters')
    if tmp[0] <= 0:
        raise CmdInputError(cmd + ' requires the x-direction spatial step to be greater than zero')
    if tmp[1] <= 0:
        raise CmdInputError(cmd + ' requires the y-direction spatial step to be greater than zero')
    if tmp[2] <= 0:
        raise CmdInputError(cmd + ' requires the z-direction spatial step to be greater than zero')
    G.dx = tmp[0]
    G.dy = tmp[1]
    G.dz = tmp[2]
    if G.messages:
        print('Spatial discretisation: {:g} x {:g} x {:g}m'.format(G.dx, G.dy, G.dz))

    # Domain
    cmd = '#domain'
    tmp = [float(x) for x in singlecmds[cmd].split()]
    if len(tmp) != 3:
        raise CmdInputError(cmd + ' requires exactly three parameters')
    G.nx = round_value(tmp[0] / G.dx)
    G.ny = round_value(tmp[1] / G.dy)
    G.nz = round_value(tmp[2] / G.dz)
    if G.nx == 0 or G.ny == 0 or G.nz == 0:
        raise CmdInputError(cmd + ' requires at least one cell in every dimension')
    if G.messages:
        print('Domain size: {:g} x {:g} x {:g}m ({:d} x {:d} x {:d} = {:g} cells)'.format(tmp[0], tmp[1], tmp[2], G.nx, G.ny, G.nz, (G.nx * G.ny * G.nz)))

    # Estimate memory (RAM) usage
    stdoverhead = 70e6
    floatarrays = (6 + 6 + 1) * (G.nx + 1) * (G.ny + 1) * (G.nz + 1) * np.dtype(floattype).itemsize  # 6 x field arrays + 6 x ID arrays + 1 x solid array
    rigidarray = (12 + 6) * (G.nx + 1) * (G.ny + 1) * (G.nz + 1) * np.dtype(np.int8).itemsize
    memestimate = stdoverhead + floatarrays + rigidarray
    if memestimate > psutil.virtual_memory().total:
        print(Fore.RED + 'WARNING: Estimated memory (RAM) required ~{} exceeds {} detected!\n'.format(human_size(memestimate), human_size(psutil.virtual_memory().total, a_kilobyte_is_1024_bytes=True)) + Style.RESET_ALL)
    if G.messages:
        print('Estimated memory (RAM) required: ~{} ({} detected)'.format(human_size(memestimate), human_size(psutil.virtual_memory().total, a_kilobyte_is_1024_bytes=True)))

    # Time step CFL limit (use either 2D or 3D) and default PML thickness
    if G.nx == 1:
        G.dt = 1 / (c * np.sqrt((1 / G.dy) * (1 / G.dy) + (1 / G.dz) * (1 / G.dz)))
        G.dimension = '2D'
        G.pmlthickness['xminus'] = 0
        G.pmlthickness['xplus'] = 0
    elif G.ny == 1:
        G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dz) * (1 / G.dz)))
        G.dimension = '2D'
        G.pmlthickness['yminus'] = 0
        G.pmlthickness['yplus'] = 0
    elif G.nz == 1:
        G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dy) * (1 / G.dy)))
        G.dimension = '2D'
        G.pmlthickness['zminus'] = 0
        G.pmlthickness['zplus'] = 0
    else:
        G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dy) * (1 / G.dy) + (1 / G.dz) * (1 / G.dz)))
        G.dimension = '3D'

    # Round down time step to nearest float with precision one less than hardware maximum. Avoids inadvertently exceeding the CFL due to binary representation of floating point number.
    G.dt = round_value(G.dt, decimalplaces=d.getcontext().prec - 1)

    if G.messages:
        print('Time step (at {} CFL limit): {:g} secs'.format(G.dimension, G.dt))

    # Time step stability factor
    cmd = '#time_step_stability_factor'
    if singlecmds[cmd] != 'None':
        tmp = tuple(float(x) for x in singlecmds[cmd].split())
        if len(tmp) != 1:
            raise CmdInputError(cmd + ' requires exactly one parameter')
        if tmp[0] <= 0 or tmp[0] > 1:
            raise CmdInputError(cmd + ' requires the value of the time step stability factor to be between zero and one')
        G.dt = G.dt * tmp[0]
        if G.messages:
            print('Time step (modified): {:g} secs'.format(G.dt))

    # Time window
    cmd = '#time_window'
    tmp = singlecmds[cmd].split()
    if len(tmp) != 1:
        raise CmdInputError(cmd + ' requires exactly one parameter to specify the time window. Either in seconds or number of iterations.')
    tmp = tmp[0].lower()

    # If number of iterations given
    try:
        tmp = int(tmp)
        G.timewindow = (tmp - 1) * G.dt
        G.iterations = tmp
    # If real floating point value given
    except:
        tmp = float(tmp)
        if tmp > 0:
            G.timewindow = tmp
            G.iterations = round_value((tmp / G.dt)) + 1
        else:
            raise CmdInputError(cmd + ' must have a value greater than zero')
    if G.messages:
        print('Time window: {:g} secs ({} iterations)'.format(G.timewindow, G.iterations))

    # PML
    cmd = '#pml_cells'
    if singlecmds[cmd] != 'None':
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1 and len(tmp) != 6:
            raise CmdInputError(cmd + ' requires either one or six parameters')
        if len(tmp) == 1:
            for key in G.pmlthickness.keys():
                G.pmlthickness[key] = int(tmp[0])
        else:
            G.pmlthickness['xminus'] = int(tmp[0])
            G.pmlthickness['yminus'] = int(tmp[1])
            G.pmlthickness['zminus'] = int(tmp[2])
            G.pmlthickness['xplus'] = int(tmp[3])
            G.pmlthickness['yplus'] = int(tmp[4])
            G.pmlthickness['zplus'] = int(tmp[5])
    if 2 * G.pmlthickness['xminus'] >= G.nx or 2 * G.pmlthickness['yminus'] >= G.ny or 2 * G.pmlthickness['zminus'] >= G.nz or 2 * G.pmlthickness['xplus'] >= G.nx or 2 * G.pmlthickness['yplus'] >= G.ny or 2 * G.pmlthickness['zplus'] >= G.nz:
        raise CmdInputError(cmd + ' has too many cells for the domain size')

    # src_steps
    cmd = '#src_steps'
    if singlecmds[cmd] != 'None':
        tmp = singlecmds[cmd].split()
        if len(tmp) != 3:
            raise CmdInputError(cmd + ' requires exactly three parameters')
        G.srcsteps[0] = round_value(float(tmp[0]) / G.dx)
        G.srcsteps[1] = round_value(float(tmp[1]) / G.dy)
        G.srcsteps[2] = round_value(float(tmp[2]) / G.dz)
        if G.messages:
            print('Simple sources will step {:g}m, {:g}m, {:g}m for each model run.'.format(G.srcsteps[0] * G.dx, G.srcsteps[1] * G.dy, G.srcsteps[2] * G.dz))

    # rx_steps
    cmd = '#rx_steps'
    if singlecmds[cmd] != 'None':
        tmp = singlecmds[cmd].split()
        if len(tmp) != 3:
            raise CmdInputError(cmd + ' requires exactly three parameters')
        G.rxsteps[0] = round_value(float(tmp[0]) / G.dx)
        G.rxsteps[1] = round_value(float(tmp[1]) / G.dy)
        G.rxsteps[2] = round_value(float(tmp[2]) / G.dz)
        if G.messages:
            print('All receivers will step {:g}m, {:g}m, {:g}m for each model run.'.format(G.rxsteps[0] * G.dx, G.rxsteps[1] * G.dy, G.rxsteps[2] * G.dz))

    # Excitation file for user-defined source waveforms
    cmd = '#excitation_file'
    if singlecmds[cmd] != 'None':
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1:
            raise CmdInputError(cmd + ' requires exactly one parameter')
        excitationfile = tmp[0]

        # See if file exists at specified path and if not try input file directory
        if not os.path.isfile(excitationfile):
            excitationfile = os.path.abspath(os.path.join(G.inputdirectory, excitationfile))

        # Get waveform names
        with open(excitationfile, 'r') as f:
            waveformIDs = f.readline().split()

        # Read all waveform values into an array
        waveformvalues = np.loadtxt(excitationfile, skiprows=1, dtype=floattype)

        for waveform in range(len(waveformIDs)):
            if any(x.ID == waveformIDs[waveform] for x in G.waveforms):
                raise CmdInputError('Waveform with ID {} already exists'.format(waveformIDs[waveform]))
            w = Waveform()
            w.ID = waveformIDs[waveform]
            w.type = 'user'
            if len(waveformvalues.shape) == 1:
                w.uservalues = waveformvalues[:]
            else:
                w.uservalues = waveformvalues[:, waveform]

            if G.messages:
                print('User waveform {} created.'.format(w.ID))

            G.waveforms.append(w)
Example #13
0
def run_model(args, currentmodelrun, numbermodelruns, inputfile,
              usernamespace):
    """Runs a model - processes the input file; builds the Yee cells; calculates update coefficients; runs main FDTD loop.

    Args:
        args (dict): Namespace with command line arguments
        currentmodelrun (int): Current model run number.
        numbermodelruns (int): Total number of model runs.
        inputfile (object): File object for the input file.
        usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.

    Returns:
        tsolve (int): Length of time (seconds) of main FDTD calculations
    """

    # Monitor memory usage
    p = psutil.Process()

    # Declare variable to hold FDTDGrid class
    global G

    # Normal model reading/building process; bypassed if geometry information to be reused
    if 'G' not in globals():

        # Initialise an instance of the FDTDGrid class
        G = FDTDGrid()

        G.inputfilename = os.path.split(inputfile.name)[1]
        G.inputdirectory = os.path.dirname(os.path.abspath(inputfile.name))
        inputfilestr = '\n--- Model {}/{}, input file: {}'.format(
            currentmodelrun, numbermodelruns, inputfile.name)
        print(Fore.GREEN + '{} {}\n'.format(
            inputfilestr, '-' *
            (get_terminal_width() - 1 - len(inputfilestr))) + Style.RESET_ALL)

        # Add the current model run to namespace that can be accessed by user in any Python code blocks in input file
        usernamespace['current_model_run'] = currentmodelrun

        # Read input file and process any Python or include commands
        processedlines = process_python_include_code(inputfile, usernamespace)

        # Print constants/variables in user-accessable namespace
        uservars = ''
        for key, value in sorted(usernamespace.items()):
            if key != '__builtins__':
                uservars += '{}: {}, '.format(key, value)
        print(
            'Constants/variables used/available for Python scripting: {{{}}}\n'
            .format(uservars[:-2]))

        # Write a file containing the input commands after Python or include commands have been processed
        if args.write_processed:
            write_processed_file(
                os.path.join(G.inputdirectory, G.inputfilename),
                currentmodelrun, numbermodelruns, processedlines)

        # Check validity of command names and that essential commands are present
        singlecmds, multicmds, geometry = check_cmd_names(processedlines)

        # Create built-in materials
        m = Material(0, 'pec')
        m.se = float('inf')
        m.type = 'builtin'
        m.averagable = False
        G.materials.append(m)
        m = Material(1, 'free_space')
        m.type = 'builtin'
        G.materials.append(m)

        # Process parameters for commands that can only occur once in the model
        process_singlecmds(singlecmds, G)

        # Process parameters for commands that can occur multiple times in the model
        print()
        process_multicmds(multicmds, G)

