Example #1
0
def run(do_print):
    tk=0
    tp=0
    for i in range(100):
        G,C,Gp,N,n=load_data_2('testing_graph_'+str(i)+'.txt')
        start=time.time()
        if do_print:
            print_kruskal(C,n,str(i))
        else:
            kruskal(C,n)
        tk=tk+time.time()-start
        n=G.shape[0]
        start=time.time()
        if do_print:
            print_prim(Gp,N,n,str(i))
        else:
            prim(Gp,N,n)
        tp=tp+time.time()-start
    tp=tp/100.0
    tk=tk/100.0
    print tp
    print tk
    f=open('runtime.txt','w')
    f.write('Prim: '+str(tp)+' seconds\nKruskal: '+str(tk)+' seconds')
    f.close()
    return
Example #2
0
def grid_span():
    grid = full_grid()
    spanning_tree1 = kruskal(grid.nodes(), sorted(grid.edges()))
    spanning_tree2 = kruskal(grid.nodes(), reversed(sorted(grid.edges())))
    grid.remove_edges_from(grid.edges())
    grid.add_edges_from(spanning_tree1 + spanning_tree2)
    grid.graph['name'] = 'grid_span'
    for i in range(10):
        if i != 4:
            grid.add_edge((i, 5), (i + 1, 5))
            grid.graph['init path'].append(((i, 5), (i + 1, 5))) 
    return grid
Example #3
0
def grid_span_rand():
    grid = full_grid()
    edges = grid.edges()
    shuffle(edges)
    spanning_tree1 = kruskal(grid.nodes(), edges)
    shuffle(edges)
    spanning_tree2 = kruskal(grid.nodes(), edges)
    grid.remove_edges_from(grid.edges())
    grid.add_edges_from(spanning_tree1 + spanning_tree2)
    grid.graph['name'] = 'grid_span_rand'
    for i in range(10):
        if i != 4:
            grid.add_edge((i, 5), (i + 1, 5))
            grid.graph['init path'].append(((i, 5), (i + 1, 5))) 
    return grid
Example #4
0
def main():
    graph = {
        'A': ['B'],
        'B': ['D'],
        'C': ['D', 'E'],
        'D': ['F', 'G'],
        'E': ['J'],
        'F': ['I'],
        'G': ['J'],
        'H': ['K'],
        'I': ['K'],
        'J': ['L'],
        'K': [],
        'L': []
    }

    newGraph = moralizeGraph(graph)
    addEdge = minfill(newGraph)
    for edge in addEdge:
        a = edge[0][0]
        b = edge[0][1]
        newGraph[a] += [b]
        newGraph[b] += [a]

    clique = findMaximalClique(newGraph)
    print clique
    print '================================'

    cliqueGraph = createCliqueGraph(clique)
    print cliqueGraph
    print '================================'

