def TrainAndValidation1(X_train,y_train,X_test,y_test,bEarlyStopByTestData=True): print "#\tTraining shape:" , X_train.shape print "#\tTraining label:" , y_train.shape #============================================ # Model preparation #============================================ model = Sequential() model.add(Dense(output_dim=64,input_dim=X_train.shape[1], init='uniform')) model.add(Activation(DEEP_AVF)) model.add(Dense(64, init='uniform')) model.add(Activation(DEEP_AVF)) model.add(Dense(sparkcore.WORKING_KLABEL, init='uniform')) model.add(Activation('softmax')) sgd = SGD(lr=DEEP_SGDLR, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss=DEEP_LOSSFUNC, optimizer=sgd) a = model.fit(X_train, y_train,nb_epoch=5) score0 = model.evaluate(X_train, y_train, batch_size=DEEP_BSIZE) if not X_test is None: score1 = model.evaluate(X_test, y_test, batch_size=DEEP_BSIZE) predicted = model.predict(X_test) v_precision,v_recall,TP, FP, TN, FN,thelogloss = sparkcore.MyEvaluation(y_test,predicted) return score0,score1,v_precision,v_recall,TP, FP, TN, FN, thelogloss,model else: return score0, 0,0,0,0,0,0,0,0,model
def test_conv2d(self): # Generate dummy data x_train = np.random.random((100, 100, 100, 3)) y_train = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10) x_test = np.random.random((20, 100, 100, 3)) y_test = keras.utils.to_categorical(np.random.randint(10, size=(20, 1)), num_classes=10) model = Sequential() # input: 100x100 images with 3 channels -> (100, 100, 3) tensors. # this applies 32 convolution filters of size 3x3 each. model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3))) model.add(Conv2D(32, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) # This throws if libcudnn is not properly installed with on a GPU model.compile(loss='categorical_crossentropy', optimizer=sgd) model.fit(x_train, y_train, batch_size=32, epochs=1) model.evaluate(x_test, y_test, batch_size=32)
def test_nested_sequential(): (X_train, y_train), (X_test, y_test) = _get_test_data() inner = Sequential() inner.add(Dense(nb_hidden, input_shape=(input_dim,))) inner.add(Activation("relu")) inner.add(Dense(nb_class)) middle = Sequential() middle.add(inner) model = Sequential() model.add(middle) model.add(Activation("softmax")) model.compile(loss="categorical_crossentropy", optimizer="rmsprop") model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, validation_data=(X_test, y_test)) model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=2, validation_split=0.1) model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0) model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, shuffle=False) model.train_on_batch(X_train[:32], y_train[:32]) loss = model.evaluate(X_test, y_test, verbose=0) model.predict(X_test, verbose=0) model.predict_classes(X_test, verbose=0) model.predict_proba(X_test, verbose=0) fname = "test_nested_sequential_temp.h5" model.save_weights(fname, overwrite=True) inner = Sequential() inner.add(Dense(nb_hidden, input_shape=(input_dim,))) inner.add(Activation("relu")) inner.add(Dense(nb_class)) middle = Sequential() middle.add(inner) model = Sequential() model.add(middle) model.add(Activation("softmax")) model.compile(loss="categorical_crossentropy", optimizer="rmsprop") model.load_weights(fname) os.remove(fname) nloss = model.evaluate(X_test, y_test, verbose=0) assert loss == nloss # test serialization config = model.get_config() new_model = Sequential.from_config(config) model.summary() json_str = model.to_json() new_model = model_from_json(json_str) yaml_str = model.to_yaml() new_model = model_from_yaml(yaml_str)
def test_recursive(self): print('test layer-like API') graph = containers.Graph() graph.add_input(name='input1', ndim=2) graph.add_node(Dense(32, 16), name='dense1', input='input1') graph.add_node(Dense(32, 4), name='dense2', input='input1') graph.add_node(Dense(16, 4), name='dense3', input='dense1') graph.add_output(name='output1', inputs=['dense2', 'dense3'], merge_mode='sum') seq = Sequential() seq.add(Dense(32, 32, name='first_seq_dense')) seq.add(graph) seq.add(Dense(4, 4, name='last_seq_dense')) seq.compile('rmsprop', 'mse') history = seq.fit(X_train, y_train, batch_size=10, nb_epoch=10) loss = seq.evaluate(X_test, y_test) print(loss) assert(loss < 1.4) loss = seq.evaluate(X_test, y_test, show_accuracy=True) pred = seq.predict(X_test) seq.get_config(verbose=1)