        # Initialise an array for volumetric material IDs (solid), boolean arrays for specifying materials not to be averaged (rigid),
        # an array for cell edge IDs (ID)
        G.initialise_geometry_arrays()

        # Initialise arrays for the field components
        G.initialise_field_arrays()

        # Process geometry commands in the order they were given
        process_geometrycmds(geometry, G)

        # Build the PMLs and calculate initial coefficients
        print()
        if all(value == 0 for value in G.pmlthickness.values()):
            if G.messages:
                print('PML boundaries: switched off')
            pass  # If all the PMLs are switched off don't need to build anything
        else:
            if G.messages:
                if all(value == G.pmlthickness['x0']
                       for value in G.pmlthickness.values()):
                    pmlinfo = str(G.pmlthickness['x0']) + ' cells'
                else:
                    pmlinfo = ''
                    for key, value in G.pmlthickness.items():
                        pmlinfo += '{}: {} cells, '.format(key, value)
                    pmlinfo = pmlinfo[:-2]
                print('PML boundaries: {}'.format(pmlinfo))
            pbar = tqdm(total=sum(1 for value in G.pmlthickness.values()
                                  if value > 0),
                        desc='Building PML boundaries',
                        ncols=get_terminal_width() - 1,
                        file=sys.stdout,
                        disable=G.tqdmdisable)
            build_pmls(G, pbar)
            pbar.close()

        # Build the model, i.e. set the material properties (ID) for every edge of every Yee cell
        print()
        pbar = tqdm(total=2,
                    desc='Building main grid',
                    ncols=get_terminal_width() - 1,
                    file=sys.stdout,
                    disable=G.tqdmdisable)
        build_electric_components(G.solid, G.rigidE, G.ID, G)
        pbar.update()
        build_magnetic_components(G.solid, G.rigidH, G.ID, G)
        pbar.update()
        pbar.close()

        # Process any voltage sources (that have resistance) to create a new material at the source location
        for voltagesource in G.voltagesources:
            voltagesource.create_material(G)

        # Initialise arrays of update coefficients to pass to update functions
        G.initialise_std_update_coeff_arrays()

        # Initialise arrays of update coefficients and temporary values if there are any dispersive materials
        if Material.maxpoles != 0:
            G.initialise_dispersive_arrays()

        # Process complete list of materials - calculate update coefficients, store in arrays, and build text list of materials/properties
        materialsdata = process_materials(G)
        if G.messages:
            materialstable = AsciiTable(materialsdata)
            materialstable.outer_border = False
            materialstable.justify_columns[0] = 'right'
            print(materialstable.table)

        # Check to see if numerical dispersion might be a problem
        results = dispersion_analysis(G)
        if not results['waveform']:
            print(
                Fore.RED +
                "\nWARNING: Numerical dispersion analysis not carried out as either no waveform detected or waveform does not fit within specified time window and is therefore being truncated."
                + Style.RESET_ALL)
        elif results['N'] < G.mingridsampling:
            raise GeneralError(
                "Non-physical wave propagation: Material '{}' has wavelength sampled by {} cells, less than required minimum for physical wave propagation. Maximum significant frequency estimated as {:g}Hz"
                .format(results['material'].ID, results['N'],
                        results['maxfreq']))
        elif results['deltavp'] and np.abs(
                results['deltavp']) > G.maxnumericaldisp:
            print(
                Fore.RED +
                "\nWARNING: Potentially significant numerical dispersion. Estimated largest physical phase-velocity error is {:.2f}% in material '{}' whose wavelength sampled by {} cells. Maximum significant frequency estimated as {:g}Hz"
                .format(results['deltavp'], results['material'].ID,
                        results['N'], results['maxfreq']) + Style.RESET_ALL)
        elif results['deltavp'] and G.messages:
            print(
                "\nNumerical dispersion analysis: estimated largest physical phase-velocity error is {:.2f}% in material '{}' whose wavelength sampled by {} cells. Maximum significant frequency estimated as {:g}Hz"
                .format(results['deltavp'], results['material'].ID,
                        results['N'], results['maxfreq']))

    # If geometry information to be reused between model runs
    else:
        inputfilestr = '\n--- Model {}/{}, input file (not re-processed, i.e. geometry fixed): {}'.format(
            currentmodelrun, numbermodelruns, inputfile.name)
        print(Fore.GREEN + '{} {}\n'.format(
            inputfilestr, '-' *
            (get_terminal_width() - 1 - len(inputfilestr))) + Style.RESET_ALL)

        # Clear arrays for field components
        G.initialise_field_arrays()

        # Clear arrays for fields in PML
        for pml in G.pmls:
            pml.initialise_field_arrays()

    # Adjust position of simple sources and receivers if required
    if G.srcsteps[0] != 0 or G.srcsteps[1] != 0 or G.srcsteps[2] != 0:
        for source in itertools.chain(G.hertziandipoles, G.magneticdipoles):
            if currentmodelrun == 1:
                if source.xcoord + G.srcsteps[0] * (
                        numbermodelruns -
                        1) < 0 or source.xcoord + G.srcsteps[0] * (
                            numbermodelruns -
                            1) > G.nx or source.ycoord + G.srcsteps[1] * (
                                numbermodelruns -
                                1) < 0 or source.ycoord + G.srcsteps[1] * (
                                    numbermodelruns - 1
                                ) > G.ny or source.zcoord + G.srcsteps[2] * (
                                    numbermodelruns -
                                    1) < 0 or source.zcoord + G.srcsteps[2] * (
                                        numbermodelruns - 1) > G.nz:
                    raise GeneralError(
                        'Source(s) will be stepped to a position outside the domain.'
                    )
            source.xcoord = source.xcoordorigin + (currentmodelrun -
                                                   1) * G.srcsteps[0]
            source.ycoord = source.ycoordorigin + (currentmodelrun -
                                                   1) * G.srcsteps[1]
            source.zcoord = source.zcoordorigin + (currentmodelrun -
                                                   1) * G.srcsteps[2]
    if G.rxsteps[0] != 0 or G.rxsteps[1] != 0 or G.rxsteps[2] != 0:
        for receiver in G.rxs:
            if currentmodelrun == 1:
                if receiver.xcoord + G.rxsteps[0] * (
                        numbermodelruns -
                        1) < 0 or receiver.xcoord + G.rxsteps[0] * (
                            numbermodelruns -
                            1) > G.nx or receiver.ycoord + G.rxsteps[1] * (
                                numbermodelruns -
                                1) < 0 or receiver.ycoord + G.rxsteps[1] * (
                                    numbermodelruns - 1
                                ) > G.ny or receiver.zcoord + G.rxsteps[2] * (
                                    numbermodelruns - 1
                                ) < 0 or receiver.zcoord + G.rxsteps[2] * (
                                    numbermodelruns - 1) > G.nz:
                    raise GeneralError(
                        'Receiver(s) will be stepped to a position outside the domain.'
                    )
            receiver.xcoord = receiver.xcoordorigin + (currentmodelrun -
                                                       1) * G.rxsteps[0]
            receiver.ycoord = receiver.ycoordorigin + (currentmodelrun -
                                                       1) * G.rxsteps[1]
            receiver.zcoord = receiver.zcoordorigin + (currentmodelrun -
                                                       1) * G.rxsteps[2]

    # Write files for any geometry views and geometry object outputs
    if not (G.geometryviews or G.geometryobjectswrite) and args.geometry_only:
        print(
            Fore.RED +
            '\nWARNING: No geometry views or geometry objects to output found.'
            + Style.RESET_ALL)
    if G.geometryviews:
        print()
        for i, geometryview in enumerate(G.geometryviews):
            geometryview.set_filename(currentmodelrun, numbermodelruns, G)
            pbar = tqdm(total=geometryview.datawritesize,
                        unit='byte',
                        unit_scale=True,
                        desc='Writing geometry view file {}/{}, {}'.format(
                            i + 1, len(G.geometryviews),
                            os.path.split(geometryview.filename)[1]),
                        ncols=get_terminal_width() - 1,
                        file=sys.stdout,
                        disable=G.tqdmdisable)
            geometryview.write_vtk(currentmodelrun, numbermodelruns, G, pbar)
            pbar.close()
    if G.geometryobjectswrite:
        for i, geometryobject in enumerate(G.geometryobjectswrite):
            pbar = tqdm(total=geometryobject.datawritesize,
                        unit='byte',
                        unit_scale=True,
                        desc='Writing geometry object file {}/{}, {}'.format(
                            i + 1, len(G.geometryobjectswrite),
                            os.path.split(geometryobject.filename)[1]),
                        ncols=get_terminal_width() - 1,
                        file=sys.stdout,
                        disable=G.tqdmdisable)
            geometryobject.write_hdf5(G, pbar)
            pbar.close()

    # Run simulation (if not only looking ar geometry information)
    if not args.geometry_only:

        # Prepare any snapshot files
        for snapshot in G.snapshots:
            snapshot.prepare_vtk_imagedata(currentmodelrun, numbermodelruns, G)

        # Output filename
        inputfileparts = os.path.splitext(
            os.path.join(G.inputdirectory, G.inputfilename))
        if numbermodelruns == 1:
            outputfile = inputfileparts[0] + '.out'
        else:
            outputfile = inputfileparts[0] + str(currentmodelrun) + '.out'
        print('\nOutput file: {}\n'.format(outputfile))

        # Main FDTD solving functions for either CPU or GPU
        tsolve = solve_cpu(currentmodelrun, numbermodelruns, G)

        # Write an output file in HDF5 format
        write_hdf5_outputfile(outputfile, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz,
                              G)

        if G.messages:
            print('Memory (RAM) used: ~{}'.format(
                human_size(p.memory_info().rss)))
            print('Solving time [HH:MM:SS]: {}'.format(
                datetime.timedelta(seconds=tsolve)))

        return tsolve

    # If geometry information to be reused between model runs then FDTDGrid class instance must be global so that it persists
    if not args.geometry_fixed:
        del G
def process_singlecmds(singlecmds, multicmds, G):
    """Checks the validity of command parameters and creates instances of classes of parameters.
        