    cliqueTree = kruskal.kruskal(cliqueGraph)
    print cliqueTree
    print '================================'
def test_kruskal():
    input_graph = Graph(
        Edge(1, 2, 1), Edge(1, 3, 4), Edge(1, 4, 3), Edge(2, 4, 2), Edge(3, 4, 5)
    )
    expected_graph = Graph(Edge(1, 2, 1), Edge(1, 3, 4), Edge(2, 4, 2))
    actual_graph = kruskal(input_graph)
    assert actual_graph == expected_graph
Example #6
0
def Kruskal_Algorithm():
    #Sets the number of vertices in the graph
    n = 10
    #Creates the maximum number of vertices for this graph
    g = K.kruskal(n)
    print("Applying a graph of ", n, " vertices.")
    print("")
    #Sets the edges that are present in the graph, reading from, to, and its weight value
    g.addEdge(0, 1, 4)
    g.addEdge(0, 4, 3)
    g.addEdge(1, 4, 2)
    g.addEdge(1, 5, 5)
    g.addEdge(1, 2, 4)
    g.addEdge(2, 5, 6)
    g.addEdge(2, 6, 9)
    g.addEdge(3, 6, 13)
    g.addEdge(4, 7, 1)
    g.addEdge(4, 5, 12)
    g.addEdge(5, 7, 21)
    g.addEdge(7, 8, 14)
    g.addEdge(5, 8, 11)
    g.addEdge(5, 6, 17)
    g.addEdge(6, 8, 10)
    g.addEdge(8, 9, 16)
    g.addEdge(3, 9, 20)
    print("")
    print("Creating the new graph using Kruskal's Algorithm...")
    #Sends the new formed graph to be sorted using kruskal's algorithm. The next class will print its result
    g.Kruskal_al()
Example #7
0
def main():
    grafo = Grafo()
    archivo = "map.osm"
    depurar(archivo)
    print("fin de depuracion")
    archivo2 = "modificado.xml"
    grafo = Grafo()
    grafo = grafoOSM(archivo2)
    print("fin de procesamiento de datos OSM")
    # PRUEBA
    arbol = kruskal(grafo)
    print("fin de kruskal")
    idA = encuentra_punto(grafo, -12.066159,
                          -77.073635)  # -12.071697, -77.076262)
    assert idA in grafo.dic_vertices.keys(
    ), "idA no se encuentra dentro del grafo"
    idB = encuentra_punto(
        grafo, -12.072115,
        -77.072334)  # -12.070534, -77.066984) # -12.086531, -77.063292)
    assert idB in grafo.dic_vertices.keys(
    ), "idB no se encuentra dentro del grafo"
    camino = dijkstra(grafo, arbol, idA, idB)
    print("fin de dijkstra")
    mapeoarbol(grafo, arbol, camino)
    print("fin de grafico de mapa")
    print("FIN")
Example #8
0
def main():
    for filename in get_test_files():
        print("%s:" % filename, end=" ")
        with open(filename, "r") as fhandler:
            lines = fhandler.readlines()
        nb_edges = int(lines[0])
        edges = [
            (lambda s:
             (int(s[0]), int(s[1]), int(s[2])))(lines[i + 1].strip().split())
            for i in range(nb_edges)
        ]
        try:
            t1 = time.perf_counter()
            _, prim_c = prim(edges)
            t2 = time.perf_counter()
            _, kruskal_c = kruskal(edges)
            t3 = time.perf_counter()
        except Exception:
            print("runtime error")
        else:
            if prim_c != kruskal_c:
                print("KO (Prim: %d, Kruskal: %d)" % (prim_c, kruskal_c))
            else:
                print("OK (both %d)\t- %d edges\t"
                      "- Prim: %.3f ms, \tKruskal: %.3f ms" %
                      (prim_c, nb_edges, 1000 * (t2 - t1), 1000 * (t3 - t2)))
Example #9
0
def get_all_results(from_to_cost, no_of_nodes, source, node_x_y, result, ui):
    kruskal_output = kruskal.kruskal(from_to_cost, no_of_nodes)
    prims_output = prims.PRIMS(from_to_cost, no_of_nodes, source)
    dijkstra_output = dijkstra.DIJKSTRA(from_to_cost, no_of_nodes, source)
    bellman_output = bellmanford.BELLMANFORD(from_to_cost, no_of_nodes, source)
    floyd_output = FloydWarshall.FLOYDWARSHALL(from_to_cost, no_of_nodes,
                                               source, node_x_y)

    # print(kruskal_output)
    # print(prims_output)
    # print(dijkstra_output)
    # print(bellman_output)
    # print(floyd_output)
    kruskal_cost = kruskal_output[1]
    prims_cost = prims_output[1]
    dijkstra_cost = dijkstra_output[1]
    bellman_cost = bellman_output[1]
    floyd_cost = floyd_output[1]
    local_cluster_average = LocalCluster.LOCALCLUSTERAVERAGE(result)
    # print(kruskal_cost)
    # print(prims_cost)
    # print(dijkstra_cost)
    # print(bellman_cost)
    # print(floyd_cost)
    # print(local_cluster_average)

    data = [
        kruskal_cost, prims_cost, dijkstra_cost, bellman_cost, floyd_cost,
        local_cluster_average
    ]
    for y in range(0, len(data)):
        # print('col test : ' + str(ui.tableWidget.item(0,y).text()))
        ui.tableWidget.item(0, y).setText(str(data[y]))
Example #10
0
def compute_max_spanning_tree(graph):
    mst = kruskal(graph)

    print(">>> [mst]")
    pprint(dict(mst))
    # show_graph(mst)

    return mst
Example #11
0
def heuristic_tree(points, iterations=1000, alpha=0.01):
    """heuristic algorithm for Steiner tree."""
    size = points.shape[0]
    adjacentcy_list = kruskal(points)
    points, adjacentcy_list = add_steiner_points(points, adjacentcy_list)
    points, adjacentcy_list = move_steiner_points(points,
                                                  adjacentcy_list,
                                                  size,
                                                  iterations=iterations,
                                                  alpha=alpha)
    return points, adjacentcy_list
Example #12
0
    def test_kruskal_str_vertices(self):