def test_sequential_fit_generator(): (x_train, y_train), (x_test, y_test) = _get_test_data() def data_generator(train): if train: max_batch_index = len(x_train) // batch_size else: max_batch_index = len(x_test) // batch_size i = 0 while 1: if train: yield (x_train[i * batch_size: (i + 1) * batch_size], y_train[i * batch_size: (i + 1) * batch_size]) else: yield (x_test[i * batch_size: (i + 1) * batch_size], y_test[i * batch_size: (i + 1) * batch_size]) i += 1 i = i % max_batch_index model = Sequential() model.add(Dense(num_hidden, input_shape=(input_dim,))) model.add(Activation('relu')) model.add(Dense(num_class)) model.pop() model.add(Dense(num_class)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') model.fit_generator(data_generator(True), 5, epochs) model.fit_generator(data_generator(True), 5, epochs, validation_data=(x_test, y_test)) model.fit_generator(data_generator(True), 5, epochs, validation_data=data_generator(False), validation_steps=3) model.fit_generator(data_generator(True), 5, epochs, max_queue_size=2) model.evaluate(x_train, y_train)
def test_recursive(): # test layer-like API graph = containers.Graph() graph.add_input(name='input1', input_shape=(32,)) graph.add_node(Dense(16), name='dense1', input='input1') graph.add_node(Dense(4), name='dense2', input='input1') graph.add_node(Dense(4), name='dense3', input='dense1') graph.add_output(name='output1', inputs=['dense2', 'dense3'], merge_mode='sum') seq = Sequential() seq.add(Dense(32, input_shape=(32,))) seq.add(graph) seq.add(Dense(4)) seq.compile('rmsprop', 'mse') seq.fit(X_train_graph, y_train_graph, batch_size=10, nb_epoch=10) loss = seq.evaluate(X_test_graph, y_test_graph) assert(loss < 2.5) loss = seq.evaluate(X_test_graph, y_test_graph, show_accuracy=True) seq.predict(X_test_graph) seq.get_config(verbose=1)
def test_recursive(self): print("test layer-like API") graph = containers.Graph() graph.add_input(name="input1", ndim=2) graph.add_node(Dense(32, 16), name="dense1", input="input1") graph.add_node(Dense(32, 4), name="dense2", input="input1") graph.add_node(Dense(16, 4), name="dense3", input="dense1") graph.add_output(name="output1", inputs=["dense2", "dense3"], merge_mode="sum") seq = Sequential() seq.add(Dense(32, 32, name="first_seq_dense")) seq.add(graph) seq.add(Dense(4, 4, name="last_seq_dense")) seq.compile("rmsprop", "mse") history = seq.fit(X_train, y_train, batch_size=10, nb_epoch=10) loss = seq.evaluate(X_test, y_test) print(loss) assert loss < 2.5 loss = seq.evaluate(X_test, y_test, show_accuracy=True) pred = seq.predict(X_test) seq.get_config(verbose=1)
def test_nested_sequential(in_tmpdir): (x_train, y_train), (x_test, y_test) = _get_test_data() inner = Sequential() inner.add(Dense(num_hidden, input_shape=(input_dim,))) inner.add(Activation('relu')) inner.add(Dense(num_class)) middle = Sequential() middle.add(inner) model = Sequential() model.add(middle) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=2, validation_split=0.1) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=0) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, shuffle=False) model.train_on_batch(x_train[:32], y_train[:32]) loss = model.evaluate(x_test, y_test, verbose=0) model.predict(x_test, verbose=0) model.predict_classes(x_test, verbose=0) model.predict_proba(x_test, verbose=0) fname = 'test_nested_sequential_temp.h5' model.save_weights(fname, overwrite=True) inner = Sequential() inner.add(Dense(num_hidden, input_shape=(input_dim,))) inner.add(Activation('relu')) inner.add(Dense(num_class)) middle = Sequential() middle.add(inner) model = Sequential() model.add(middle) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') model.load_weights(fname) os.remove(fname) nloss = model.evaluate(x_test, y_test, verbose=0) assert(loss == nloss) # test serialization config = model.get_config() Sequential.from_config(config) model.summary() json_str = model.to_json() model_from_json(json_str) yaml_str = model.to_yaml() model_from_yaml(yaml_str)