    Args:
        singlecmds (dict): Commands that can only occur once in the model.
        multicmds (dict): Commands that can have multiple instances in the model (required to pass to process_materials_file function).
        G (class): Grid class instance - holds essential parameters describing the model.
    """

    # Check validity of command parameters in order needed
    # messages
    cmd = "#messages"
    if singlecmds[cmd] != "None":
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1:
            raise CmdInputError(cmd + " requires exactly one parameter")
        if singlecmds[cmd].lower() == "y":
            G.messages = True
        elif singlecmds[cmd].lower() == "n":
            G.messages = False
        else:
            raise CmdInputError(cmd + " requires input values of either y or n")

    # Title
    cmd = "#title"
    if singlecmds[cmd] != "None":
        G.title = singlecmds[cmd]
        if G.messages:
            print("Model title: {}".format(G.title))

    # Number of processors to run on (OpenMP)
    cmd = "#num_threads"
    ompthreads = os.environ.get("OMP_NUM_THREADS")
    if singlecmds[cmd] != "None":
        tmp = tuple(int(x) for x in singlecmds[cmd].split())
        if len(tmp) != 1:
            raise CmdInputError(cmd + " requires exactly one parameter to specify the number of threads to use")
        if tmp[0] < 1:
            raise CmdInputError(cmd + " requires the value to be an integer not less than one")
        G.nthreads = tmp[0]
    elif ompthreads:
        G.nthreads = int(ompthreads)
    else:
        # Set number of threads to number of physical CPU cores, i.e. avoid hyperthreading with OpenMP
        G.nthreads = psutil.cpu_count(logical=False)
    if G.messages:
        print("Number of threads: {}".format(G.nthreads))

    # Spatial discretisation
    cmd = "#dx_dy_dz"
    tmp = [float(x) for x in singlecmds[cmd].split()]
    if len(tmp) != 3:
        raise CmdInputError(cmd + " requires exactly three parameters")
    if tmp[0] <= 0:
        raise CmdInputError(cmd + " requires the x-direction spatial step to be greater than zero")
    if tmp[1] <= 0:
        raise CmdInputError(cmd + " requires the y-direction spatial step to be greater than zero")
    if tmp[2] <= 0:
        raise CmdInputError(cmd + " requires the z-direction spatial step to be greater than zero")
    G.dx = tmp[0]
    G.dy = tmp[1]
    G.dz = tmp[2]
    if G.messages:
        print("Spatial discretisation: {:g} x {:g} x {:g}m".format(G.dx, G.dy, G.dz))

    # Domain
    cmd = "#domain"
    tmp = [float(x) for x in singlecmds[cmd].split()]
    if len(tmp) != 3:
        raise CmdInputError(cmd + " requires exactly three parameters")
    G.nx = round_value(tmp[0] / G.dx)
    G.ny = round_value(tmp[1] / G.dy)
    G.nz = round_value(tmp[2] / G.dz)
    if G.messages:
        print(
            "Model domain: {:g} x {:g} x {:g}m ({:d} x {:d} x {:d} = {:g} cells)".format(
                tmp[0], tmp[1], tmp[2], G.nx, G.ny, G.nz, (G.nx * G.ny * G.nz)
            )
        )
        mem = (
            (
                (G.nx + 1) * (G.ny + 1) * (G.nz + 1) * 13 * np.dtype(floattype).itemsize
                + (G.nx + 1) * (G.ny + 1) * (G.nz + 1) * 18
            )
            * 1.1
        ) + 30e6
        print(
            "Memory (RAM) usage: ~{} required, {} available".format(
                human_size(mem), human_size(psutil.virtual_memory().total)
            )
        )

    # Time step CFL limit - use either 2D or 3D (default)
    cmd = "#time_step_limit_type"
    if singlecmds[cmd] != "None":
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1:
            raise CmdInputError(cmd + " requires exactly one parameter")
        if singlecmds[cmd].lower() == "2d":
            if G.nx == 1:
                G.dt = 1 / (c * np.sqrt((1 / G.dy) * (1 / G.dy) + (1 / G.dz) * (1 / G.dz)))
            elif G.ny == 1:
                G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dz) * (1 / G.dz)))
            elif G.nz == 1:
                G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dy) * (1 / G.dy)))
            else:
                raise CmdInputError(cmd + " 2D CFL limit can only be used when one dimension of the domain is one cell")
        elif singlecmds[cmd].lower() == "3d":
            G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dy) * (1 / G.dy) + (1 / G.dz) * (1 / G.dz)))
        else:
            raise CmdInputError(cmd + " requires input values of either 2D or 3D")
    else:
        G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dy) * (1 / G.dy) + (1 / G.dz) * (1 / G.dz)))

    # Round down time step to nearest float with precision one less than hardware maximum. Avoids inadvertently exceeding the CFL due to binary representation of floating point number.
    G.dt = round_value(G.dt, decimalplaces=d.getcontext().prec - 1)

    if G.messages:
        print("Time step: {:g} secs".format(G.dt))

    # Time step stability factor
    cmd = "#time_step_stability_factor"
    if singlecmds[cmd] != "None":
        tmp = tuple(float(x) for x in singlecmds[cmd].split())
        if len(tmp) != 1:
            raise CmdInputError(cmd + " requires exactly one parameter")
        if tmp[0] <= 0 or tmp[0] > 1:
            raise CmdInputError(
                cmd + " requires the value of the time step stability factor to be between zero and one"
            )
        G.dt = G.dt * tmp[0]
        if G.messages:
            print("Time step (modified): {:g} secs".format(G.dt))

    # Time window
    cmd = "#time_window"
    tmp = singlecmds[cmd].split()
    if len(tmp) != 1:
        raise CmdInputError(
            cmd
            + " requires exactly one parameter to specify the time window. Either in seconds or number of iterations."
        )
    tmp = tmp[0].lower()
    # If real floating point value given
    if "." in tmp or "e" in tmp:
        if float(tmp) > 0:
            G.timewindow = float(tmp)
            G.iterations = round_value((float(tmp) / G.dt)) + 1
        else:
            raise CmdInputError(cmd + " must have a value greater than zero")
    # If number of iterations given
    else:
        G.timewindow = (int(tmp) - 1) * G.dt
        G.iterations = int(tmp)
    if G.messages:
        print("Time window: {:g} secs ({} iterations)".format(G.timewindow, G.iterations))

    # PML
    cmd = "#pml_cells"
    if singlecmds[cmd] != "None":
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1 and len(tmp) != 6:
            raise CmdInputError(cmd + " requires either one or six parameters")
        if len(tmp) == 1:
            G.pmlthickness = (int(tmp[0]), int(tmp[0]), int(tmp[0]), int(tmp[0]), int(tmp[0]), int(tmp[0]))
        else:
            G.pmlthickness = (int(tmp[0]), int(tmp[1]), int(tmp[2]), int(tmp[3]), int(tmp[4]), int(tmp[5]))
        if (
            2 * G.pmlthickness[0] >= G.nx
            or 2 * G.pmlthickness[1] >= G.ny
            or 2 * G.pmlthickness[2] >= G.nz
            or 2 * G.pmlthickness[3] >= G.nx
            or 2 * G.pmlthickness[4] >= G.ny
            or 2 * G.pmlthickness[5] >= G.nz
        ):
            raise CmdInputError(cmd + " has too many cells for the domain size")

    # src_steps
    cmd = "#src_steps"
    if singlecmds[cmd] != "None":
        tmp = singlecmds[cmd].split()
        if len(tmp) != 3:
            raise CmdInputError(cmd + " requires exactly three parameters")
        G.srcstepx = round_value(float(tmp[0]) / G.dx)
        G.srcstepy = round_value(float(tmp[1]) / G.dy)
        G.srcstepz = round_value(float(tmp[2]) / G.dz)
        if G.messages:
            print(
                "All sources will step {:g}m, {:g}m, {:g}m for each model run.".format(
                    G.srcstepx * G.dx, G.srcstepy * G.dy, G.srcstepz * G.dz
                )
            )

    # rx_steps
    cmd = "#rx_steps"
    if singlecmds[cmd] != "None":
        tmp = singlecmds[cmd].split()
        if len(tmp) != 3:
            raise CmdInputError(cmd + " requires exactly three parameters")
        G.rxstepx = round_value(float(tmp[0]) / G.dx)
        G.rxstepy = round_value(float(tmp[1]) / G.dy)
        G.rxstepz = round_value(float(tmp[2]) / G.dz)
        if G.messages:
            print(
                "All receivers will step {:g}m, {:g}m, {:g}m for each model run.".format(
                    G.rxstepx * G.dx, G.rxstepy * G.dy, G.rxstepz * G.dz
                )
            )

    # Excitation file for user-defined source waveforms
    cmd = "#excitation_file"
    if singlecmds[cmd] != "None":
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1:
            raise CmdInputError(cmd + " requires exactly one parameter")
        excitationfile = tmp[0]

        # Open file and get waveform names
        with open(excitationfile, "r") as f:
            waveformIDs = f.readline().split()

        # Read all waveform values into an array
        waveformvalues = np.loadtxt(excitationfile, skiprows=1, dtype=floattype)

        for waveform in range(len(waveformIDs)):
            if any(x.ID == waveformIDs[waveform] for x in G.waveforms):
                raise CmdInputError("Waveform with ID {} already exists".format(waveformIDs[waveform]))
            w = Waveform()
            w.ID = waveformIDs[waveform]
            w.type = "user"
            if len(waveformvalues.shape) == 1:
                w.uservalues = waveformvalues[:]
            else:
                w.uservalues = waveformvalues[:, waveform]

            if G.messages:
                print("User waveform {} created.".format(w.ID))

            G.waveforms.append(w)
Example #15
0
def process_singlecmds(singlecmds, G):
    """Checks the validity of command parameters and creates instances of classes of parameters.

    Args:
        singlecmds (dict): Commands that can only occur once in the model.
        G (class): Grid class instance - holds essential parameters describing the model.
    """

    # Check validity of command parameters in order needed
    # messages
    cmd = '#messages'
    if singlecmds[cmd] is not None:
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1:
            raise CmdInputError(cmd + ' requires exactly one parameter')
        if singlecmds[cmd].lower() == 'y':
            G.messages = True
        elif singlecmds[cmd].lower() == 'n':
            G.messages = False
        else:
            raise CmdInputError(cmd +
                                ' requires input values of either y or n')

    # Title
    cmd = '#title'
    if singlecmds[cmd] is not None:
        G.title = singlecmds[cmd]
        if G.messages:
            print('Model title: {}'.format(G.title))

    # Get information about host machine
    hostinfo = get_host_info()

    # Number of threads (OpenMP) to use
    cmd = '#num_threads'
    if sys.platform == 'darwin':
        os.environ[
            'OMP_WAIT_POLICY'] = 'ACTIVE'  # Should waiting threads consume CPU power (can drastically effect performance)
    os.environ[
        'OMP_DYNAMIC'] = 'FALSE'  # Number of threads may be adjusted by the run time environment to best utilize system resources
    os.environ[
        'OMP_PLACES'] = 'cores'  # Each place corresponds to a single core (having one or more hardware threads)
    os.environ['OMP_PROC_BIND'] = 'TRUE'  # Bind threads to physical cores
    # os.environ['OMP_DISPLAY_ENV'] = 'TRUE' # Prints OMP version and environment variables (useful for debug)

    # Catch bug with Windows Subsystem for Linux (https://github.com/Microsoft/BashOnWindows/issues/785)
    if 'Microsoft' in hostinfo['osversion']:
        os.environ['KMP_AFFINITY'] = 'disabled'
        del os.environ['OMP_PLACES']
        del os.environ['OMP_PROC_BIND']

    if singlecmds[cmd] is not None:
        tmp = tuple(int(x) for x in singlecmds[cmd].split())
        if len(tmp) != 1:
            raise CmdInputError(
                cmd +
                ' requires exactly one parameter to specify the number of threads to use'
            )
        if tmp[0] < 1:
            raise CmdInputError(
                cmd + ' requires the value to be an integer not less than one')
        G.nthreads = tmp[0]
        os.environ['OMP_NUM_THREADS'] = str(G.nthreads)
    elif os.environ.get('OMP_NUM_THREADS'):
        G.nthreads = int(os.environ.get('OMP_NUM_THREADS'))
    else:
        # Set number of threads to number of physical CPU cores
        G.nthreads = hostinfo['physicalcores']
        os.environ['OMP_NUM_THREADS'] = str(G.nthreads)

    if G.messages:
        print('Number of CPU (OpenMP) threads: {}'.format(G.nthreads))
    if G.nthreads > hostinfo['physicalcores']:
        print(
            Fore.RED +
            'WARNING: You have specified more threads ({}) than available physical CPU cores ({}). This may lead to degraded performance.'
            .format(G.nthreads, hostinfo['physicalcores']) + Style.RESET_ALL)

