def default_grid_exponential_distance_poisson(dist_scale = 1.0, rate_scale_scale = 1.0, GRIDN = 10): mu = util.logspace(0.1, 1.0, GRIDN) * dist_scale rate_scale = util.logspace(0.1, 1.0, GRIDN) * rate_scale_scale hps = [] for m in mu: for r in rate_scale: hps.append({'mu_hp' : m, 'rate_scale_hp' : r}) return hps
def default_grid_exponential_distance_poisson(dist_scale=1.0, rate_scale_scale=1.0, GRIDN=10): mu = util.logspace(0.1, 1.0, GRIDN) * dist_scale rate_scale = util.logspace(0.1, 1.0, GRIDN) * rate_scale_scale hps = [] for m in mu: for r in rate_scale: hps.append({'mu_hp': m, 'rate_scale_hp': r}) return hps
def default_grid_logistic_distance_poisson(dist_scale = 1.0, rate_scale_scale = 1.0, GRIDN = 10): mu = util.logspace(0.1, 1.0, GRIDN) * dist_scale rate_scale = util.logspace(0.1, 1.0, GRIDN) * rate_scale_scale hps = [] for m in mu: for r in rate_scale: hps.append({'mu_hp' : m, 'lambda' : m, 'rate_scale_hp' : r, 'rate_min' : 0.01}) return hps
def default_grid_normal_inverse_chi_sq(mu_scale=1.0, var_scale=1.0, GRIDN=10): mu = np.linspace(-1.0, 1.0, GRIDN + 1) * mu_scale #+1 to always include zero sigmasq = util.logspace(0.1, 1.0, GRIDN) * var_scale kappa = util.logspace(0.1, 10.0, GRIDN) nu = util.logspace(0.1, 10.0, GRIDN) hps = [] for m in mu: for s in sigmasq: for k in kappa: for n in nu: hps.append({'mu': m, 'kappa': k, 'sigmasq': s, 'nu': n}) return hps
def default_grid_logistic_distance_poisson(dist_scale=1.0, rate_scale_scale=1.0, GRIDN=10): mu = util.logspace(0.1, 1.0, GRIDN) * dist_scale rate_scale = util.logspace(0.1, 1.0, GRIDN) * rate_scale_scale hps = [] for m in mu: for r in rate_scale: hps.append({ 'mu_hp': m, 'lambda': m, 'rate_scale_hp': r, 'rate_min': 0.01 }) return hps
def default_grid_normal_inverse_chi_sq(mu_scale = 1.0, var_scale = 1.0, GRIDN = 10): mu = np.linspace(-1.0, 1.0, GRIDN+1) * mu_scale #+1 to always include zero sigmasq = util.logspace(0.1, 1.0, GRIDN) * var_scale kappa = util.logspace(0.1, 10.0, GRIDN) nu = util.logspace(0.1, 10.0, GRIDN) hps = [] for m in mu: for s in sigmasq: for k in kappa: for n in nu: hps.append({'mu' : m, 'kappa' : k, 'sigmasq' : s, 'nu' : n}) return hps