        graph = Graph()

        graph.add_edge(Edge(Vertex("A"), Vertex("D"), 2))
        graph.add_edge(Edge(Vertex("A"), Vertex("G"), 3))
        graph.add_edge(Edge(Vertex("A"), Vertex("B"), 1))
        graph.add_edge(Edge(Vertex("B"), Vertex("E"), 6))
        graph.add_edge(Edge(Vertex("B"), Vertex("F"), 7))
        graph.add_edge(Edge(Vertex("F"), Vertex("D"), 10))
        graph.add_edge(Edge(Vertex("F"), Vertex("C"), 12))
        graph.add_edge(Edge(Vertex("E"), Vertex("G"), 9))

        self.assertEqual(kruskal(graph), 31)
Example #13
0
def kruskal_graph():
    graph = {}
    edges_l = []
    graph['vertices'] = list_vertics(vertic)
    pytanie = raw_input("Czy chcesz podac wagi? (T or F) ")
    for i in edge_list:
        if pytanie != 'F':
            waga = int(raw_input("Podaj wage wierzcholka " + str(i) + ': '))
        else:
            waga = 1
        edg = waga, i[0], i[1]
        edges_l.append(edg)
    edges_l.sort()
    print edges_l
    graph['edges'] = edges_l
    return kruskal.kruskal(graph)
Example #14
0
def runAct(dataArray):
    print "Choosing the list of samples."
    #or use partition by metadatum values
    sampleNameList,metadataList,interval1List,interval2List = createSampleNameList(dataArray)
    n = len(sampleNameList)
    print "\nAVAILABLE COMPARISON FUNCTION(S):"
    fctF = printComparison()
    f = raw_input("\nChoose your comparison function above those printed above.\n")
    isInDatabase([f],fctF)
    completeGraph = Graph(n).constructComplete(sampleNameList,dataArray[7],f)
    superTree,w = kruskal(completeGraph)
    #Constructing distance matrix
    matrix = np.zeros((n,n))
    print "\nAVAILABLE DISTANCE FUNCTION(S):"
    fctD = printDistance()
    d = raw_input("\nChoose your distance function above those printed above.\n")
    isInDatabase([d],fctD)
    valueArray = []
    print "\nSUPERTREE of weight:",w
    print superTree.vertices
    print superTree.edges
    for i in range(n):
        for j in range(i,n):
            #matrix is symmetric (distance)
            s = applyFctD(d,superTree,i,j)
            matrix[i][j] = s
            matrix[j][i] = s
            valueArray.append(s)
    valueArray = sorted(valueArray)
    valueNumber = n*n/2
    quartile3 = valueNumber*3/4
    valueQuartile = valueArray[quartile3]
    mostDifferent = []
    #Distance is symmetric
    for i in range(n):
        for j in range(i+1,n):
            if matrix[i][j] >= valueQuartile:
                mostDifferent.append((sampleNameList[i],sampleNameList[j]))
    print "\nRESULTING MATRIX:"
    print matrix
    print "\n---\nMost different samples groups from:\n"
    for sampleGroup in sampleNameList:
        print sampleGroup
    print "\nare:\n"
    print mostDifferent
    print "\n--- END OF DISPLAY\n"
Example #15
0
def benchmark():
    n = 10**4
    m = 10 * n
    G = Graph.random_graph(n, m, weighted=True)

    begin = time.time()
    A = kruskal(G)
    end = time.time()
    print('* Kruskal  {:.5} s'.format(end - begin))
    print('-- total weight:', sum(G[u][v] for u, v in A))
    print()

    begin = time.time()
    B = prim(G)
    end = time.time()
    print('* Prim     {:.5} s'.format(end - begin))
    print('-- total weight:', sum(G[u][v] for u, v in B))
def run_equivalence_test(n, trace=False):
    """
    Compare all algorithms for the same input graph
    :param n:       size of the test graph
    :param trace:   print debug info is test failed
    :return True if test succeeds
    """

    t = timeit.default_timer()

    adj_list, vertex_list, edge_list = generate_graph(n)