    # Spatial discretisation
    cmd = '#dx_dy_dz'
    tmp = [float(x) for x in singlecmds[cmd].split()]
    if len(tmp) != 3:
        raise CmdInputError(cmd + ' requires exactly three parameters')
    if tmp[0] <= 0:
        raise CmdInputError(
            cmd +
            ' requires the x-direction spatial step to be greater than zero')
    if tmp[1] <= 0:
        raise CmdInputError(
            cmd +
            ' requires the y-direction spatial step to be greater than zero')
    if tmp[2] <= 0:
        raise CmdInputError(
            cmd +
            ' requires the z-direction spatial step to be greater than zero')
    G.dx = tmp[0]
    G.dy = tmp[1]
    G.dz = tmp[2]
    if G.messages:
        print('Spatial discretisation: {:g} x {:g} x {:g}m'.format(
            G.dx, G.dy, G.dz))

    # Domain
    cmd = '#domain'
    tmp = [float(x) for x in singlecmds[cmd].split()]
    if len(tmp) != 3:
        raise CmdInputError(cmd + ' requires exactly three parameters')
    G.nx = round_value(tmp[0] / G.dx)
    G.ny = round_value(tmp[1] / G.dy)
    G.nz = round_value(tmp[2] / G.dz)
    if G.nx == 0 or G.ny == 0 or G.nz == 0:
        raise CmdInputError(cmd +
                            ' requires at least one cell in every dimension')
    if G.messages:
        print(
            'Domain size: {:g} x {:g} x {:g}m ({:d} x {:d} x {:d} = {:g} cells)'
            .format(tmp[0], tmp[1], tmp[2], G.nx, G.ny, G.nz,
                    (G.nx * G.ny * G.nz)))

    # Estimate memory (RAM) usage
    memestimate = memory_usage(G)
    # Check if model can be built and/or run on host
    if memestimate > hostinfo['ram']:
        raise GeneralError(
            'Estimated memory (RAM) required ~{} exceeds {} detected!\n'.
            format(human_size(memestimate),
                   human_size(hostinfo['ram'], a_kilobyte_is_1024_bytes=True)))
    if G.messages:
        print('Estimated memory (RAM) required: ~{}'.format(
            human_size(memestimate)))

    # Time step CFL limit (use either 2D or 3D) and default PML thickness
    if G.nx == 1:
        G.dt = 1 / (c * np.sqrt((1 / G.dy) * (1 / G.dy) + (1 / G.dz) *
                                (1 / G.dz)))
        G.dimension = '2D'
        G.pmlthickness['x0'] = 0
        G.pmlthickness['xmax'] = 0
    elif G.ny == 1:
        G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dz) *
                                (1 / G.dz)))
        G.dimension = '2D'
        G.pmlthickness['y0'] = 0
        G.pmlthickness['ymax'] = 0
    elif G.nz == 1:
        G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dy) *
                                (1 / G.dy)))
        G.dimension = '2D'
        G.pmlthickness['z0'] = 0
        G.pmlthickness['zmax'] = 0
    else:
        G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dy) *
                                (1 / G.dy) + (1 / G.dz) * (1 / G.dz)))
        G.dimension = '3D'

    # Round down time step to nearest float with precision one less than hardware maximum. Avoids inadvertently exceeding the CFL due to binary representation of floating point number.
    G.dt = round_value(G.dt, decimalplaces=d.getcontext().prec - 1)

    if G.messages:
        print('Time step (at {} CFL limit): {:g} secs'.format(
            G.dimension, G.dt))

    # Time step stability factor
    cmd = '#time_step_stability_factor'
    if singlecmds[cmd] is not None:
        tmp = tuple(float(x) for x in singlecmds[cmd].split())
        if len(tmp) != 1:
            raise CmdInputError(cmd + ' requires exactly one parameter')
        if tmp[0] <= 0 or tmp[0] > 1:
            raise CmdInputError(
                cmd +
                ' requires the value of the time step stability factor to be between zero and one'
            )
        G.dt = G.dt * tmp[0]
        if G.messages:
            print('Time step (modified): {:g} secs'.format(G.dt))

    # Time window
    cmd = '#time_window'
    tmp = singlecmds[cmd].split()
    if len(tmp) != 1:
        raise CmdInputError(
            cmd +
            ' requires exactly one parameter to specify the time window. Either in seconds or number of iterations.'
        )
    tmp = tmp[0].lower()

    # If number of iterations given
    try:
        tmp = int(tmp)
        G.timewindow = (tmp - 1) * G.dt
        G.iterations = tmp
    # If real floating point value given
    except:
        tmp = float(tmp)
        if tmp > 0:
            G.timewindow = tmp
            G.iterations = round_value((tmp / G.dt)) + 1
        else:
            raise CmdInputError(cmd + ' must have a value greater than zero')
    if G.messages:
        print('Time window: {:g} secs ({} iterations)'.format(
            G.timewindow, G.iterations))

    # PML
    cmd = '#pml_cells'
    if singlecmds[cmd] is not None:
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1 and len(tmp) != 6:
            raise CmdInputError(cmd + ' requires either one or six parameters')
        if len(tmp) == 1:
            for key in G.pmlthickness.keys():
                G.pmlthickness[key] = int(tmp[0])
        else:
            G.pmlthickness['x0'] = int(tmp[0])
            G.pmlthickness['y0'] = int(tmp[1])
            G.pmlthickness['z0'] = int(tmp[2])
            G.pmlthickness['xmax'] = int(tmp[3])
            G.pmlthickness['ymax'] = int(tmp[4])
            G.pmlthickness['zmax'] = int(tmp[5])
    if 2 * G.pmlthickness['x0'] >= G.nx or 2 * G.pmlthickness[
            'y0'] >= G.ny or 2 * G.pmlthickness[
                'z0'] >= G.nz or 2 * G.pmlthickness[
                    'xmax'] >= G.nx or 2 * G.pmlthickness[
                        'ymax'] >= G.ny or 2 * G.pmlthickness['zmax'] >= G.nz:
        raise CmdInputError(cmd + ' has too many cells for the domain size')

    # src_steps
    cmd = '#src_steps'
    if singlecmds[cmd] is not None:
        tmp = singlecmds[cmd].split()
        if len(tmp) != 3:
            raise CmdInputError(cmd + ' requires exactly three parameters')
        G.srcsteps[0] = round_value(float(tmp[0]) / G.dx)
        G.srcsteps[1] = round_value(float(tmp[1]) / G.dy)
        G.srcsteps[2] = round_value(float(tmp[2]) / G.dz)
        if G.messages:
            print(
                'Simple sources will step {:g}m, {:g}m, {:g}m for each model run.'
                .format(G.srcsteps[0] * G.dx, G.srcsteps[1] * G.dy,
                        G.srcsteps[2] * G.dz))

    # rx_steps
    cmd = '#rx_steps'
    if singlecmds[cmd] is not None:
        tmp = singlecmds[cmd].split()
        if len(tmp) != 3:
            raise CmdInputError(cmd + ' requires exactly three parameters')
        G.rxsteps[0] = round_value(float(tmp[0]) / G.dx)
        G.rxsteps[1] = round_value(float(tmp[1]) / G.dy)
        G.rxsteps[2] = round_value(float(tmp[2]) / G.dz)
        if G.messages:
            print(
                'All receivers will step {:g}m, {:g}m, {:g}m for each model run.'
                .format(G.rxsteps[0] * G.dx, G.rxsteps[1] * G.dy,
                        G.rxsteps[2] * G.dz))

    # Excitation file for user-defined source waveforms
    cmd = '#excitation_file'
    if singlecmds[cmd] is not None:
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1:
            raise CmdInputError(cmd + ' requires exactly one parameter')
        excitationfile = tmp[0]

        # See if file exists at specified path and if not try input file directory
        if not os.path.isfile(excitationfile):
            excitationfile = os.path.abspath(
                os.path.join(G.inputdirectory, excitationfile))

        # Get waveform names
        with open(excitationfile, 'r') as f:
            waveformIDs = f.readline().split()

        # Read all waveform values into an array
        waveformvalues = np.loadtxt(excitationfile,
                                    skiprows=1,
                                    dtype=floattype)

        for waveform in range(len(waveformIDs)):
            if any(x.ID == waveformIDs[waveform] for x in G.waveforms):
                raise CmdInputError(
                    'Waveform with ID {} already exists'.format(
                        waveformIDs[waveform]))
            w = Waveform()
            w.ID = waveformIDs[waveform]
            w.type = 'user'
            if len(waveformvalues.shape) == 1:
                w.uservalues = waveformvalues[:]
            else:
                w.uservalues = waveformvalues[:, waveform]

            if G.messages:
                print('User waveform {} created.'.format(w.ID))

            G.waveforms.append(w)
Example #16
0
def run_model(args, modelrun, numbermodelruns, inputfile, usernamespace):
    """Runs a model - processes the input file; builds the Yee cells; calculates update coefficients; runs main FDTD loop.
        
    Args:
        args (dict): Namespace with command line arguments
        modelrun (int): Current model run number.
        numbermodelruns (int): Total number of model runs.
        inputfile (str): Name of the input file to open.
        usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.
        
    Returns:
        tsolve (int): Length of time (seconds) of main FDTD calculations
    """
    
    # Monitor memory usage
    p = psutil.Process()
    
    print('\n{}\n\nModel input file: {}\n'.format(68*'*', inputfile))
    
    # Add the current model run to namespace that can be accessed by user in any Python code blocks in input file
    usernamespace['current_model_run'] = modelrun
    print('Constants/variables available for Python scripting: {}\n'.format(usernamespace))
    
    # Process any user input Python commands
    processedlines = python_code_blocks(inputfile, usernamespace)
    
    # Write a file containing the input commands after Python blocks have been processed
    if args.write_python:
        write_python_processed(inputfile, modelrun, numbermodelruns, processedlines)
    
    # Check validity of command names & that essential commands are present
    singlecmds, multicmds, geometry = check_cmd_names(processedlines)

    # Initialise an instance of the FDTDGrid class
    G = FDTDGrid()
    G.inputdirectory = usernamespace['inputdirectory']

    # Process parameters for commands that can only occur once in the model
    process_singlecmds(singlecmds, multicmds, G)

    # Process parameters for commands that can occur multiple times in the model
    process_multicmds(multicmds, G)

    # Initialise an array for volumetric material IDs (solid), boolean arrays for specifying materials not to be averaged (rigid),
    # an array for cell edge IDs (ID), and arrays for the field components.
    G.initialise_std_arrays()

    # Process the geometry commands in the order they were given
    tinputprocstart = perf_counter()
    process_geometrycmds(geometry, G)
    tinputprocend = perf_counter()
    print('\nInput file processed in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tinputprocend - tinputprocstart))))

    # Build the PML and calculate initial coefficients
    build_pmls(G)

    # Build the model, i.e. set the material properties (ID) for every edge of every Yee cell
    tbuildstart = perf_counter()
    build_electric_components(G.solid, G.rigidE, G.ID, G)
    build_magnetic_components(G.solid, G.rigidH, G.ID, G)
    tbuildend = perf_counter()
    print('\nModel built in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tbuildend - tbuildstart))))

    # Process any voltage sources (that have resistance) to create a new material at the source location
    for voltagesource in G.voltagesources:
        voltagesource.create_material(G)
    
    # Initialise arrays of update coefficients to pass to update functions
    G.initialise_std_updatecoeff_arrays()

    # Initialise arrays of update coefficients and temporary values if there are any dispersive materials
    if Material.maxpoles != 0:
        G.initialise_dispersive_arrays()