def mlp_model(X_train, y_train, X_test, y_test): tokenizer = Tokenizer(nb_words=1000) nb_classes = np.max(y_train) + 1 X_train = tokenizer.sequences_to_matrix(X_train, mode="freq") X_test = tokenizer.sequences_to_matrix(X_test, mode="freq") Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) print("Building model...") model = Sequential() model.add(Dense(512, input_shape=(max_len,))) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(nb_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', class_mode='categorical') history = model.fit(X_train, Y_train, nb_epoch=nb_epoch, batch_size=batch_size, verbose=1, show_accuracy=True, validation_split=0.1) model.evaluate(X_test, Y_test, batch_size=batch_size, verbose=1, show_accuracy=True) # print('Test score:', score[0]) # print('Test accuracy:', score[1]) pred_labels = model.predict_classes(X_test) # print pred_labels # print y_test accuracy = accuracy_score(y_test, pred_labels) precision, recall, f1, supp = precision_recall_fscore_support(y_test, pred_labels, average='weighted') print precision, recall, f1, supp return accuracy, precision, recall, f1
def test_merge_overlap(): left = Sequential() left.add(Dense(nb_hidden, input_shape=(input_dim,))) left.add(Activation('relu')) model = Sequential() model.add(Merge([left, left], mode='sum')) model.add(Dense(nb_class)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=1, validation_data=(X_test, y_test)) model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=2, validation_data=(X_test, y_test)) model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=2, validation_split=0.1) model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=1, validation_split=0.1) model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0) model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, shuffle=False) model.train_on_batch(X_train[:32], y_train[:32]) loss = model.evaluate(X_train, y_train, verbose=0) assert(loss < 0.7) model.predict(X_test, verbose=0) model.predict_classes(X_test, verbose=0) model.predict_proba(X_test, verbose=0) model.get_config(verbose=0) fname = 'test_merge_overlap_temp.h5' model.save_weights(fname, overwrite=True) model.load_weights(fname) os.remove(fname) nloss = model.evaluate(X_train, y_train, verbose=0) assert(loss == nloss)
def test_merge_sum(): (X_train, y_train), (X_test, y_test) = _get_test_data() left = Sequential() left.add(Dense(nb_hidden, input_shape=(input_dim,))) left.add(Activation('relu')) right = Sequential() right.add(Dense(nb_hidden, input_shape=(input_dim,))) right.add(Activation('relu')) model = Sequential() model.add(Merge([left, right], mode='sum')) model.add(Dense(nb_class)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, validation_data=([X_test, X_test], y_test)) model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, validation_split=0.1) model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0) model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, shuffle=False) loss = model.evaluate([X_test, X_test], y_test, verbose=0) model.predict([X_test, X_test], verbose=0) model.predict_classes([X_test, X_test], verbose=0) model.predict_proba([X_test, X_test], verbose=0) # test weight saving fname = 'test_merge_sum_temp.h5' model.save_weights(fname, overwrite=True) left = Sequential() left.add(Dense(nb_hidden, input_shape=(input_dim,))) left.add(Activation('relu')) right = Sequential() right.add(Dense(nb_hidden, input_shape=(input_dim,))) right.add(Activation('relu')) model = Sequential() model.add(Merge([left, right], mode='sum')) model.add(Dense(nb_class)) model.add(Activation('softmax')) model.load_weights(fname) os.remove(fname) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') nloss = model.evaluate([X_test, X_test], y_test, verbose=0) assert(loss == nloss) # test serialization config = model.get_config() Sequential.from_config(config) model.summary() json_str = model.to_json() model_from_json(json_str) yaml_str = model.to_yaml() model_from_yaml(yaml_str)