    if trace:
        print 'Generate graph: {}'.format(timeit.default_timer() - t)
    t = timeit.default_timer()

    min_span_tree_boruvka = set(boruvka(adj_list))
    normalize_edge_list(min_span_tree_boruvka)

    if trace:
        print 'Boruvka: {}'.format(timeit.default_timer() - t)
    t = timeit.default_timer()

    min_span_tree_kruskal = set(kruskal(vertex_list, edge_list))

    if trace:
        print 'Kruskal: {}'.format(timeit.default_timer() - t)
    t = timeit.default_timer()

    min_span_tree_prim = build_mst_edge_list(prim(adj_list), adj_list)

    if trace:
        print 'Prim: {}'.format(timeit.default_timer() - t)

    success = min_span_tree_boruvka == min_span_tree_kruskal == min_span_tree_prim

    if not success and trace and n < 100:
        print 'TEST FAILED:'
        print 'Adjacency list: {}'.format(adj_list)
        print 'Edge and vertex list: {}'.format(edge_list)
        print 'Minimum spanning tree with Boruvka: {}'.format(min_span_tree_boruvka)
        print 'Minimum spanning tree with Kruskal: {}'.format(min_span_tree_kruskal)
        print 'Minimum spanning tree with Prim:    {}'.format(min_span_tree_prim)
        print '----------------------------------'

    return success
Example #17
0
def eulerKruskal(n, s, G, input):
    tracemalloc.start()
    cost = 0
    k = 0
    v = s
    MST = [[] for _ in range(n)]
    T = kruskal(n, input)
    for t in T:
        MST[t[0].value].append([t[1].value, 0])
        MST[t[1].value].append([t[0].value, 0])

    to_visit = len(T) * 2
    vertices = []
    while to_visit > 0:
        vertices.append(v)
        u = -1
        vi = 3
        for edg in MST[v]:
            if edg[1] < 2 and edg[1] < vi:
                u = edg[0]
                vi = edg[1]
        idx = MST[v].index([u, vi])
        MST[v][idx][1] += 1
        idx = MST[u].index([v, vi])
        MST[u][idx][1] += 1
        v = u
        to_visit -= 1

    visited = [False for _ in range(n)]
    i = 0
    route = []
    route.append(s)
    while i < len(vertices):
        if visited[vertices[i]]:
            vertices.pop(i)
        else:
            visited[vertices[i]] = True
            i += 1
    for i in range(0, n - 1):
        k += 1
        cost += G[vertices[i]][vertices[i + 1]]
        route.append(vertices[i + 1])

    memory = tracemalloc.get_traced_memory()[1]
    tracemalloc.stop()
    return cost, memory, route, len(route)
Example #18
0
    def test_kruskal_int_vertices(self):

        graph = Graph()

        graph.add_edge(Edge(Vertex(0), Vertex(1), 1))
        graph.add_edge(Edge(Vertex(0), Vertex(4), 1))
        graph.add_edge(Edge(Vertex(1), Vertex(0), 1))
        graph.add_edge(Edge(Vertex(1), Vertex(3), 1))
        graph.add_edge(Edge(Vertex(1), Vertex(4), 1))
        graph.add_edge(Edge(Vertex(1), Vertex(2), 1))
        graph.add_edge(Edge(Vertex(2), Vertex(3), 1))
        graph.add_edge(Edge(Vertex(2), Vertex(1), 1))
        graph.add_edge(Edge(Vertex(3), Vertex(1), 1))
        graph.add_edge(Edge(Vertex(3), Vertex(2), 1))
        graph.add_edge(Edge(Vertex(3), Vertex(4), 1))

        self.assertEqual(kruskal(graph), 4)
Example #19
0
 def testMST(self):
     size = 50
     for _ in range(100):
         adjList = defaultdict(list)
         edges = []
         cnt = 0
         weights = range(size * (size - 1) / 2)
         random.shuffle(weights)
         for i in range(size):
             for j in range(i + 1, size):
                 adjList[i].append((j, weights[cnt]))
                 adjList[j].append((i, weights[cnt]))
                 edges.append((i, j, weights[cnt]))
                 cnt += 1
         parent = prim(adjList)
         edges = kruskal(size, edges)
         self.assertEqual(len(edges) + 1, len(parent))
         for u, v in edges:
             self.assertTrue(parent[u] == v or parent[v] == u)
def clustering(dataP,
               confLevel=0.95,
               minRate=0.01,
               _lambda=10,
               KMax=50,
               verbose=False,
               visualization=False):
    numPoints = len(dataP)
    #print(numPoints)
    print("********************** Clustering **********************")

