def main(C=1): dataset = NYUSegmentation() # load training data data_train = load_nyu(n_sp=500, sp='rgbd') data_train = add_edges(data_train) data_train = add_edge_features(dataset, data_train, depth_diff=True, normal_angles=True) data_train = discard_void(dataset, data_train) n_states = 4. print("number of samples: %s" % len(data_train.X)) class_weights = 1. / np.bincount(np.hstack(data_train.Y)) class_weights *= n_states / np.sum(class_weights) #class_weights = np.ones(n_states) print(class_weights) #model = crfs.GraphCRF(n_states=n_states, #n_features=data_train.X[0][0].shape[1], #inference_method='qpbo', class_weight=class_weights) model = crfs.EdgeFeatureGraphCRF(inference_method='qpbo', class_weight=class_weights, n_edge_features=5, symmetric_edge_features=[0, 1]) experiment_name = "rgbd_test%f" % C ssvm = learners.OneSlackSSVM( model, verbose=2, C=C, max_iter=100000, n_jobs=-1, tol=0.001, show_loss_every=100, inference_cache=50, cache_tol='auto', logger=SaveLogger(experiment_name + ".pickle", save_every=100), inactive_threshold=1e-5, break_on_bad=False, inactive_window=50, switch_to=("ad3", {'branch_and_bound':True})) ssvm.fit(data_train.X, data_train.Y) print("fit finished!") return
def svm_on_segments(C=.1, learning_rate=.001, subgradient=False): data_file = "data_train_XY.pickle" ds = PascalSegmentation() if os.path.exists(data_file): X_, Y_ = cPickle.load(open(data_file)) else: # load and prepare data data_train = load_pascal("train", sp_type="cpmc") data_train = make_cpmc_hierarchy(ds, data_train) data_train = discard_void(ds, data_train) X_, Y_ = data_train.X, data_train.Y cPickle.dump((X_, Y_), open(data_file, 'wb'), -1) class_weights = 1. / np.bincount(np.hstack(Y_)) class_weights *= 21. / np.sum(class_weights) experiment_name = ("latent_25_cpmc_%f_qpbo_n_slack_blub3" % C) logger = SaveLogger(experiment_name + ".pickle", save_every=10) model = LatentNodeCRF(n_hidden_states=25, inference_method='qpbo', class_weight=class_weights, latent_node_features=False) if subgradient: ssvm = learners.LatentSubgradientSSVM( model, C=C, verbose=1, show_loss_every=10, logger=logger, n_jobs=-1, learning_rate=learning_rate, decay_exponent=1, momentum=0., max_iter=100000, decay_t0=100) else: latent_logger = SaveLogger("lssvm_" + experiment_name + "_%d.pickle", save_every=1) #base_ssvm = learners.OneSlackSSVM( #model, verbose=2, C=C, max_iter=100, n_jobs=-1, tol=0.001, #show_loss_every=200, inference_cache=50, logger=logger, #cache_tol='auto', inactive_threshold=1e-5, break_on_bad=False, #switch_to=('ogm', {'alg': 'dd'})) base_ssvm = learners.NSlackSSVM( model, verbose=4, C=C, n_jobs=-1, tol=0.1, show_loss_every=20, logger=logger, inactive_threshold=1e-8, break_on_bad=False, batch_size=36, inactive_window=10, switch_to=('ad3', {'branch_and_bound': True})) ssvm = learners.LatentSSVM(base_ssvm, logger=latent_logger, latent_iter=3) #warm_start = True warm_start = False if warm_start: ssvm = logger.load() ssvm.logger = SaveLogger(experiment_name + "_retrain.pickle", save_every=10) ssvm.max_iter = 10000 ssvm.decay_exponent = 1 #ssvm.decay_t0 = 1000 #ssvm.learning_rate = 0.00001 #ssvm.momentum = 0 X_, Y_ = shuffle(X_, Y_) #ssvm.fit(data_train.X, data_train.Y) ssvm.fit(X_, Y_) #H_init = [np.hstack([y, np.random.randint(21, 26)]) for y in Y_] #ssvm.fit(X_, Y_, H_init=H_init) print("fit finished!")