    # Calculate update coefficients, store in arrays, and list materials in model
    if G.messages:
        print('\nMaterials:\n')
        print('ID\tName\t\tProperties')
        print('{}'.format('-'*50))
    for material in G.materials:
        
        # Calculate update coefficients for material
        material.calculate_update_coeffsE(G)
        material.calculate_update_coeffsH(G)
        
        # Store all update coefficients together
        G.updatecoeffsE[material.numID, :] = material.CA, material.CBx, material.CBy, material.CBz, material.srce
        G.updatecoeffsH[material.numID, :] = material.DA, material.DBx, material.DBy, material.DBz, material.srcm
        
        # Store coefficients for any dispersive materials
        if Material.maxpoles != 0:
            z = 0
            for pole in range(Material.maxpoles):
                G.updatecoeffsdispersive[material.numID, z:z+3] = e0 * material.eqt2[pole], material.eqt[pole], material.zt[pole]
                z += 3
        
        if G.messages:
            if material.deltaer and material.tau:
                tmp = 'delta_epsr={}, tau={} secs; '.format(', '.join('{:g}'.format(deltaer) for deltaer in material.deltaer), ', '.join('{:g}'.format(tau) for tau in material.tau))
            else:
                tmp = ''
            if material.average:
                dielectricsmoothing = 'dielectric smoothing permitted.'
            else:
                dielectricsmoothing = 'dielectric smoothing not permitted.'
            print('{:3}\t{:12}\tepsr={:g}, sig={:g} S/m; mur={:g}, sig*={:g} S/m; '.format(material.numID, material.ID, material.er, material.se, material.mr, material.sm) + tmp + dielectricsmoothing)

    # Check to see if numerical dispersion might be a problem
    if dispersion_check(G.waveforms, G.materials, G.dx, G.dy, G.dz):
        print('\nWARNING: Potential numerical dispersion in the simulation. Check the spatial discretisation against the smallest wavelength present.')
    

    # Write files for any geometry views
    if not G.geometryviews and args.geometry_only:
        raise GeneralError('No geometry views found.')
    elif G.geometryviews:
        tgeostart = perf_counter()
        for geometryview in G.geometryviews:
            geometryview.write_file(modelrun, numbermodelruns, G)
        tgeoend = perf_counter()
        print('\nGeometry file(s) written in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tgeoend - tgeostart))))

    # Run simulation if not doing only geometry
    if not args.geometry_only:
        
        # Prepare any snapshot files
        for snapshot in G.snapshots:
            snapshot.prepare_file(modelrun, numbermodelruns, G)

        # Prepare output file
        inputfileparts = os.path.splitext(inputfile)
        if numbermodelruns == 1:
            outputfile = inputfileparts[0] + '.out'
        else:
            outputfile = inputfileparts[0] + str(modelrun) + '.out'
        sys.stdout.write('\nOutput to file: {}\n'.format(outputfile))
        sys.stdout.flush()
        f = prepare_output_file(outputfile, G)

        # Adjust position of sources and receivers if required
        if G.srcstepx > 0 or G.srcstepy > 0 or G.srcstepz > 0:
            for source in itertools.chain(G.hertziandipoles, G.magneticdipoles, G.voltagesources, G.transmissionlines):
                source.xcoord += (modelrun - 1) * G.srcstepx
                source.ycoord += (modelrun - 1) * G.srcstepy
                source.zcoord += (modelrun - 1) * G.srcstepz
        if G.rxstepx > 0 or G.rxstepy > 0 or G.rxstepz > 0:
            for receiver in G.rxs:
                receiver.xcoord += (modelrun - 1) * G.rxstepx
                receiver.ycoord += (modelrun - 1) * G.rxstepy
                receiver.zcoord += (modelrun - 1) * G.rxstepz

        ##################################
        #   Main FDTD calculation loop   #
        ##################################
        tsolvestart = perf_counter()
        # Absolute time
        abstime = 0

        for timestep in range(G.iterations):
            if timestep == 0:
                tstepstart = perf_counter()
            
            # Write field outputs to file
            write_output(f, timestep, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz, G)
            
            # Write any snapshots to file
            for snapshot in G.snapshots:
                if snapshot.time == timestep + 1:
                    snapshot.write_snapshot(G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz, G)

            # Update electric field components
            if Material.maxpoles == 0: # All materials are non-dispersive so do standard update
                update_electric(G.nx, G.ny, G.nz, G.nthreads, G.updatecoeffsE, G.ID, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz)
            elif Material.maxpoles == 1: # If there are any dispersive materials do 1st part of dispersive update (it is split into two parts as it requires present and updated electric field values).
                update_electric_dispersive_1pole_A(G.nx, G.ny, G.nz, G.nthreads, G.updatecoeffsE, G.updatecoeffsdispersive, G.ID, G.Tx, G.Ty, G.Tz, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz)
            elif Material.maxpoles > 1:
                update_electric_dispersive_multipole_A(G.nx, G.ny, G.nz, G.nthreads, Material.maxpoles, G.updatecoeffsE, G.updatecoeffsdispersive, G.ID, G.Tx, G.Ty, G.Tz, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz)

            # Update electric field components with the PML correction
            update_electric_pml(G)

            # Update electric field components from sources
            for voltagesource in G.voltagesources:
                voltagesource.update_electric(abstime, G.updatecoeffsE, G.ID, G.Ex, G.Ey, G.Ez, G)
            for transmissionline in G.transmissionlines:
                transmissionline.update_electric(abstime, G.Ex, G.Ey, G.Ez, G)
            for hertziandipole in G.hertziandipoles: # Update any Hertzian dipole sources last
                hertziandipole.update_electric(abstime, G.updatecoeffsE, G.ID, G.Ex, G.Ey, G.Ez, G)

            # If there are any dispersive materials do 2nd part of dispersive update (it is split into two parts as it requires present and updated electric field values). Therefore it can only be completely updated after the electric field has been updated by the PML and source updates.
            if Material.maxpoles == 1:
                update_electric_dispersive_1pole_B(G.nx, G.ny, G.nz, G.nthreads, G.updatecoeffsdispersive, G.ID, G.Tx, G.Ty, G.Tz, G.Ex, G.Ey, G.Ez)
            elif Material.maxpoles > 1:
                update_electric_dispersive_multipole_B(G.nx, G.ny, G.nz, G.nthreads, Material.maxpoles, G.updatecoeffsdispersive, G.ID, G.Tx, G.Ty, G.Tz, G.Ex, G.Ey, G.Ez)

            # Increment absolute time value
            abstime += 0.5 * G.dt
            
            # Update magnetic field components
            update_magnetic(G.nx, G.ny, G.nz, G.nthreads, G.updatecoeffsH, G.ID, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz)

            # Update magnetic field components with the PML correction
            update_magnetic_pml(G)

            # Update magnetic field components from sources
            for transmissionline in G.transmissionlines:
                transmissionline.update_magnetic(abstime, G.Hx, G.Hy, G.Hz, G)
            for magneticdipole in G.magneticdipoles:
                magneticdipole.update_magnetic(abstime, G.updatecoeffsH, G.ID, G.Hx, G.Hy, G.Hz, G)

            # Increment absolute time value
            abstime += 0.5 * G.dt
        
            # Calculate time for two iterations, used to estimate overall runtime
            if timestep == 1:
                tstepend = perf_counter()
                runtime = datetime.timedelta(seconds=int((tstepend - tstepstart) / 2 * G.iterations))
                sys.stdout.write('Estimated runtime [HH:MM:SS]: {}\n'.format(runtime))
                sys.stdout.write('Solving for model run {} of {}...\n'.format(modelrun, numbermodelruns))
                sys.stdout.flush()
            elif timestep > 1:
                update_progress((timestep + 1) / G.iterations)
            
        # Close output file
        f.close()

        tsolveend = perf_counter()
        print('\n\nSolving took [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tsolveend - tsolvestart))))
        print('Peak memory (approx) used: {}'.format(human_size(p.memory_info().rss)))

        return int(tsolveend - tsolvestart)
Example #17
0
def run_main(args):
    """Top-level function that controls what mode of simulation (standard/optimsation/benchmark etc...) is run.

    Args:
        args (dict): Namespace with input arguments from command line or api.
    """

    numbermodelruns = args.n
    with open_path_file(args.inputfile) as inputfile:

        # Get information about host machine
        hostinfo = get_host_info()
        print('\nHost: {}; {} ({} cores); {} RAM; {}'.format(
            hostinfo['machineID'], hostinfo['cpuID'], hostinfo['cpucores'],
            human_size(hostinfo['ram'], a_kilobyte_is_1024_bytes=True),
            hostinfo['osversion']))

        # Create a separate namespace that users can access in any Python code blocks in the input file
        usernamespace = {
            'c': c,
            'e0': e0,
            'm0': m0,
            'z0': z0,
            'number_model_runs': numbermodelruns,
            'input_directory': os.path.dirname(os.path.abspath(inputfile.name))
        }

        #######################################
        # Process for benchmarking simulation #
        #######################################
        if args.benchmark:
            run_benchmark_sim(args, inputfile, usernamespace)

        ####################################################
        # Process for simulation with Taguchi optimisation #
        ####################################################
        elif args.opt_taguchi:
            if args.benchmark:
                raise GeneralError(
                    'Taguchi optimisation should not be used with benchmarking mode'
                )
            from gprMax.optimisation_taguchi import run_opt_sim
            run_opt_sim(args, numbermodelruns, inputfile, usernamespace)

        ################################################
        # Process for standard simulation (CPU or GPU) #
        ################################################
        else:
            # Mixed mode MPI with OpenMP or CUDA - MPI task farm for models with each model parallelised with OpenMP (CPU) or CUDA (GPU)
            if args.mpi:
                if args.benchmark:
                    raise GeneralError(
                        'MPI should not be used with benchmarking mode')
                if numbermodelruns == 1:
                    raise GeneralError(
                        'MPI is not beneficial when there is only one model to run'
                    )
                run_mpi_sim(args, numbermodelruns, inputfile, usernamespace)

            # Standard behaviour - part of a job array on Open Grid Scheduler/Grid Engine with each model parallelised with OpenMP (CPU) or CUDA (GPU)
            elif args.task:
                if args.benchmark:
                    raise GeneralError(
                        'A job array should not be used with benchmarking mode'
                    )
                run_job_array_sim(args, numbermodelruns, inputfile,
                                  usernamespace)

            # Standard behaviour - models run serially with each model parallelised with OpenMP (CPU) or CUDA (GPU)
            else:
                run_std_sim(args, numbermodelruns, inputfile, usernamespace)
Example #18
0
def run_benchmark_sim(args, inputfile, usernamespace):
    """
    Run standard simulation in benchmarking mode - models are run one
    after another and each model is parallelised using either OpenMP (CPU)
    or CUDA (GPU)

    Args:
        args (dict): Namespace with command line arguments
        inputfile (object): File object for the input file.
        usernamespace (dict): Namespace that can be accessed by user in any
                Python code blocks in input file.
    """

    # Get information about host machine
    hostinfo = get_host_info()
    hyperthreading = ', {} cores with Hyper-Threading'.format(hostinfo['logicalcores']) if hostinfo['hyperthreading'] else ''
    machineIDlong = '{}; {} x {} ({} cores{}); {} RAM; {}'.format(hostinfo['machineID'], hostinfo['sockets'], hostinfo['cpuID'], hostinfo['physicalcores'], hyperthreading, human_size(hostinfo['ram'], a_kilobyte_is_1024_bytes=True), hostinfo['osversion'])