    # Complete Graph and Kruskal MST
    distMatrix = np.zeros((numPoints, numPoints))
    repEdges = np.zeros((numPoints * (numPoints - 1), 2))
    repEdgeWeights = np.zeros((numPoints * (numPoints - 1), 1))

    count = 0

    for k in range(numPoints):
        for l in range(k + 1, numPoints):
            dist = np.linalg.norm(dataP[k][:] - dataP[l][:], 2)

            distMatrix[k][l] = dist
            distMatrix[l][k] = dist

            repEdges[count][0] = k
            repEdges[count][1] = l
            repEdgeWeights[count][0] = dist

            count += 1

            repEdges[count][0] = l
            repEdges[count][1] = k
            repEdgeWeights[count][0] = dist

            count += 1

    totalWeight, ST, XSt = kruskal(repEdges, repEdgeWeights)

    #print(distMatrix)

    return 1
Example #21
0
def kruskal_test(G, expected):
    mst = kruskal(G)

    assert len(mst) == len(G.get_vertices()) - 1

    mst_cost = 0
    unvisited = set(G.get_vertices())
    for u, v in mst:
        unvisited.discard(u)
        unvisited.discard(v)
        mst_cost += G.get_weight(u, v)

    assert len(unvisited) == 0, f"Tkrus is not spanning:  {mst}"

    unvisited = set(G.get_vertices())
    expt_cost = 0
    for u, v in expected:
        unvisited.discard(u)
        unvisited.discard(v)
        expt_cost += G.get_weight(u, v)

    assert len(unvisited) == 0, f"Expected is not spanning:  {expected}"

    assert mst_cost == expt_cost
Example #22
0
nd6 = Vertice(6)
nd6.x = 4
nd6.y = 4
grafo.agregarVertice(nd6)
nd7 = Vertice(7)
nd7.x = 12
nd7.y = 4
grafo.agregarVertice(nd7)

# ALMACENAMIENTO DE CALLES EN GRAFO
grafo.conj_aristas.add((1, 1, 2))
grafo.conj_aristas.add((5, 2, 3))
grafo.conj_aristas.add((3, 2, 4))
grafo.conj_aristas.add((4, 3, 4))
grafo.conj_aristas.add((2, 4, 5))
grafo.conj_aristas.add((2, 4, 6))
grafo.conj_aristas.add((3, 6, 7))

# PRUEBA
arbol = kruskal(grafo)
print("fin de kruskal")

camino = dijkstra(grafo, arbol)
print("fin de dijkstra")
print(camino)

mapeoarbol(grafo, arbol, camino)
print("fin de grafico de mapa")

print("FIN")
}

G = weighted_graph.Graph(len(node_numbers))
for node in node_numbers:
    G.set_vertex(node_numbers[node], node)

G.add_edge(node_numbers['N1'], node_numbers['N2'], 3)
G.add_edge(node_numbers['N1'], node_numbers['N4'], 2)
G.add_edge(node_numbers['N1'], node_numbers['N3'], 3)

G.add_edge(node_numbers['N2'], node_numbers['N4'], 9)
G.add_edge(node_numbers['N2'], node_numbers['N5'], 4)
G.add_edge(node_numbers['N2'], node_numbers['N7'], 2)

G.add_edge(node_numbers['N3'], node_numbers['N4'], 4)
G.add_edge(node_numbers['N3'], node_numbers['N5'], 1)
G.add_edge(node_numbers['N3'], node_numbers['N7'], 6)
G.add_edge(node_numbers['N3'], node_numbers['N8'], 6)

G.add_edge(node_numbers['N4'], node_numbers['N6'], 1)

G.add_edge(node_numbers['N5'], node_numbers['N7'], 7)

G.print_graph()

print('Breadth First Traversal:')
G.breadth_first_traverse()

MST = kruskal.kruskal(G)
MST.print_graph()
 def show_kruskal(self):
     text = kruskal(self.df)
     self.k_weight.setText(str(text))
import weighted_graph
import kruskal

node_numbers = {'John':0, 'Sally':1, 'George':2,
               'Phil':3, 'Rose':4, 'Alice':5}