def main(C=1, test=False): ds = PascalSegmentation() # load training data edge_type = "pairwise" if test: which = "train" else: which = "kTrain" data_train = load_pascal(which=which, sp_type="cpmc") data_train = add_edges(data_train, edge_type) data_train = add_edge_features(ds, data_train) data_train = discard_void(ds, data_train, ds.void_label) print("number of samples: %s" % len(data_train.X)) class_weights = 1. / np.bincount(np.hstack(data_train.Y)) class_weights *= 21. / np.sum(class_weights) print(class_weights) #model = crfs.GraphCRF(n_states=n_states, #n_features=data_train.X[0][0].shape[1], #inference_method='qpbo', class_weight=class_weights) model = crfs.EdgeFeatureGraphCRF(inference_method='qpbo', class_weight=class_weights, symmetric_edge_features=[0, 1], antisymmetric_edge_features=[2]) experiment_name = "cpmc_edge_features_trainval_new_%f" % C #warm_start = True warm_start = False ssvm = learners.OneSlackSSVM( model, verbose=2, C=C, max_iter=100000, n_jobs=-1, tol=0.0001, show_loss_every=50, inference_cache=50, cache_tol='auto', logger=SaveLogger(experiment_name + ".pickle", save_every=100), inactive_threshold=1e-5, break_on_bad=False, inactive_window=50, switch_to=None) #ssvm = learners.SubgradientSSVM( #model, verbose=3, C=C, max_iter=10000, n_jobs=-1, show_loss_every=10, #logger=SaveLogger(experiment_name + ".pickle", save_every=10), #momentum=0, learning_rate=0.1, decay_exponent=1, decay_t0=100) if warm_start: ssvm = SaveLogger(experiment_name + ".pickle").load() ssvm.logger = SaveLogger( file_name=experiment_name + "_refit.pickle", save_every=10) #ssvm.learning_rate = 0.000001 ssvm.model.inference_method = 'ad3bb' #ssvm.n_jobs = 1 ssvm.fit(data_train.X, data_train.Y, warm_start=warm_start) return print("fit finished!") if test: data_val = load_pascal('val') else: data_val = load_pascal('kVal') data_val = add_edges(data_val, edge_type) data_val = add_edge_features(ds, data_val, more_colors=True) eval_on_sp(ds, data_val, ssvm.predict(data_val.X), print_results=True)
def svm_on_segments(C=.1, learning_rate=.001, subgradient=True): # load and prepare data lateral = True latent = True test = False #data_train = load_data(which="piecewise") #data_train = add_edges(data_train, independent=False) #data_train = add_kraehenbuehl_features(data_train, which="train_30px") #data_train = add_kraehenbuehl_features(data_train, which="train") #if lateral: #data_train = add_edge_features(data_train) data_train = load_data_global_probs(latent=latent) X_org_ = data_train.X #data_train = make_hierarchical_data(data_train, lateral=lateral, #latent=latent, latent_lateral=True) data_train = discard_void(data_train, 21, latent_features=True) X_, Y_ = data_train.X, data_train.Y # remove edges if not lateral: X_org_ = [(x[0], np.zeros((0, 2), dtype=np.int)) for x in X_org_] if test: data_val = load_data('val', which="piecewise") data_val = add_edges(data_val, independent=False) data_val = add_kraehenbuehl_features(data_val) data_val = make_hierarchical_data(data_val, lateral=lateral, latent=latent) data_val = discard_void(data_val, 21) X_.extend(data_val.X) Y_.extend(data_val.Y) n_states = 21 class_weights = 1. / np.bincount(np.hstack(Y_)) class_weights *= 21. / np.sum(class_weights) experiment_name = ("latent5_features_C%f_top_node" % C) logger = SaveLogger(experiment_name + ".pickle", save_every=10) if latent: model = LatentNodeCRF(n_labels=n_states, n_features=data_train.X[0][0].shape[1], n_hidden_states=5, inference_method='qpbo' if lateral else 'dai', class_weight=class_weights, latent_node_features=True) if subgradient: ssvm = learners.LatentSubgradientSSVM( model, C=C, verbose=1, show_loss_every=10, logger=logger, n_jobs=-1, learning_rate=learning_rate, decay_exponent=1, momentum=0., max_iter=100000) else: latent_logger = SaveLogger("lssvm_" + experiment_name + "_%d.pickle", save_every=1) base_ssvm = learners.OneSlackSSVM( model, verbose=2, C=C, max_iter=100000, n_jobs=-1, tol=0.001, show_loss_every=200, inference_cache=50, logger=logger, cache_tol='auto', inactive_threshold=1e-5, break_on_bad=False, switch_to_ad3=True) ssvm = learners.LatentSSVM(base_ssvm, logger=latent_logger) warm_start = False if warm_start: ssvm = logger.load() ssvm.logger = SaveLogger(experiment_name + "_retrain.pickle", save_every=10) ssvm.max_iter = 100000 ssvm.learning_rate = 0.00001 ssvm.momentum = 0 else: #model = GraphCRF(n_states=n_states, #n_features=data_train.X[0][0].shape[1], #inference_method='qpbo' if lateral else 'dai', #class_weight=class_weights) model = EdgeFeatureGraphCRF(n_states=n_states, n_features=data_train.X[0][0].shape[1], inference_method='qpbo' if lateral else 'dai', class_weight=class_weights, n_edge_features=4, symmetric_edge_features=[0, 1], antisymmetric_edge_features=[2]) ssvm = learners.OneSlackSSVM( model, verbose=2, C=C, max_iter=100000, n_jobs=-1, tol=0.0001, show_loss_every=200, inference_cache=50, logger=logger, cache_tol='auto', inactive_threshold=1e-5, break_on_bad=False) #ssvm = logger.load() X_, Y_ = shuffle(X_, Y_) #ssvm.fit(data_train.X, data_train.Y) #ssvm.fit(X_, Y_, warm_start=warm_start) ssvm.fit(X_, Y_) print("fit finished!")
