def object_modifier(fill_light, edge_light, diffuse_light, output, mask,
                    fill=1, edge=1, diffuse=1, count=-1, verbose=False):
    """
    This function calculates the per object modifier for an image.

    Arguments:
    fill_light    -- path to the fill light image
    edge_light    -- path to the edge light image
    diffuse_light -- path to the diffuse color light image
    mask          -- the mask image that identifies the object of interest
    fill          -- the weight of fill light in the object
    edge          -- the weight of edge light in the object
    diffuse       -- the weight of diffuse light in the object
    count         -- the number of imags to use for this calculation
    verbose       -- should we print debug info
    """
    fill_image = utils.read_image(fill_light, normalize=True)
    edge_image = utils.read_image(edge_light, normalize=True)
    diffuse_image = utils.read_image(diffuse_light, normalize=True)
    mask_image = utils.read_image(mask, normalize=True)

    print fill_image
    modifier = modifier_lights.ModifierLights(verbose=verbose)
    res_image = modifier.per_object(fill_image, edge_image, diffuse_image,
                                    mask_image, fill, edge, diffuse)
    cv2.imwrite(output, utils.denormalize_img(res_image))
    cv2.imshow('Object modifier', res_image)
    cv2.waitKey(0)
Example #2
0
def run(in_fname, out_fname):
    """
    draw lattice lines between all points. Lines are brighter based on the frequency 
    of the occurance of lines with the same angle
    """
    img = image_utils.read_image(in_fname)
    data = image_utils.image_to_matrix(img)
    edge_data = image_utils.image_to_matrix(img)
    point_data = image_utils.image_to_matrix(img)

    points = local_maxima.run(data)

    #for point in points:
    #    print(point)

    llist = all_point_pairs_as_lines(points)
    llist = filter_segments_with_colinear_points(llist, points)

    # Draw blue edges between neighboring points
    for line in llist:
        rr, cc, lum = line_aa(line[0][0], line[0][1], line[1][0], line[1][1])
        edge_data[rr, cc] = np.maximum(edge_data[rr, cc], lum * 255)

    #  Draw red circles around all points
    for point in points:
        rr, cc, lum = circle_perimeter_aa(point[0], point[1], 4)
        point_data[rr, cc] = np.maximum(point_data[rr, cc], lum * 255)

    out_data = np.dstack((point_data, data, edge_data))

    out_img = image_utils.matrix_to_image(out_data)
    image_utils.write_image(out_img, out_fname)
Example #3
0
    def __init__(self, image_number, database):
        if isinstance(image_number, int):
            image_number = '{:02d}'.format(
                image_number)  # Leading zeros used in DRIVE database

        logging.debug('Reading image, mask, truth %s from database',
                      image_number)

        self.image = image_utils.read_image('{}/image/{}.tif'.format(
            database, image_number))
        self.truth = image_utils.read_image('{}/truth/{}.tif'.format(
            database, image_number),
                                            greyscale=True).astype(np.bool)
        self.fov_mask = image_utils.read_image('{}/mask/{}.tif'.format(
            database, image_number),
                                               greyscale=True).astype(np.bool)
Example #4
0
def load_dataset(path, fractions):
    data = fu.create_train_dict(os.path.join(path, 'training-data'))
    train_fraction = fractions[0]
    validation_fraction = fractions[1]
    test_fraction = fractions[2]
     
    samples = []
    
    global n_targets
    global targets
    
    # Go over all the categories
    for cat_key, cat in data.items():
        # Go over all the classes per category
        for class_key, klass in cat.items():
          
            targets.append(class_key)
            
            # Go over all the images per class
            for i, img_path in enumerate(klass):
                # Process the images
                img = iu.read_image(img_path)
                img = preprocess(img)
                features = getfeatures(img)
                samples.append((features, n_targets))
                
            n_targets = n_targets + 1

    n_samples = len(samples)
    
    print("# samples: {}".format(n_samples))
    print("# targets: {}".format(n_targets))
    
    # Shuffle the data so we don't always train/test on the same data
    np.random.shuffle(samples)
    
    n_train_samples = round(n_samples * fractions[0])
    n_validation_samples = round(n_samples * fractions[1])
    n_test_samples = round(n_samples * fractions[2])

    X_train, y_train = zip(*(samples[0 : n_train_samples]))
    X_val, y_val = zip(*(samples[n_train_samples : n_train_samples + n_validation_samples]))
    X_test, y_test = zip(*(samples[n_train_samples + n_validation_samples : n_samples]))
    
    X_train = np.array(X_train)
    X_val = np.array(X_val)
    X_test = np.array(X_test)
    