G = weighted_graph.Graph(len(node_numbers))
for node in node_numbers:
  G.set_vertex(node_numbers[node],node)

G.add_edge(node_numbers['John'],node_numbers['Sally'],1)
G.add_edge(node_numbers['John'],node_numbers['George'],2)
G.add_edge(node_numbers['John'],node_numbers['Rose'],3)
G.add_edge(node_numbers['George'],node_numbers['Sally'],4)
G.add_edge(node_numbers['Phil'],node_numbers['Sally'],5)
G.add_edge(node_numbers['Rose'],node_numbers['Alice'],6)

G.print_graph()

print('Breadth First Traversal:')
G.breadth_first_traverse()

MST = kruskal.kruskal(G)
MST.print_graph()
Example #26
0
elaspedTime = time.time() - startTime
print('elaspedTime: %f' % elaspedTime)
print('')

s_name = []
t_name = []
for i in range(0, 6):
    sid = random.randint(1, VNUM)
    s_name.append(sid)
    tid = random.randint(1, VNUM)
    t_name.append(tid)
#print(s_name)
#print(t_name)

print('---- Test on G1 by kruskal ----')
k = kruskal.kruskal()
startTime = time.time()
mst = k.kruskal(g1)
mst.collectEdges()
gmst = k.adjgraph()

s = s_name[0]
t = t_name[0]
#ssp = bfs.bfs(gmst, s, t)
ssp = bfsdfs.dfs_iter(gmst, s)
#print(ssp)
elaspedTime = time.time() - startTime
print('#1 pair elaspedTime: %f' % elaspedTime)
et_arr = [elaspedTime]
for i in range(1, 6):
    #s_id = s_name[i]
Example #27
0
def kruskal():
    visualKruskal.kruskal(listofEdges, listofVertexes, window)
Example #28
0
 def kruskal(self):
     kruskal.kruskal(self)
Example #29
0
from kruskal import kruskal

vertexs = ['A', 'B', 'C', 'D', 'E', 'F']
edges = [
    (5, 'A', 'B'),
    (1, 'A', 'F'),
    (2, 'A', 'D'),
    (3, 'B', 'C'),
    (3, 'B', 'E'),
    (1, 'C', 'D'),
    (4, 'C', 'F'),
    (4, 'D', 'E'),
    (2, 'E', 'F'),
]

print kruskal(vertexs, edges)
Example #30
0
# Brazil's graph, just change the variables
# 's' and 'f' in this file and run it like:
# $ python work.py < inputs/BR.txt
#

from graph import Graph
from kruskal import kruskal
from dijkstra_h import path, dijkstra_h


G = Graph()
G.build_graph()


# minimmum spanning tree
mst = kruskal(G)
length = sum([edge.weight for edge in mst])
print length


# shortest path from city s to f
s = 93; f = 112
d, p = dijkstra_h(G, s) 
print d[f]


# shortest path tree from city s
s = 104
d, p = dijkstra_h(G, s)
edges = []
for v in G.vertices():
def main():
    file = open("bnet", "r")

    # define nodes of the graph
    nodes = []
    for line in file:
        node, parents, values = line.split(";")
        values = map(float, values.strip().split())
        parents = parents.strip().split()

        bn_n = {
            "name": node.strip(),
            "neighbors": [],
            "named_neighbors": [],
            "named_parent": parents,
            "parent": [],
            "values": values
        }

        nodes.append(bn_n)

    define_parents_and_neighbors(nodes)
    define_named_neighbors(nodes)

    print "MORALIZED GRAPH"
    moralize_graph(nodes)
    pretty_print_graph(nodes)

    print "\nTRIANGULATED GRAPH"
    triangulate_graph(nodes, deepcopy(nodes))
    pretty_print_graph(nodes)

    print "\nMAXIMAL CLIQUES"
    maximal_cliques.bron_kerbosch([], nodes, [])

    cliques = maximal_cliques.cliques
    str_cliques = []

    clique_nodes = {}
    k = 1

    for clique in cliques:
        str_clique = [node["name"] for node in clique]
        str_cliques.append(str_clique)
        maximal_cliques.print_clique(clique)
        name = "c" + str(k)
        clique_nodes[name] = str_clique
        k += 1

    edges = set()

    for i in range(len(clique_nodes)):
        for j in range(i + 1, len(clique_nodes)):
            key1 = clique_nodes.keys()[i]
            key2 = clique_nodes.keys()[j]
            clique1 = clique_nodes[key1]
            clique2 = clique_nodes[key2]
            share = maximal_cliques.share_check(clique1, clique2)
            if share:
                # print clique1, clique2, len(share)
                edges.add((len(share), key1, key2))
                edges.add((len(share), key2, key1))

    vertices = clique_nodes.keys()
    # print clique_nodes
    # print vertices
    # print edges

    my_graph = dict()
    my_graph["vertices"] = vertices
    my_graph["edges"] = edges