    # Initialise arrays to hold CPU thread info and times, and GPU info and times
    cputhreads = np.array([], dtype=np.int32)
    cputimes = np.array([])
    gpuIDs = []
    gputimes = np.array([])

    # CPU only benchmarking
    if args.gpu is None:
        # Number of CPU threads to benchmark - start from single thread and double threads until maximum number of physical cores
        threads = 1
        maxthreads = hostinfo['physicalcores']
        maxthreadspersocket = hostinfo['physicalcores'] / hostinfo['sockets']
        while threads < maxthreadspersocket:
            cputhreads = np.append(cputhreads, int(threads))
            threads *= 2
        # Check for system with only single thread
        if cputhreads.size == 0:
            cputhreads = np.append(cputhreads, threads)
        # Add maxthreadspersocket and maxthreads if necessary
        if cputhreads[-1] != maxthreadspersocket:
            cputhreads = np.append(cputhreads, int(maxthreadspersocket))
        if cputhreads[-1] != maxthreads:
            cputhreads = np.append(cputhreads, int(maxthreads))
        cputhreads = cputhreads[::-1]
        cputimes = np.zeros(len(cputhreads))

        numbermodelruns = len(cputhreads)

    # GPU only benchmarking
    else:
        # Set size of array to store GPU runtimes and number of runs of model required
        if isinstance(args.gpu, list):
            for gpu in args.gpu:
                gpuIDs.append(gpu.name)
            gputimes = np.zeros(len(args.gpu))
            numbermodelruns = len(args.gpu)
        else:
            gpuIDs.append(args.gpu.name)
            gputimes = np.zeros(1)
            numbermodelruns = 1
        # Store GPU information in a temp variable
        gpus = args.gpu

    usernamespace['number_model_runs'] = numbermodelruns
    modelend = numbermodelruns + 1

    for currentmodelrun in range(1, modelend):
        # Run CPU benchmark
        if args.gpu is None:
            os.environ['OMP_NUM_THREADS'] = str(cputhreads[currentmodelrun - 1])
            cputimes[currentmodelrun - 1] = run_model(args, currentmodelrun, modelend - 1, numbermodelruns, inputfile, usernamespace)
        # Run GPU benchmark
        else:
            if isinstance(gpus, list):
                args.gpu = gpus[(currentmodelrun - 1)]
            else:
                args.gpu = gpus
            os.environ['OMP_NUM_THREADS'] = str(hostinfo['physicalcores'])
            gputimes[(currentmodelrun - 1)] = run_model(args, currentmodelrun, modelend - 1, numbermodelruns, inputfile, usernamespace)

        # Get model size (in cells) and number of iterations
        if currentmodelrun == 1:
            if numbermodelruns == 1:
                outputfile = os.path.splitext(args.inputfile)[0] + '.out'
            else:
                outputfile = os.path.splitext(args.inputfile)[0] + str(currentmodelrun) + '.out'
            f = h5py.File(outputfile, 'r')
            iterations = f.attrs['Iterations']
            numcells = f.attrs['nx, ny, nz']

    # Save number of threads and benchmarking times to NumPy archive
    np.savez(os.path.splitext(inputfile.name)[0], machineID=machineIDlong, gpuIDs=gpuIDs, cputhreads=cputhreads, cputimes=cputimes, gputimes=gputimes, iterations=iterations, numcells=numcells, version=__version__)

    simcompletestr = '\n=== Simulation completed'
    print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))
Example #19
0
def solve_gpu(currentmodelrun, modelend, G):
    """Solving using FDTD method on GPU. Implemented using Nvidia CUDA.

    Args:
        currentmodelrun (int): Current model run number.
        modelend (int): Number of last model to run.
        G (class): Grid class instance - holds essential parameters describing the model.

    Returns:
        tsolve (float): Time taken to execute solving
        memsolve (int): memory usage on final iteration in bytes
    """

    import pycuda.driver as drv
    from pycuda.compiler import SourceModule
    drv.init()

    # Suppress nvcc warnings on Windows
    if sys.platform == 'win32':
        compiler_opts = ['-w']
    else:
        compiler_opts = None

    # Create device handle and context on specifc GPU device (and make it current context)
    dev = drv.Device(G.gpu.deviceID)
    ctx = dev.make_context()

    # Electric and magnetic field updates - prepare kernels, and get kernel functions
    if Material.maxpoles > 0:
        kernels_fields = SourceModule(kernels_template_fields.substitute(REAL=cudafloattype, COMPLEX=cudacomplextype, N_updatecoeffsE=G.updatecoeffsE.size, N_updatecoeffsH=G.updatecoeffsH.size, NY_MATCOEFFS=G.updatecoeffsE.shape[1], NY_MATDISPCOEFFS=G.updatecoeffsdispersive.shape[1], NX_FIELDS=G.nx + 1, NY_FIELDS=G.ny + 1, NZ_FIELDS=G.nz + 1, NX_ID=G.ID.shape[1], NY_ID=G.ID.shape[2], NZ_ID=G.ID.shape[3], NX_T=G.Tx.shape[1], NY_T=G.Tx.shape[2], NZ_T=G.Tx.shape[3]), options=compiler_opts)
    else:   # Set to one any substitutions for dispersive materials
        kernels_fields = SourceModule(kernels_template_fields.substitute(REAL=cudafloattype, COMPLEX=cudacomplextype, N_updatecoeffsE=G.updatecoeffsE.size, N_updatecoeffsH=G.updatecoeffsH.size, NY_MATCOEFFS=G.updatecoeffsE.shape[1], NY_MATDISPCOEFFS=1, NX_FIELDS=G.nx + 1, NY_FIELDS=G.ny + 1, NZ_FIELDS=G.nz + 1, NX_ID=G.ID.shape[1], NY_ID=G.ID.shape[2], NZ_ID=G.ID.shape[3], NX_T=1, NY_T=1, NZ_T=1), options=compiler_opts)
    update_e_gpu = kernels_fields.get_function("update_e")
    update_h_gpu = kernels_fields.get_function("update_h")

    # Copy material coefficient arrays to constant memory of GPU (must be <64KB) for fields kernels
    updatecoeffsE = kernels_fields.get_global('updatecoeffsE')[0]
    updatecoeffsH = kernels_fields.get_global('updatecoeffsH')[0]
    if G.updatecoeffsE.nbytes + G.updatecoeffsH.nbytes > G.gpu.constmem:
        raise GeneralError('Too many materials in the model to fit onto constant memory of size {} on {} - {} GPU'.format(human_size(G.gpu.constmem), G.gpu.deviceID, G.gpu.name))
    else:
        drv.memcpy_htod(updatecoeffsE, G.updatecoeffsE)
        drv.memcpy_htod(updatecoeffsH, G.updatecoeffsH)

    # Electric and magnetic field updates - dispersive materials - get kernel functions and initialise array on GPU
    if Material.maxpoles > 0:  # If there are any dispersive materials (updates are split into two parts as they require present and updated electric field values).
        update_e_dispersive_A_gpu = kernels_fields.get_function("update_e_dispersive_A")
        update_e_dispersive_B_gpu = kernels_fields.get_function("update_e_dispersive_B")
        G.gpu_initialise_dispersive_arrays()

    # Electric and magnetic field updates - set blocks per grid and initialise field arrays on GPU
    G.gpu_set_blocks_per_grid()
    G.gpu_initialise_arrays()

    # PML updates
    if G.pmls:
        # Prepare kernels
        pmlmodulelectric = 'gprMax.pml_updates.pml_updates_electric_' + G.pmlformulation + '_gpu'
        kernelelectricfunc = getattr(import_module(pmlmodulelectric), 'kernels_template_pml_electric_' + G.pmlformulation)
        pmlmodulemagnetic = 'gprMax.pml_updates.pml_updates_magnetic_' + G.pmlformulation + '_gpu'
        kernelmagneticfunc = getattr(import_module(pmlmodulemagnetic), 'kernels_template_pml_magnetic_' + G.pmlformulation)
        kernels_pml_electric = SourceModule(kernelelectricfunc.substitute(REAL=cudafloattype, N_updatecoeffsE=G.updatecoeffsE.size, NY_MATCOEFFS=G.updatecoeffsE.shape[1], NX_FIELDS=G.nx + 1, NY_FIELDS=G.ny + 1, NZ_FIELDS=G.nz + 1, NX_ID=G.ID.shape[1], NY_ID=G.ID.shape[2], NZ_ID=G.ID.shape[3]), options=compiler_opts)
        kernels_pml_magnetic = SourceModule(kernelmagneticfunc.substitute(REAL=cudafloattype, N_updatecoeffsH=G.updatecoeffsH.size, NY_MATCOEFFS=G.updatecoeffsH.shape[1], NX_FIELDS=G.nx + 1, NY_FIELDS=G.ny + 1, NZ_FIELDS=G.nz + 1, NX_ID=G.ID.shape[1], NY_ID=G.ID.shape[2], NZ_ID=G.ID.shape[3]), options=compiler_opts)
        # Copy material coefficient arrays to constant memory of GPU (must be <64KB) for PML kernels
        updatecoeffsE = kernels_pml_electric.get_global('updatecoeffsE')[0]
        updatecoeffsH = kernels_pml_magnetic.get_global('updatecoeffsH')[0]
        drv.memcpy_htod(updatecoeffsE, G.updatecoeffsE)
        drv.memcpy_htod(updatecoeffsH, G.updatecoeffsH)
        # Set block per grid, initialise arrays on GPU, and get kernel functions
        for pml in G.pmls:
            pml.gpu_initialise_arrays()
            pml.gpu_get_update_funcs(kernels_pml_electric, kernels_pml_magnetic)
            pml.gpu_set_blocks_per_grid(G)

    # Receivers
    if G.rxs:
        # Initialise arrays on GPU
        rxcoords_gpu, rxs_gpu = gpu_initialise_rx_arrays(G)
        # Prepare kernel and get kernel function
        kernel_store_outputs = SourceModule(kernel_template_store_outputs.substitute(REAL=cudafloattype, NY_RXCOORDS=3, NX_RXS=6, NY_RXS=G.iterations, NZ_RXS=len(G.rxs), NX_FIELDS=G.nx + 1, NY_FIELDS=G.ny + 1, NZ_FIELDS=G.nz + 1), options=compiler_opts)
        store_outputs_gpu = kernel_store_outputs.get_function("store_outputs")