def test_merge_concat(self): print('Test merge: concat') left = Sequential() left.add(Dense(input_dim, nb_hidden)) left.add(Activation('relu')) right = Sequential() right.add(Dense(input_dim, nb_hidden)) right.add(Activation('relu')) model = Sequential() model.add(Merge([left, right], mode='concat')) model.add(Dense(nb_hidden * 2, nb_class)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, validation_data=([X_test, X_test], y_test)) model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=0, validation_data=([X_test, X_test], y_test)) model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, validation_split=0.1) model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=0, validation_split=0.1) model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0) model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, shuffle=False) loss = model.evaluate([X_train, X_train], y_train, verbose=0) print('loss:', loss) if loss > 0.6: raise Exception('Score too low, learning issue.') preds = model.predict([X_test, X_test], verbose=0) classes = model.predict_classes([X_test, X_test], verbose=0) probas = model.predict_proba([X_test, X_test], verbose=0) print(model.get_config(verbose=1)) print('test weight saving') model.save_weights('temp.h5', overwrite=True) left = Sequential() left.add(Dense(input_dim, nb_hidden)) left.add(Activation('relu')) right = Sequential() right.add(Dense(input_dim, nb_hidden)) right.add(Activation('relu')) model = Sequential() model.add(Merge([left, right], mode='concat')) model.add(Dense(nb_hidden * 2, nb_class)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') model.load_weights('temp.h5') nloss = model.evaluate([X_train, X_train], y_train, verbose=0) print(nloss) assert(loss == nloss)
def test_siamese_1(): (X_train, y_train), (X_test, y_test) = _get_test_data() left = Sequential() left.add(Dense(nb_hidden, input_shape=(input_dim,))) left.add(Activation('relu')) right = Sequential() right.add(Dense(nb_hidden, input_shape=(input_dim,))) right.add(Activation('relu')) model = Sequential() model.add(Siamese(Dense(nb_hidden), [left, right], merge_mode='sum')) model.add(Dense(nb_class)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, validation_data=([X_test, X_test], y_test)) model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=0, validation_data=([X_test, X_test], y_test)) model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, validation_split=0.1) model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=0, validation_split=0.1) model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0) model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, shuffle=False) loss = model.evaluate([X_test, X_test], y_test, verbose=0) assert(loss < 0.8) model.predict([X_test, X_test], verbose=0) model.predict_classes([X_test, X_test], verbose=0) model.predict_proba([X_test, X_test], verbose=0) model.get_config(verbose=0) # test weight saving fname = 'test_siamese_1.h5' model.save_weights(fname, overwrite=True) left = Sequential() left.add(Dense(nb_hidden, input_shape=(input_dim,))) left.add(Activation('relu')) right = Sequential() right.add(Dense(nb_hidden, input_shape=(input_dim,))) right.add(Activation('relu')) model = Sequential() model.add(Siamese(Dense(nb_hidden), [left, right], merge_mode='sum')) model.add(Dense(nb_class)) model.add(Activation('softmax')) model.load_weights(fname) os.remove(fname) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') nloss = model.evaluate([X_test, X_test], y_test, verbose=0) assert(loss == nloss)
def train_given_optimiser(optimiser): model = Sequential() model.add(Dense(1, input_dim=500)) model.add(Activation(activation='sigmoid')) model.compile(optimizer=optimiser, loss='binary_crossentropy', metrics=['accuracy']) data = np.random.random((1000, 500)) labels = np.random.randint(2, size=(1000, 1)) score = model.evaluate(data,labels, verbose=0) print( "Optimiser: ", optimiser ) print( "Before Training:", list(zip(model.metrics_names, score)) ) model.fit(data, labels, nb_epoch=10, batch_size=32, verbose=0) score = model.evaluate(data,labels, verbose=0) print( "After Training:", list(zip(model.metrics_names, score)) )