    # print my_graph

    mst = kruskal.kruskal(my_graph)

    print "\nMAXIMUM SPANNING TREE"
    print mst

    # for edge in mst: print "(" + str(clique_nodes[edge[1]]) + ", " + str(clique_nodes[edge[2]]) + ") -> " + str(edge[0])

    # *********** second part ***********
    query = {"E": 0}
    print "\nQUERY:", query

    clique_tree_nodes = []
    orig_clique_nodes = deepcopy(clique_nodes)

    for clique in clique_nodes:
        # print clique_nodes[clique], "->", clique
        str_nodes = clique_nodes[clique]
        # format your CPD graph representation
        clique_nodes[clique] = [
            get_node_values(nodes, node, clique_nodes[clique])
            for node in str_nodes
        ]

        cn = {
            "name": clique,
            "neighbors": [],
            "children": [],
            "named_children": [],
            "parent": [],
            "named_parent": [],
            "leaf": False,
            "recv_child_map": None,
            "recv_parent_map": None,
            "msg_child_map": None,
            "msg_parent_map": None
        }
        cn["cpd"] = clique_nodes[clique]
        clique_tree_nodes.append(cn)

    # print orig_clique_nodes

    # set clique nodes neighbors
    for edge in mst:
        clqn1 = find_node_by_name(clique_tree_nodes, edge[1])
        clqn2 = find_node_by_name(clique_tree_nodes, edge[2])
        clqn1["neighbors"].append(clqn2)
        clqn2["neighbors"].append(clqn1)

        clique1 = orig_clique_nodes[clqn1["name"]]
        clique2 = orig_clique_nodes[clqn2["name"]]
        share = maximal_cliques.share_check(clique1, clique2)
        # print clique1, clique2, share

        # set sepsets
        if share:
            if not "sepset" in clqn1:
                clqn1["sepset"] = {clqn2["name"]: share}
            else:
                clqn1["sepset"][clqn2["name"]] = share

            if not "sepset" in clqn2:
                clqn2["sepset"] = {clqn1["name"]: share}
            else:
                clqn2["sepset"][clqn1["name"]] = share

    print "\nSEPSETS"
    for c in clique_tree_nodes:
        print c["name"], c["sepset"]

    for evidence in query:
        incorporate_evidence(clique_tree_nodes, evidence, query[evidence])

    print "\nFACTORS"
    for c in clique_tree_nodes:
        print c["name"], c["cpd"]

    # pretty_print_graph_v1(clique_tree_nodes, "neighbors")

    # root = clique_tree_nodes[random.randint(0, len(clique_tree_nodes) - 1)]
    root = [node for node in clique_tree_nodes if node["name"] == "c1"][0]
    global global_root
    global_root = root["name"]
    print "\n-> ROOT:", root["name"]

    # set children/parent according to root init
    set_links(root)
    print "\nPARENTS:"
    pretty_print_graph_v1(clique_tree_nodes, "parent")

    print "\nLEAVES:"
    for c in clique_tree_nodes:
        if c["leaf"]:
            print c["name"]

    for node in clique_tree_nodes:
        node["recv_child_map"] = {
            children: False
            for children in node["named_children"]
        }
        node["recv_parent_map"] = {
            parent: False
            for parent in node["named_parent"]
        }

        node["msg_child_map"] = {
            children: None
            for children in node["named_children"]
        }
        node["msg_parent_map"] = {
            parent: None
            for parent in node["named_parent"]
        }

    print "\nINITIAL STATUS OF THE CLIQUE NODES"
    if 1 == 2:
        for n in clique_tree_nodes:
            print n["name"], "sent to parent -> ", n["recv_parent_map"]
            print n["name"], "received from child -> ", n["recv_child_map"]
    else:
        print "INITIALIZED."

