def convert_images(): # convert the training data for i in range(4): # Open up the file to write in path = "./test_data/" + cfg.emojis[i] + "/converted.csv" f = open(path, 'w+') w = csv.writer(f) # Get the test cases test_cases = glob.glob('./test_data/' + cfg.emojis[i] + '/*.png') print 'Converting ' + cfg.emojis[i] for test_case in test_cases: # convert image data = image.binary_image(test_case, cfg.RES) data = image.convert_to_1d(data) # Write data into file w.writerow(data) # close the file f.close() print("files converted!")
def get_testing_error(net): # choose an emotion: error = [0.0, 0.0, 0.0, 0.0] for i, emotion in enumerate(cfg.emojis): test_cases = glob.glob('./test_data/non-training/' + emotion + '/*.png') for test_case in test_cases: inp = image.convert_to_1d(image.binary_image(test_case, cfg.RES)) e = net.forward_pass(inp) error[i] += nn.error(cfg.outputs[i], e) error[i] /= len(test_cases) return sum(error)
def test_image(path, net): # Run the image inp = image.convert_to_1d(image.binary_image(path, cfg.RES)) result = net.forward_pass(inp) normalize(result) # print out result print(path + ":") print(" heart eyes:" + str(format((result[0]*100), '.2f')) + "%") print(" laugh:" + str(format((result[1]*100), '.2f')) + "%") print(" sad:" + str(format((result[2]*100), '.2f')) + "%") print(" smile:" + str(format((result[3]*100), '.2f')) + "%")