    # Sources - initialise arrays on GPU, prepare kernel and get kernel functions
    if G.voltagesources + G.hertziandipoles + G.magneticdipoles:
        kernels_sources = SourceModule(kernels_template_sources.substitute(REAL=cudafloattype, N_updatecoeffsE=G.updatecoeffsE.size, N_updatecoeffsH=G.updatecoeffsH.size, NY_MATCOEFFS=G.updatecoeffsE.shape[1], NY_SRCINFO=4, NY_SRCWAVES=G.iterations, NX_FIELDS=G.nx + 1, NY_FIELDS=G.ny + 1, NZ_FIELDS=G.nz + 1, NX_ID=G.ID.shape[1], NY_ID=G.ID.shape[2], NZ_ID=G.ID.shape[3]), options=compiler_opts)
        # Copy material coefficient arrays to constant memory of GPU (must be <64KB) for source kernels
        updatecoeffsE = kernels_sources.get_global('updatecoeffsE')[0]
        updatecoeffsH = kernels_sources.get_global('updatecoeffsH')[0]
        drv.memcpy_htod(updatecoeffsE, G.updatecoeffsE)
        drv.memcpy_htod(updatecoeffsH, G.updatecoeffsH)
        if G.hertziandipoles:
            srcinfo1_hertzian_gpu, srcinfo2_hertzian_gpu, srcwaves_hertzian_gpu = gpu_initialise_src_arrays(G.hertziandipoles, G)
            update_hertzian_dipole_gpu = kernels_sources.get_function("update_hertzian_dipole")
        if G.magneticdipoles:
            srcinfo1_magnetic_gpu, srcinfo2_magnetic_gpu, srcwaves_magnetic_gpu = gpu_initialise_src_arrays(G.magneticdipoles, G)
            update_magnetic_dipole_gpu = kernels_sources.get_function("update_magnetic_dipole")
        if G.voltagesources:
            srcinfo1_voltage_gpu, srcinfo2_voltage_gpu, srcwaves_voltage_gpu = gpu_initialise_src_arrays(G.voltagesources, G)
            update_voltage_source_gpu = kernels_sources.get_function("update_voltage_source")

    # Snapshots - initialise arrays on GPU, prepare kernel and get kernel functions
    if G.snapshots:
        # Initialise arrays on GPU
        snapEx_gpu, snapEy_gpu, snapEz_gpu, snapHx_gpu, snapHy_gpu, snapHz_gpu = gpu_initialise_snapshot_array(G)
        # Prepare kernel and get kernel function
        kernel_store_snapshot = SourceModule(kernel_template_store_snapshot.substitute(REAL=cudafloattype, NX_SNAPS=Snapshot.nx_max, NY_SNAPS=Snapshot.ny_max, NZ_SNAPS=Snapshot.nz_max, NX_FIELDS=G.nx + 1, NY_FIELDS=G.ny + 1, NZ_FIELDS=G.nz + 1), options=compiler_opts)
        store_snapshot_gpu = kernel_store_snapshot.get_function("store_snapshot")

    # Iteration loop timer
    iterstart = drv.Event()
    iterend = drv.Event()
    iterstart.record()

    for iteration in tqdm(range(G.iterations), desc='Running simulation, model ' + str(currentmodelrun) + '/' + str(modelend), ncols=get_terminal_width() - 1, file=sys.stdout, disable=not G.progressbars):

        # Get GPU memory usage on final iteration
        if iteration == G.iterations - 1:
            memsolve = drv.mem_get_info()[1] - drv.mem_get_info()[0]

        # Store field component values for every receiver
        if G.rxs:
            store_outputs_gpu(np.int32(len(G.rxs)), np.int32(iteration),
                              rxcoords_gpu.gpudata, rxs_gpu.gpudata,
                              G.Ex_gpu.gpudata, G.Ey_gpu.gpudata, G.Ez_gpu.gpudata,
                              G.Hx_gpu.gpudata, G.Hy_gpu.gpudata, G.Hz_gpu.gpudata,
                              block=(1, 1, 1), grid=(round32(len(G.rxs)), 1, 1))

        # Store any snapshots
        for i, snap in enumerate(G.snapshots):
            if snap.time == iteration + 1:
                if not G.snapsgpu2cpu:
                    store_snapshot_gpu(np.int32(i), np.int32(snap.xs),
                                       np.int32(snap.xf), np.int32(snap.ys),
                                       np.int32(snap.yf), np.int32(snap.zs),
                                       np.int32(snap.zf), np.int32(snap.dx),
                                       np.int32(snap.dy), np.int32(snap.dz),
                                       G.Ex_gpu.gpudata, G.Ey_gpu.gpudata, G.Ez_gpu.gpudata,
                                       G.Hx_gpu.gpudata, G.Hy_gpu.gpudata, G.Hz_gpu.gpudata,
                                       snapEx_gpu.gpudata, snapEy_gpu.gpudata, snapEz_gpu.gpudata,
                                       snapHx_gpu.gpudata, snapHy_gpu.gpudata, snapHz_gpu.gpudata,
                                       block=Snapshot.tpb, grid=Snapshot.bpg)
                else:
                    store_snapshot_gpu(np.int32(0), np.int32(snap.xs),
                                       np.int32(snap.xf), np.int32(snap.ys),
                                       np.int32(snap.yf), np.int32(snap.zs),
                                       np.int32(snap.zf), np.int32(snap.dx),
                                       np.int32(snap.dy), np.int32(snap.dz),
                                       G.Ex_gpu.gpudata, G.Ey_gpu.gpudata, G.Ez_gpu.gpudata,
                                       G.Hx_gpu.gpudata, G.Hy_gpu.gpudata, G.Hz_gpu.gpudata,
                                       snapEx_gpu.gpudata, snapEy_gpu.gpudata, snapEz_gpu.gpudata,
                                       snapHx_gpu.gpudata, snapHy_gpu.gpudata, snapHz_gpu.gpudata,
                                       block=Snapshot.tpb, grid=Snapshot.bpg)
                    gpu_get_snapshot_array(snapEx_gpu.get(), snapEy_gpu.get(), snapEz_gpu.get(),
                                           snapHx_gpu.get(), snapHy_gpu.get(), snapHz_gpu.get(), 0, snap)

        # Update magnetic field components
        update_h_gpu(np.int32(G.nx), np.int32(G.ny), np.int32(G.nz),
                     G.ID_gpu.gpudata, G.Hx_gpu.gpudata, G.Hy_gpu.gpudata,
                     G.Hz_gpu.gpudata, G.Ex_gpu.gpudata, G.Ey_gpu.gpudata,
                     G.Ez_gpu.gpudata, block=G.tpb, grid=G.bpg)

        # Update magnetic field components with the PML correction
        for pml in G.pmls:
            pml.gpu_update_magnetic(G)

        # Update magnetic field components for magetic dipole sources
        if G.magneticdipoles:
            update_magnetic_dipole_gpu(np.int32(len(G.magneticdipoles)), np.int32(iteration),
                                       floattype(G.dx), floattype(G.dy), floattype(G.dz),
                                       srcinfo1_magnetic_gpu.gpudata, srcinfo2_magnetic_gpu.gpudata,
                                       srcwaves_magnetic_gpu.gpudata, G.ID_gpu.gpudata,
                                       G.Hx_gpu.gpudata, G.Hy_gpu.gpudata, G.Hz_gpu.gpudata,
                                       block=(1, 1, 1), grid=(round32(len(G.magneticdipoles)), 1, 1))

        # Update electric field components
        # If all materials are non-dispersive do standard update
        if Material.maxpoles == 0:
            update_e_gpu(np.int32(G.nx), np.int32(G.ny), np.int32(G.nz), G.ID_gpu.gpudata,
                         G.Ex_gpu.gpudata, G.Ey_gpu.gpudata, G.Ez_gpu.gpudata,
                         G.Hx_gpu.gpudata, G.Hy_gpu.gpudata, G.Hz_gpu.gpudata,
                         block=G.tpb, grid=G.bpg)
        # If there are any dispersive materials do 1st part of dispersive update
        # (it is split into two parts as it requires present and updated electric field values).
        else:
            update_e_dispersive_A_gpu(np.int32(G.nx), np.int32(G.ny), np.int32(G.nz),
                                      np.int32(Material.maxpoles), G.updatecoeffsdispersive_gpu.gpudata,
                                      G.Tx_gpu.gpudata, G.Ty_gpu.gpudata, G.Tz_gpu.gpudata, G.ID_gpu.gpudata,
                                      G.Ex_gpu.gpudata, G.Ey_gpu.gpudata, G.Ez_gpu.gpudata,
                                      G.Hx_gpu.gpudata, G.Hy_gpu.gpudata, G.Hz_gpu.gpudata,
                                      block=G.tpb, grid=G.bpg)

        # Update electric field components with the PML correction
        for pml in G.pmls:
            pml.gpu_update_electric(G)

        # Update electric field components for voltage sources
        if G.voltagesources:
            update_voltage_source_gpu(np.int32(len(G.voltagesources)), np.int32(iteration),
                                      floattype(G.dx), floattype(G.dy), floattype(G.dz),
                                      srcinfo1_voltage_gpu.gpudata, srcinfo2_voltage_gpu.gpudata,
                                      srcwaves_voltage_gpu.gpudata, G.ID_gpu.gpudata,
                                      G.Ex_gpu.gpudata, G.Ey_gpu.gpudata, G.Ez_gpu.gpudata,
                                      block=(1, 1, 1), grid=(round32(len(G.voltagesources)), 1, 1))

        # Update electric field components for Hertzian dipole sources (update any Hertzian dipole sources last)
        if G.hertziandipoles:
            update_hertzian_dipole_gpu(np.int32(len(G.hertziandipoles)), np.int32(iteration),
                                       floattype(G.dx), floattype(G.dy), floattype(G.dz),
                                       srcinfo1_hertzian_gpu.gpudata, srcinfo2_hertzian_gpu.gpudata,
                                       srcwaves_hertzian_gpu.gpudata, G.ID_gpu.gpudata,
                                       G.Ex_gpu.gpudata, G.Ey_gpu.gpudata, G.Ez_gpu.gpudata,
                                       block=(1, 1, 1), grid=(round32(len(G.hertziandipoles)), 1, 1))

        # If there are any dispersive materials do 2nd part of dispersive update (it is split into two parts as it requires present and updated electric field values). Therefore it can only be completely updated after the electric field has been updated by the PML and source updates.
        if Material.maxpoles > 0:
            update_e_dispersive_B_gpu(np.int32(G.nx), np.int32(G.ny), np.int32(G.nz),
                                      np.int32(Material.maxpoles), G.updatecoeffsdispersive_gpu.gpudata,
                                      G.Tx_gpu.gpudata, G.Ty_gpu.gpudata, G.Tz_gpu.gpudata, G.ID_gpu.gpudata,
                                      G.Ex_gpu.gpudata, G.Ey_gpu.gpudata, G.Ez_gpu.gpudata,
                                      block=G.tpb, grid=G.bpg)

    # Copy output from receivers array back to correct receiver objects
    if G.rxs:
        gpu_get_rx_array(rxs_gpu.get(), rxcoords_gpu.get(), G)

    # Copy data from any snapshots back to correct snapshot objects
    if G.snapshots and not G.snapsgpu2cpu:
        for i, snap in enumerate(G.snapshots):
            gpu_get_snapshot_array(snapEx_gpu.get(), snapEy_gpu.get(), snapEz_gpu.get(),
                                   snapHx_gpu.get(), snapHy_gpu.get(), snapHz_gpu.get(), i, snap)

    iterend.record()
    iterend.synchronize()
    tsolve = iterstart.time_till(iterend) * 1e-3

    # Remove context from top of stack and delete
    ctx.pop()
    del ctx

    return tsolve, memsolve
Example #20
0
# Get machine/CPU/OS details
hostinfo = get_host_info()
try:
    machineIDlong = str(baseresult['machineID'])
    # machineIDlong = 'Dell PowerEdge R630; Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz; Linux (3.10.0-327.18.2.el7.x86_64)' # Use to manually describe machine
    machineID = machineIDlong.split(';')[0]
    cpuID = machineIDlong.split(';')[1]
    cpuID = cpuID.split('GHz')[0].split('x')[1][1::] + 'GHz'
except KeyError:
    hyperthreading = ', {} cores with Hyper-Threading'.format(
        hostinfo['logicalcores']) if hostinfo['hyperthreading'] else ''
    machineIDlong = '{}; {} x {} ({} cores{}); {} RAM; {}'.format(
        hostinfo['machineID'], hostinfo['sockets'], hostinfo['cpuID'],
        hostinfo['physicalcores'], hyperthreading,
        human_size(hostinfo['ram'],
                   a_kilobyte_is_1024_bytes=True), hostinfo['osversion'])
print('Host: {}'.format(machineIDlong))

# Base result - threads and times info from Numpy archive
print('Model: {}'.format(args.baseresult))
for i in range(len(baseresult['cputhreads'])):
    print('{} CPU (OpenMP) thread(s): {:g} s'.format(
        baseresult['cputhreads'][i], baseresult['cputimes'][i]))
baseplotlabel = os.path.splitext(os.path.split(args.baseresult)[1])[0] + '.in'

# Base result - arrays for length of cubic model side and cells per second metric
cells = np.array([baseresult['numcells'][0]])
cpucellspersec = np.array([
    (baseresult['numcells'][0] * baseresult['numcells'][1] *
     baseresult['numcells'][2] * baseresult['iterations']) /
    baseresult['cputimes'][0]
def process_singlecmds(singlecmds, multicmds, G):
    """Checks the validity of command parameters and creates instances of classes of parameters.
        