    print "----------------"
    print "\nSEND_MESSAGES"
    print "----------------"
    print "[[LEAVES -> ROOT]]\n"

    leaf_threads = []
    for c in clique_tree_nodes:
        if c["leaf"]:
            thread = Thread(target=leaf_function, kwargs=(c))
            thread.setName(c["name"])
            leaf_threads.append(thread)
            thread.start()

    non_leaf_threads = []
    for c in clique_tree_nodes:
        if not c["leaf"]:
            thread = Thread(target=intermediary_node_function, kwargs=(c))
            thread.setName(c["name"])
            non_leaf_threads.append(thread)
            thread.start()

    for thread in leaf_threads:
        thread.join()
        print thread.name, "leaf finished...exiting"

    for thread in non_leaf_threads:
        thread.join()
        print thread.name, "node finished...exiting"

    print "\nALL DONE."
Example #32
0
import networkx as nx
import random
import unittest
import kruskal

'''
for i in range(1,500,1):
    for j in range(i+1,500,1):
        G.add_edge(int(i),int(j),weight=random.randint(1,20))

nx.write_weighted_edgelist(G, "k500.adjlist")
'''
G = nx.read_weighted_edgelist("k500.adjlist" , nodetype=int)
print kruskal.kruskal(G)
print ('coucou')
T = nx.minimum_spanning_tree(G)
print(sorted(T.edges(data=True)))

#print nx.all_pairs_dijkstra_path_length(G)[1]
Example #33
0
# --------------
# In order to obtain the results for
# Brazil's graph, just change the variables
# 's' and 'f' in this file and run it like:
# $ python work.py < inputs/BR.txt
#

from graph import Graph
from kruskal import kruskal
from dijkstra_h import path, dijkstra_h

G = Graph()
G.build_graph()

# minimmum spanning tree
mst = kruskal(G)
length = sum([edge.weight for edge in mst])
print length

# shortest path from city s to f
s = 93
f = 112
d, p = dijkstra_h(G, s)
print d[f]

# shortest path tree from city s
s = 104
d, p = dijkstra_h(G, s)
edges = []
for v in G.vertices():
    edges += path(p, s, v)
Example #34
0
                    print "Node tool Selected"
                    mode = [True, False, False, False]

                if ButtonUndirectedPath.pressed(pos):
                    print "Undirected Path Tool Selected"
                    mode = [False, True, False, False]

                if ButtonDirectedPath.pressed(pos):
                    print "Directed Path Tool Selected"
                    mode = [False, False, True, False]

                if ButtonRun.pressed(pos):

                    print("Minimum Spanning Tree Is:")

                    print(kruskal.kruskal(Graph))

                    print("Topological Sort")

                    print(topsort.dfs_topsort(Graph))

                    print("Breadth First Search")

                    answer = inputbox.ask(window, "Enter Node for BFS")
                    answer = ord(answer) - ord('1')
                    print(BFS.BFS(Graph, Graph.vertexList[answer]))

                    print("Dijkstra Tree")

                    answer = inputbox.ask(window,
                                          "Enter Node for Dijkstra Tree")
Example #35
0
        plt.plot([x[0] for x in c], [x[1] for x in c], "b--")


# m => set of edges in mst
def plot_mst(m):
    for e in m:
        c = e.tuple_rep()
        plt.plot([x[0] for x in c], [x[1] for x in c], "b-")

if __name__ == "__main__":
    # base data
    graph, points = setup()

    # find the mst
    mst_prim = prim(graph, points, len(points))
    mst_kruskal = kruskal(graph)

    # metadata for Kruskal
    p1 = plt.subplot(221)
    p1.set_title("Kruskal")
    plt.ylim([-1, 5])
    plt.xlim([-1, 5])

    # basic
    plot_base(graph, points)

    # the goods
    plot_mst(mst_kruskal)

    # metadata for Prim
    p2 = plt.subplot(222)
Example #36
0
from parseOsm import *
from grafos import *
from kruskal import kruskal
from grafico import mapeoarbol
from depuracion import depurar

archivo = "mapa.osm"

depurar(archivo)
print("fin de depuracion")

archivo2 = "modificado.xml"
grafo = Grafo()
grafo = grafoOSM(archivo2)
print("fin de procesamiento de datos OSM")
# PRUEBA
k = kruskal(grafo)
print("fin de kruskal")
mapeoarbol(grafo, k)
print("fin de grafico de mapa")

#otros comentarios
print("FIN")
# comentarios para probar un segundo commit