Example #1
0
def default_grid_exponential_distance_poisson(dist_scale = 1.0, rate_scale_scale = 1.0, 
                                              GRIDN = 10):
    mu = util.logspace(0.1, 1.0, GRIDN) * dist_scale
    rate_scale = util.logspace(0.1, 1.0, GRIDN) * rate_scale_scale
    hps = []
    for m in mu:
        for r in rate_scale:
            hps.append({'mu_hp' : m, 
                        'rate_scale_hp' : r})
    return hps
Example #2
0
def default_grid_exponential_distance_poisson(dist_scale=1.0,
                                              rate_scale_scale=1.0,
                                              GRIDN=10):
    mu = util.logspace(0.1, 1.0, GRIDN) * dist_scale
    rate_scale = util.logspace(0.1, 1.0, GRIDN) * rate_scale_scale
    hps = []
    for m in mu:
        for r in rate_scale:
            hps.append({'mu_hp': m, 'rate_scale_hp': r})
    return hps
Example #3
0
def default_grid_logistic_distance_poisson(dist_scale = 1.0, rate_scale_scale = 1.0, 
                                           GRIDN = 10):
    mu = util.logspace(0.1, 1.0, GRIDN) * dist_scale
    rate_scale = util.logspace(0.1, 1.0, GRIDN) * rate_scale_scale
    hps = []
    for m in mu:
        for r in rate_scale:
            hps.append({'mu_hp' : m, 
                        'lambda' : m, 
                        'rate_scale_hp' : r, 
                        'rate_min' : 0.01})
    return hps
Example #4
0
def default_grid_normal_inverse_chi_sq(mu_scale=1.0, var_scale=1.0, GRIDN=10):
    mu = np.linspace(-1.0, 1.0,
                     GRIDN + 1) * mu_scale  #+1 to always include zero
    sigmasq = util.logspace(0.1, 1.0, GRIDN) * var_scale
    kappa = util.logspace(0.1, 10.0, GRIDN)
    nu = util.logspace(0.1, 10.0, GRIDN)

    hps = []
    for m in mu:
        for s in sigmasq:
            for k in kappa:
                for n in nu:
                    hps.append({'mu': m, 'kappa': k, 'sigmasq': s, 'nu': n})
    return hps
Example #5
0
def default_grid_logistic_distance_poisson(dist_scale=1.0,
                                           rate_scale_scale=1.0,
                                           GRIDN=10):
    mu = util.logspace(0.1, 1.0, GRIDN) * dist_scale
    rate_scale = util.logspace(0.1, 1.0, GRIDN) * rate_scale_scale
    hps = []
    for m in mu:
        for r in rate_scale:
            hps.append({
                'mu_hp': m,
                'lambda': m,
                'rate_scale_hp': r,
                'rate_min': 0.01
            })
    return hps
Example #6
0
def default_grid_normal_inverse_chi_sq(mu_scale = 1.0, 
                                       var_scale = 1.0, 
                                       GRIDN = 10):
    mu = np.linspace(-1.0, 1.0, GRIDN+1) * mu_scale #+1 to always include zero
    sigmasq = util.logspace(0.1, 1.0, GRIDN) * var_scale
    kappa = util.logspace(0.1, 10.0, GRIDN)
    nu = util.logspace(0.1, 10.0, GRIDN)
    
    hps = []
    for m in mu:
        for s in sigmasq:
            for k in kappa:
                for n in nu:
                    hps.append({'mu' : m, 
                                'kappa' : k, 
                                'sigmasq' : s, 
                                'nu' : n})
    return hps