def test_merge_recursivity(self): print('Test merge recursivity') left = Sequential() left.add(Dense(nb_hidden, input_shape=(input_dim,))) left.add(Activation('relu')) right = Sequential() right.add(Dense(nb_hidden, input_shape=(input_dim,))) right.add(Activation('relu')) righter = Sequential() righter.add(Dense(nb_hidden, input_shape=(input_dim,))) righter.add(Activation('relu')) intermediate = Sequential() intermediate.add(Merge([left, right], mode='sum')) intermediate.add(Dense(nb_hidden)) intermediate.add(Activation('relu')) model = Sequential() model.add(Merge([intermediate, righter], mode='sum')) model.add(Dense(nb_class)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') model.fit([X_train, X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, validation_data=([X_test, X_test, X_test], y_test)) model.fit([X_train, X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=0, validation_data=([X_test, X_test, X_test], y_test)) model.fit([X_train, X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, validation_split=0.1) model.fit([X_train, X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=0, validation_split=0.1) model.fit([X_train, X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0) model.fit([X_train, X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, shuffle=False) loss = model.evaluate([X_train, X_train, X_train], y_train, verbose=0) print('loss:', loss) if loss > 0.7: raise Exception('Score too low, learning issue.') model.predict([X_test, X_test, X_test], verbose=0) model.predict_classes([X_test, X_test, X_test], verbose=0) model.predict_proba([X_test, X_test, X_test], verbose=0) model.get_config(verbose=0) fname = 'test_merge_recursivity_temp.h5' model.save_weights(fname, overwrite=True) model.load_weights(fname) os.remove(fname) nloss = model.evaluate([X_train, X_train, X_train], y_train, verbose=0) print(nloss) assert(loss == nloss)
def test_sequential(self): print('Test sequential') model = Sequential() model.add(Dense(nb_hidden, input_shape=(input_dim,))) model.add(Activation('relu')) model.add(Dense(nb_class)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=1, validation_data=(X_test, y_test)) model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=2, validation_data=(X_test, y_test)) model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=2, validation_split=0.1) model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=1, validation_split=0.1) model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0) model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, shuffle=False) model.train_on_batch(X_train[:32], y_train[:32]) loss = model.evaluate(X_train, y_train, verbose=0) print('loss:', loss) if loss > 0.7: raise Exception('Score too low, learning issue.') model.predict(X_test, verbose=0) model.predict_classes(X_test, verbose=0) model.predict_proba(X_test, verbose=0) model.get_config(verbose=0) print('test weight saving') fname = 'test_sequential_temp.h5' model.save_weights(fname, overwrite=True) model = Sequential() model.add(Dense(nb_hidden, input_shape=(input_dim,))) model.add(Activation('relu')) model.add(Dense(nb_class)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') model.load_weights(fname) os.remove(fname) nloss = model.evaluate(X_train, y_train, verbose=0) assert(loss == nloss) # test json serialization json_data = model.to_json() model = model_from_json(json_data) # test yaml serialization yaml_data = model.to_yaml() model = model_from_yaml(yaml_data)
def run_problem_1_with_keras(epochs=9, batch_size=128, hidden_nodes=1024): log_folder = os.path.join(data_root, 'assignment2', 'keras') model = Sequential() model.add(Dense(units=hidden_nodes, activation='relu', input_dim=image_size * image_size)) model.add(Dense(units=num_labels, activation='softmax')) model.compile(loss=categorical_crossentropy, metrics=['accuracy'], optimizer=SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)) model.fit(train_dataset, train_labels, epochs=epochs, batch_size=batch_size, verbose=False, callbacks=[TensorBoard(log_folder)]) print("Validate accuracy: %.1f%%" % (model.evaluate(valid_dataset, valid_labels, verbose=False)[1] * 100)) acc = 100 * model.evaluate(test_dataset, test_labels, verbose=False)[1] print("Test accuracy: %.1f%%" % acc) predictions = model.predict(test_dataset, verbose=False) display_sample_prediction(predictions, test_labels, acc) pass