    Args:
        singlecmds (dict): Commands that can only occur once in the model.
        multicmds (dict): Commands that can have multiple instances in the model (required to pass to process_materials_file function).
        G (class): Grid class instance - holds essential parameters describing the model.
    """

    # Check validity of command parameters in order needed
    # messages
    cmd = '#messages'
    if singlecmds[cmd] != 'None':
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1:
            raise CmdInputError(cmd + ' requires exactly one parameter')
        if singlecmds[cmd].lower() == 'y':
            G.messages = True
        elif singlecmds[cmd].lower() == 'n':
            G.messages = False
        else:
            raise CmdInputError(cmd +
                                ' requires input values of either y or n')

    # Title
    cmd = '#title'
    if singlecmds[cmd] != 'None':
        G.title = singlecmds[cmd]
        if G.messages:
            print('Model title: {}'.format(G.title))

    # Number of processors to run on (OpenMP)
    cmd = '#num_threads'
    ompthreads = os.environ.get('OMP_NUM_THREADS')
    if singlecmds[cmd] != 'None':
        tmp = tuple(int(x) for x in singlecmds[cmd].split())
        if len(tmp) != 1:
            raise CmdInputError(
                cmd +
                ' requires exactly one parameter to specify the number of threads to use'
            )
        if tmp[0] < 1:
            raise CmdInputError(
                cmd + ' requires the value to be an integer not less than one')
        G.nthreads = tmp[0]
    elif ompthreads:
        G.nthreads = int(ompthreads)
    else:
        # Set number of threads to number of physical CPU cores, i.e. avoid hyperthreading with OpenMP
        G.nthreads = psutil.cpu_count(logical=False)
    if G.messages:
        print('Number of threads: {}'.format(G.nthreads))

    # Spatial discretisation
    cmd = '#dx_dy_dz'
    tmp = [float(x) for x in singlecmds[cmd].split()]
    if len(tmp) != 3:
        raise CmdInputError(cmd + ' requires exactly three parameters')
    if tmp[0] <= 0:
        raise CmdInputError(
            cmd +
            ' requires the x-direction spatial step to be greater than zero')
    if tmp[1] <= 0:
        raise CmdInputError(
            cmd +
            ' requires the y-direction spatial step to be greater than zero')
    if tmp[2] <= 0:
        raise CmdInputError(
            cmd +
            ' requires the z-direction spatial step to be greater than zero')
    G.dx = tmp[0]
    G.dy = tmp[1]
    G.dz = tmp[2]
    if G.messages:
        print('Spatial discretisation: {:g} x {:g} x {:g}m'.format(
            G.dx, G.dy, G.dz))

    # Domain
    cmd = '#domain'
    tmp = [float(x) for x in singlecmds[cmd].split()]
    if len(tmp) != 3:
        raise CmdInputError(cmd + ' requires exactly three parameters')
    G.nx = round_value(tmp[0] / G.dx)
    G.ny = round_value(tmp[1] / G.dy)
    G.nz = round_value(tmp[2] / G.dz)
    if G.nx == 0 or G.ny == 0 or G.nz == 0:
        raise CmdInputError(cmd +
                            ' requires at least one cell in every dimension')
    if G.messages:
        print(
            'Domain size: {:g} x {:g} x {:g}m ({:d} x {:d} x {:d} = {:g} cells)'
            .format(tmp[0], tmp[1], tmp[2], G.nx, G.ny, G.nz,
                    (G.nx * G.ny * G.nz)))
        # Guesstimate at memory usage
        mem = (((G.nx + 1) * (G.ny + 1) *
                (G.nz + 1) * 13 * np.dtype(floattype).itemsize + (G.nx + 1) *
                (G.ny + 1) * (G.nz + 1) * 18) * 1.1) + 30e6
        print('Memory (RAM) usage: ~{} required, {} available'.format(
            human_size(mem), human_size(psutil.virtual_memory().total)))

    # Time step CFL limit - use either 2D or 3D (default)
    cmd = '#time_step_limit_type'
    if singlecmds[cmd] != 'None':
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1:
            raise CmdInputError(cmd + ' requires exactly one parameter')
        if singlecmds[cmd].lower() == '2d':
            if G.nx == 1:
                G.dt = 1 / (c * np.sqrt((1 / G.dy) * (1 / G.dy) + (1 / G.dz) *
                                        (1 / G.dz)))
            elif G.ny == 1:
                G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dz) *
                                        (1 / G.dz)))
            elif G.nz == 1:
                G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dy) *
                                        (1 / G.dy)))
            else:
                raise CmdInputError(
                    cmd +
                    ' 2D CFL limit can only be used when one dimension of the domain is one cell'
                )
        elif singlecmds[cmd].lower() == '3d':
            G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dy) *
                                    (1 / G.dy) + (1 / G.dz) * (1 / G.dz)))
        else:
            raise CmdInputError(cmd +
                                ' requires input values of either 2D or 3D')
    else:
        G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dy) *
                                (1 / G.dy) + (1 / G.dz) * (1 / G.dz)))

    # Round down time step to nearest float with precision one less than hardware maximum. Avoids inadvertently exceeding the CFL due to binary representation of floating point number.
    G.dt = round_value(G.dt, decimalplaces=d.getcontext().prec - 1)

    if G.messages:
        print('Time step: {:g} secs'.format(G.dt))

    # Time step stability factor
    cmd = '#time_step_stability_factor'
    if singlecmds[cmd] != 'None':
        tmp = tuple(float(x) for x in singlecmds[cmd].split())
        if len(tmp) != 1:
            raise CmdInputError(cmd + ' requires exactly one parameter')
        if tmp[0] <= 0 or tmp[0] > 1:
            raise CmdInputError(
                cmd +
                ' requires the value of the time step stability factor to be between zero and one'
            )
        G.dt = G.dt * tmp[0]
        if G.messages:
            print('Time step (modified): {:g} secs'.format(G.dt))

    # Time window
    cmd = '#time_window'
    tmp = singlecmds[cmd].split()
    if len(tmp) != 1:
        raise CmdInputError(
            cmd +
            ' requires exactly one parameter to specify the time window. Either in seconds or number of iterations.'
        )
    tmp = tmp[0].lower()
    # If real floating point value given
    if '.' in tmp or 'e' in tmp:
        if float(tmp) > 0:
            G.timewindow = float(tmp)
            G.iterations = round_value((float(tmp) / G.dt)) + 1
        else:
            raise CmdInputError(cmd + ' must have a value greater than zero')
    # If number of iterations given
    else:
        G.timewindow = (int(tmp) - 1) * G.dt
        G.iterations = int(tmp)
    if G.messages:
        print('Time window: {:g} secs ({} iterations)'.format(
            G.timewindow, G.iterations))

    # PML
    cmd = '#pml_cells'
    if singlecmds[cmd] != 'None':
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1 and len(tmp) != 6:
            raise CmdInputError(cmd + ' requires either one or six parameters')
        if len(tmp) == 1:
            G.pmlthickness = (int(tmp[0]), int(tmp[0]), int(tmp[0]),
                              int(tmp[0]), int(tmp[0]), int(tmp[0]))
        else:
            G.pmlthickness = (int(tmp[0]), int(tmp[1]), int(tmp[2]),
                              int(tmp[3]), int(tmp[4]), int(tmp[5]))
    if 2 * G.pmlthickness[0] >= G.nx or 2 * G.pmlthickness[
            1] >= G.ny or 2 * G.pmlthickness[2] >= G.nz or 2 * G.pmlthickness[
                3] >= G.nx or 2 * G.pmlthickness[
                    4] >= G.ny or 2 * G.pmlthickness[5] >= G.nz:
        raise CmdInputError(cmd + ' has too many cells for the domain size')

    # src_steps
    cmd = '#src_steps'
    if singlecmds[cmd] != 'None':
        tmp = singlecmds[cmd].split()
        if len(tmp) != 3:
            raise CmdInputError(cmd + ' requires exactly three parameters')
        G.srcstepx = round_value(float(tmp[0]) / G.dx)
        G.srcstepy = round_value(float(tmp[1]) / G.dy)
        G.srcstepz = round_value(float(tmp[2]) / G.dz)
        if G.messages:
            print(
                'All sources will step {:g}m, {:g}m, {:g}m for each model run.'
                .format(G.srcstepx * G.dx, G.srcstepy * G.dy,
                        G.srcstepz * G.dz))

    # rx_steps
    cmd = '#rx_steps'
    if singlecmds[cmd] != 'None':
        tmp = singlecmds[cmd].split()
        if len(tmp) != 3:
            raise CmdInputError(cmd + ' requires exactly three parameters')
        G.rxstepx = round_value(float(tmp[0]) / G.dx)
        G.rxstepy = round_value(float(tmp[1]) / G.dy)
        G.rxstepz = round_value(float(tmp[2]) / G.dz)
        if G.messages:
            print(
                'All receivers will step {:g}m, {:g}m, {:g}m for each model run.'
                .format(G.rxstepx * G.dx, G.rxstepy * G.dy, G.rxstepz * G.dz))

    # Excitation file for user-defined source waveforms
    cmd = '#excitation_file'
    if singlecmds[cmd] != 'None':
        tmp = singlecmds[cmd].split()
        if len(tmp) != 1:
            raise CmdInputError(cmd + ' requires exactly one parameter')
        excitationfile = tmp[0]

        # See if file exists at specified path and if not try input file directory
        if not os.path.isfile(excitationfile):
            excitationfile = os.path.join(G.inputdirectory, excitationfile)

        # Get waveform names
        with open(excitationfile, 'r') as f:
            waveformIDs = f.readline().split()

        # Read all waveform values into an array
        waveformvalues = np.loadtxt(excitationfile,
                                    skiprows=1,
                                    dtype=floattype)

        for waveform in range(len(waveformIDs)):
            if any(x.ID == waveformIDs[waveform] for x in G.waveforms):
                raise CmdInputError(
                    'Waveform with ID {} already exists'.format(
                        waveformIDs[waveform]))
            w = Waveform()
            w.ID = waveformIDs[waveform]
            w.type = 'user'
            if len(waveformvalues.shape) == 1:
                w.uservalues = waveformvalues[:]
            else:
                w.uservalues = waveformvalues[:, waveform]

            if G.messages:
                print('User waveform {} created.'.format(w.ID))

            G.waveforms.append(w)