#     y_train = y_train.astype(np.uint8)
#     y_val = y_val.astype(np.uint8)
#     y_test = y_test.astype(np.uint8)
  
    print(np.shape(X_train))
    print(np.shape(y_train))
    print(np.shape(X_val))
    print(np.shape(y_val))
    print(np.shape(X_test))
    print(np.shape(y_test))
  
    return list(X_train), list(y_train), list(X_val), list(y_val), list(X_test), list(y_test)
Example #5
0
def load_imgs_from_paths(paths, auto_resize=True):

    # shuffle paths so that when we do test/train splits
    # we get shuffled distributions
    paths = sampler(paths, len(paths))

    if type(auto_resize) is tuple and len(auto_resize) == 2:
        # resize to specified value
        imgs = [imresize(read_image(path), size=auto_resize) for path in paths]
    elif type(auto_resize) is bool and auto_resize:
        # automatically resizes to image_utils.AUTO_RESIZE_DEFAULT
        imgs = [imresize(read_image(path)) for path in paths]
    else:
        # no resize
        imgs = [read_image(path) for path in paths]
    return imgs
Example #6
0
def process_image(task: {}) -> (str, Image.Image):
    log("Aplicando filtro '{}'...".format(task["filter"]))

    obj = mongo_storage.get_fs_object(task["file_id"])
    original_image = image_utils.read_image(obj)
    filtered_image = filter_image(original_image, task["filter"])

    return ("{}-{}.jpg".format(obj.filename.replace(".jpg", ""),
                               task["filter"]), filtered_image)
def read_data():
    X = []
    filename = []
    # read cat and dog images respectively: 0 for cat, 1 for dog
    for f in glob.glob(TEST_DATA + '/*.jpg'):
        image = read_image(f, [128, 128, 3])
        X.append(image)
        filename.append(f)

    return X, filename
Example #8
0
def read_data():
    X = []
    Y = []
    # read cat and dog images respectively: 0 for cat, 1 for dog
    for f in glob.glob(TRAIN_DATA + '/cat/*.jpg'):
        label = 0
        image = read_image(f, [128, 128, 3])
        X.append(image)
        Y.append(label)
    for f in glob.glob(TRAIN_DATA + '/dog/*.jpg'):
        label = 1
        image = read_image(f, [128, 128, 3])
        X.append(image)
        Y.append(label)

    # split training data and validation set data
    X, X_test, y, y_test = train_test_split(X,
                                            Y,
                                            test_size=0.2,
                                            random_state=42)
    return (X, y), (X_test, y_test)
def regional_modifier(image_path, output, beta, verbose=False):
    """
    This function calculates the soft lightning modifier for an image.

    Arguments:
    image   -- the image to apply the modifier to
    beta    -- determines which areas will be emphasized
    verbose -- should we print debug info
    """
    image = utils.read_image(image_path, normalize=False)
    modifier = modifier_lights.ModifierLights(verbose=verbose)
    res_image = modifier.regional(image, beta)
    cv2.imwrite(output, res_image)
    cv2.imshow('Regional modifier', res_image)
    cv2.waitKey(0)
Example #10
0
def determine_result(nnmodel, path):
    data = fu.list_all_test_data(os.path.join(path, 'test'))

    test_samples = []
    
    for img_path in data:
        # Process the images
        img = iu.read_image(img_path)
        img = preprocess(img)
        features = getfeatures(img)
        test_samples.append(features)

    print(np.shape(test_samples))
    test_results = nnmodel(test_samples)
    print(np.shape(test_results))

    return test_results
Example #11
0
application_model = model_utils.ApplicationModel(model, model_mod,
                                     make_linear=True, preprocessing_function=config.preprocessing_function, last_conv_layer=last_conv_layer,
                                     custom_objects=config.custom_objects)
print('Complete.')
# Initialize visualizers
print('Initializing Integrated Gradients.')
integrated_vis = visualizers.IntegratedGradientsVisualizer(application_model)
print('Initializing GradCAM.')
grad_cam = visualizers.GradCAMVisualizer(application_model)

'''
Entry point here
'''
x, img = image_utils.read_image(
    args.image_name,
    im_framework=input_config['im_framework'],
    target_size=input_config['target_size'],
    mode=input_config['color_mode']
)

#TODO: Dynamic colormap
# For now, hardcode colormap
cmap = plt.cm.copper

print('Running Inference on {}'.format(args.image_name))
class_scores = application_model.predict(x, output='linear')
class_probabilities, predicted_class = model_utils.softmax(class_scores)

# Generate bar graph of top 5 (or less) classes
savename = image_name.rpartition('.')[0] + '_prob_graph.png'
image_utils.generate_bargraph(class_probabilities, class_map, os.path.join(args.save_path, savename))