class MLP: ''' [(output_dim, input_dim, init, activation, dropout)] ''' def __init__(self\ , structure\ , sgd_params_init = sgd_params(0.1,1e-6,0.9,True)\ , loss_name = 'mean_squared_error'): self.model = Sequential() for layers in structure: self.model.add(Dense(output_dim = layers.output_dim\ , input_dim = layers.input_dim\ , init = layers.init\ , activation = layers.activation)) if layers.dropout != None: self.model.add(Dropout(layers.dropout)) sgd = SGD(lr = sgd_params_init.lr\ , decay = sgd_params_init.decay\ , momentum = sgd_params_init.momentum\ , nesterov = sgd_params_init.nesterov) self.model.compile(loss = loss_name, optimizer = sgd) def train(self, X_train, y_train, nb_epoch = 20, batch_size = 16): self.model.fit(X_train, y_train, nb.epoch, batch_size) def test(self, X_test, y_test, batch_size = 16): return self.model.evaluate(X_test, y_test, batch_size)
def model(X_train, Y_train, X_test, Y_test): from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import RMSprop model = Sequential() model.add(Dense(512, input_shape=(784,))) model.add(Activation('relu')) model.add(Dropout({{uniform(0, 1)}})) model.add(Dense({{choice([256, 512, 1024])}})) model.add(Activation('relu')) model.add(Dropout({{uniform(0, 1)}})) model.add(Dense(10)) model.add(Activation('softmax')) rms = RMSprop() model.compile(loss='categorical_crossentropy', optimizer=rms) model.fit(X_train, Y_train, batch_size={{choice([64, 128])}}, nb_epoch=1, show_accuracy=True, verbose=2, validation_data=(X_test, Y_test)) score = model.evaluate(X_test, Y_test, show_accuracy=True, verbose=0) print('Test accuracy:', score[1]) return {'loss': -score[1], 'status': STATUS_OK}
def train(): print('Build model...') model = Sequential() model.add(Embedding(max_features, 128, input_length=maxlen, dropout=0.2)) model.add(LSTM(128, dropout_W=0.2, dropout_U=0.2)) # try using a GRU instead, for fun model.add(Dense(1)) model.add(Activation('sigmoid')) # try using different optimizers and different optimizer configs model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print('Train...') print(X_train.shape) print(y_train.shape) model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=15, validation_data=(X_test, y_test)) score, acc = model.evaluate(X_test, y_test, batch_size=batch_size) print('Test score:', score) print('Test accuracy:', acc) with open("save_weight_lstm.pickle", mode="wb") as f: pickle.dump(model.get_weights(),f)
def evaluate(lr, pos): (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = (X_train.astype("float32")).reshape((60000, 784)) X_test = (X_test.astype("float32")).reshape((10000, 784)) X_train /= 255 X_test /= 255 Y_train = np_utils.to_categorical(y_train, 10) Y_test = np_utils.to_categorical(y_test, 10) model = Sequential() model.add(Dense(output_dim=layer1, input_dim=784)) if pos == 0: model.add(BatchNormalization()) model.add(Activation("relu")) model.add(Dense(output_dim=layer2, input_dim=layer1)) if pos == 1: model.add(BatchNormalization()) model.add(Activation("relu")) model.add(Dense(output_dim=10, input_dim=layer2)) if pos == 2: model.add(BatchNormalization()) model.add(Activation("softmax")) model.compile( loss="categorical_crossentropy", optimizer=SGD(lr=lr, momentum=0.9, nesterov=True), metrics=["accuracy"] ) model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, validation_data=(X_test, Y_test)) score = model.evaluate(X_test, Y_test, verbose=0) return score[1]
def model(X_train, Y_train, X_test, Y_test): ''' Model providing function: Create Keras model with double curly brackets dropped-in as needed. Return value has to be a valid python dictionary with two customary keys: - loss: Specify a numeric evaluation metric to be minimized - status: Just use STATUS_OK and see hyperopt documentation if not feasible The last one is optional, though recommended, namely: - model: specify the model just created so that we can later use it again. ''' model = Sequential() model.add(Dense(512, input_shape=(784,))) model.add(Activation('relu')) model.add(Dropout({{uniform(0, 1)}})) model.add(Dense({{choice([256, 512, 1024])}})) model.add(Activation('relu')) model.add(Dropout({{uniform(0, 1)}})) model.add(Dense(10)) model.add(Activation('softmax')) rms = RMSprop() model.compile(loss='categorical_crossentropy', optimizer=rms, metrics=['accuracy']) model.fit(X_train, Y_train, batch_size={{choice([64, 128])}}, nb_epoch=1, verbose=2, validation_data=(X_test, Y_test)) score, acc = model.evaluate(X_test, Y_test, verbose=0) print('Test accuracy:', acc) return {'loss': -acc, 'status': STATUS_OK, 'model': model}
def model(X_train, X_test, y_train, y_test, max_features, maxlen): model = Sequential() model.add(Embedding(max_features, 128, input_length=maxlen)) model.add(LSTM(128)) model.add(Dropout({{uniform(0, 1)}})) model.add(Dense(1)) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) early_stopping = EarlyStopping(monitor='val_loss', patience=4) checkpointer = ModelCheckpoint(filepath='keras_weights.hdf5', verbose=1, save_best_only=True) model.fit(X_train, y_train, batch_size={{choice([32, 64, 128])}}, nb_epoch=1, validation_split=0.08, callbacks=[early_stopping, checkpointer]) score, acc = model.evaluate(X_test, y_test, verbose=0) print('Test accuracy:', acc) return {'loss': -acc, 'status': STATUS_OK, 'model': model}
def part4(weights): global X_train, Y_train, X_test, Y_test size = 3 model = Sequential() model.add(Convolution2D(32, size, size, border_mode="same", input_shape=(img_channels, img_rows, img_cols))) model.add(Activation("relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.5)) model = add_top_layer(model) model.load_weights(weights) model = copy_freeze_model(model, 4) # add top dense layer model.add(Flatten()) model.add(Dense(512)) model.add(Activation("relu")) model.add(Dropout(0.5)) model.add(Dense(10)) model.add(Activation("softmax")) X_train, Y_train, X_test, Y_test = load_data(10) model = train(model, auto=False) print("Classification rate %02.5f" % (model.evaluate(X_test, Y_test, show_accuracy=True)[1]))
def create_model(x_train, y_train, x_test, y_test): """ Create your model... """ layer_1_size = {{quniform(12, 256, 4)}} l1_dropout = {{uniform(0.001, 0.7)}} params = { 'l1_size': layer_1_size, 'l1_dropout': l1_dropout } num_classes = 10 model = Sequential() model.add(Dense(int(layer_1_size), activation='relu')) model.add(Dropout(l1_dropout)) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=RMSprop(), metrics=['accuracy']) model.fit(x_train, y_train, batch_size=128, epochs=10, validation_data=(x_test, y_test)) score, acc = model.evaluate(x_test, y_test, verbose=0) out = { 'loss': -acc, 'score': score, 'status': STATUS_OK, 'model_params': params, } # optionally store a dump of your model here so you can get it from the database later temp_name = tempfile.gettempdir()+'/'+next(tempfile._get_candidate_names()) + '.h5' model.save(temp_name) with open(temp_name, 'rb') as infile: model_bytes = infile.read() out['model_serial'] = model_bytes return out
def imdb_lstm(): max_features = 20000 maxlen = 80 # cut texts after this number of words (among top max_features most common words) batch_size = 32 (X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features) print type(X_train) exit(0) print len(X_train), 'train sequences' print len(X_test), 'test sequences' print('Pad sequences (samples x time)') X_train = sequence.pad_sequences(X_train, maxlen=maxlen) X_test = sequence.pad_sequences(X_test, maxlen=maxlen) print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) print('Build model...') model = Sequential() model.add(Embedding(max_features, 128, dropout=0.2)) model.add(LSTM(128, dropout_W=0.2, dropout_U=0.2)) # try using a GRU instead, for fun model.add(Dense(1)) model.add(Activation('sigmoid')) # try using different optimizers and different optimizer configs model.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy']) print('Train...') model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=15, validation_data=(X_test, y_test)) score, acc = model.evaluate(X_test, y_test, batch_size=batch_size) print('Test score:', score) print('Test accuracy:', acc)
def train_rnn(character_corpus, seq_len, train_test_split_ratio): model = Sequential() model.add(Embedding(character_corpus.char_num(), 256)) model.add(LSTM(256, 5120, activation='sigmoid', inner_activation='hard_sigmoid', return_sequences=True)) model.add(Dropout(0.5)) model.add(TimeDistributedDense(5120, character_corpus.char_num())) model.add(Activation('time_distributed_softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') seq_X, seq_Y = character_corpus.make_sequences(seq_len) print "Sequences are made" train_seq_num = train_test_split_ratio*seq_X.shape[0] X_train = seq_X[:train_seq_num] Y_train = to_time_distributed_categorical(seq_Y[:train_seq_num], character_corpus.char_num()) X_test = seq_X[train_seq_num:] Y_test = to_time_distributed_categorical(seq_Y[train_seq_num:], character_corpus.char_num()) print "Begin train model" checkpointer = ModelCheckpoint(filepath="model.step", verbose=1, save_best_only=True) model.fit(X_train, Y_train, batch_size=256, nb_epoch=100, verbose=2, validation_data=(X_test, Y_test), callbacks=[checkpointer]) print "Model is trained" score = model.evaluate(X_test, Y_test, batch_size=512) print "valid score = ", score return model
def CNN_3_layer(activation): Xtrain, ytrain, XCV, yCV, Xtest, ytest = load_data("mnist.pkl.gz") Xtrain = Xtrain.reshape(Xtrain.shape[0], 1, 28, 28) Xtest = Xtest.reshape(Xtest.shape[0], 1, 28, 28) XCV = Xtest.reshape(XCV.shape[0], 1, 28, 28) # 0~9 ten classes ytrain = np_utils.to_categorical(ytrain, 10) ytest = np_utils.to_categorical(ytest, 10) yCV = np_utils.to_categorical(yCV, 10) # Build the model model = Sequential() model.add(Convolution2D(32,3,3,border_mode='valid',input_shape=(1,28,28))) model.add(Activation(activation)) model.add(Convolution2D(32,3,3)) model.add(Activation(activation)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(16,3,3)) model.add(Activation(activation)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128)) model.add(Activation(activation)) model.add(Dropout(0.5)) model.add(Dense(10)) model.add(Activation('softmax')) # fit module print "fit module" model.compile(loss='categorical_crossentropy',optimizer='adadelta',metrics=['accuracy']) model.fit(Xtrain,ytrain,batch_size=100,nb_epoch=20,verbose=1,validation_data=(XCV,yCV)) score = model.evaluate(Xtest,ytest, verbose=0) print score[0] print score[1]
def model(X_train, X_test, y_train, y_test, maxlen, max_features): embedding_size = 300 pool_length = 4 lstm_output_size = 100 batch_size = 200 nb_epoch = 1 model = Sequential() model.add(Embedding(max_features, embedding_size, input_length=maxlen)) model.add(Dropout({{uniform(0, 1)}})) # Note that we use unnamed parameters here, which is bad style, but is used here # to demonstrate that it works. Always prefer named parameters. model.add(Convolution1D({{choice([64, 128])}}, {{choice([6, 8])}}, border_mode='valid', activation='relu', subsample_length=1)) model.add(MaxPooling1D(pool_length=pool_length)) model.add(LSTM(lstm_output_size)) model.add(Dense(1)) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print('Train...') model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, validation_data=(X_test, y_test)) score, acc = model.evaluate(X_test, y_test, batch_size=batch_size) print('Test score:', score) print('Test accuracy:', acc) return {'loss': -acc, 'status': STATUS_OK, 'model': model}
def model(X_train, X_test, Y_train, Y_test): model = Sequential() model.add(Dense(512, input_shape=(784,))) model.add(Activation('relu')) model.add(Dropout({{uniform(0, 1)}})) model.add(Dense({{choice([400, 512, 600])}})) model.add(Activation('relu')) model.add(Dropout({{uniform(0, 1)}})) model.add(Dense(10)) model.add(Activation('softmax')) rms = RMSprop() model.compile(loss='categorical_crossentropy', optimizer=rms, metrics=['accuracy']) nb_epoch = 10 batch_size = 128 model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=2, validation_data=(X_test, Y_test)) score, acc = model.evaluate(X_test, Y_test, verbose=0) return {'loss': -acc, 'status': STATUS_OK, 'model': model}