def svm_on_segments(C=.1, learning_rate=.001, subgradient=True): # load and prepare data lateral = True latent = True test = False #data_train = load_data(which="piecewise") #data_train = add_edges(data_train, independent=False) #data_train = add_kraehenbuehl_features(data_train, which="train_30px") #data_train = add_kraehenbuehl_features(data_train, which="train") #if lateral: #data_train = add_edge_features(data_train) data_train = load_data_global_probs(latent=latent) X_org_ = data_train.X #data_train = make_hierarchical_data(data_train, lateral=lateral, #latent=latent, latent_lateral=True) data_train = discard_void(data_train, 21, latent_features=True) X_, Y_ = data_train.X, data_train.Y # remove edges if not lateral: X_org_ = [(x[0], np.zeros((0, 2), dtype=np.int)) for x in X_org_] if test: data_val = load_data('val', which="piecewise") data_val = add_edges(data_val, independent=False) data_val = add_kraehenbuehl_features(data_val) data_val = make_hierarchical_data(data_val, lateral=lateral, latent=latent) data_val = discard_void(data_val, 21) X_.extend(data_val.X) Y_.extend(data_val.Y) n_states = 21 class_weights = 1. / np.bincount(np.hstack(Y_)) class_weights *= 21. / np.sum(class_weights) experiment_name = ("latent5_features_C%f_top_node" % C) logger = SaveLogger(experiment_name + ".pickle", save_every=10) if latent: model = LatentNodeCRF(n_labels=n_states, n_features=data_train.X[0][0].shape[1], n_hidden_states=5, inference_method='qpbo' if lateral else 'dai', class_weight=class_weights, latent_node_features=True) if subgradient: ssvm = learners.LatentSubgradientSSVM(model, C=C, verbose=1, show_loss_every=10, logger=logger, n_jobs=-1, learning_rate=learning_rate, decay_exponent=1, momentum=0., max_iter=100000) else: latent_logger = SaveLogger("lssvm_" + experiment_name + "_%d.pickle", save_every=1) base_ssvm = learners.OneSlackSSVM(model, verbose=2, C=C, max_iter=100000, n_jobs=-1, tol=0.001, show_loss_every=200, inference_cache=50, logger=logger, cache_tol='auto', inactive_threshold=1e-5, break_on_bad=False, switch_to_ad3=True) ssvm = learners.LatentSSVM(base_ssvm, logger=latent_logger) warm_start = False if warm_start: ssvm = logger.load() ssvm.logger = SaveLogger(experiment_name + "_retrain.pickle", save_every=10) ssvm.max_iter = 100000 ssvm.learning_rate = 0.00001 ssvm.momentum = 0 else: #model = GraphCRF(n_states=n_states, #n_features=data_train.X[0][0].shape[1], #inference_method='qpbo' if lateral else 'dai', #class_weight=class_weights) model = EdgeFeatureGraphCRF( n_states=n_states, n_features=data_train.X[0][0].shape[1], inference_method='qpbo' if lateral else 'dai', class_weight=class_weights, n_edge_features=4, symmetric_edge_features=[0, 1], antisymmetric_edge_features=[2]) ssvm = learners.OneSlackSSVM(model, verbose=2, C=C, max_iter=100000, n_jobs=-1, tol=0.0001, show_loss_every=200, inference_cache=50, logger=logger, cache_tol='auto', inactive_threshold=1e-5, break_on_bad=False) #ssvm = logger.load() X_, Y_ = shuffle(X_, Y_) #ssvm.fit(data_train.X, data_train.Y) #ssvm.fit(X_, Y_, warm_start=warm_start) ssvm.fit(X_, Y_) print("fit finished!")
def svm_on_segments(C=.1, learning_rate=.001, subgradient=False): data_file = "data_train_XY.pickle" ds = PascalSegmentation() if os.path.exists(data_file): X_, Y_ = cPickle.load(open(data_file)) else: # load and prepare data data_train = load_pascal("train", sp_type="cpmc") data_train = make_cpmc_hierarchy(ds, data_train) data_train = discard_void(ds, data_train) X_, Y_ = data_train.X, data_train.Y cPickle.dump((X_, Y_), open(data_file, 'wb'), -1) class_weights = 1. / np.bincount(np.hstack(Y_)) class_weights *= 21. / np.sum(class_weights) experiment_name = ("latent_25_cpmc_%f_qpbo_n_slack_blub3" % C) logger = SaveLogger(experiment_name + ".pickle", save_every=10) model = LatentNodeCRF(n_hidden_states=25, inference_method='qpbo', class_weight=class_weights, latent_node_features=False) if subgradient: ssvm = learners.LatentSubgradientSSVM(model, C=C, verbose=1, show_loss_every=10, logger=logger, n_jobs=-1, learning_rate=learning_rate, decay_exponent=1, momentum=0., max_iter=100000, decay_t0=100) else: latent_logger = SaveLogger("lssvm_" + experiment_name + "_%d.pickle", save_every=1) #base_ssvm = learners.OneSlackSSVM( #model, verbose=2, C=C, max_iter=100, n_jobs=-1, tol=0.001, #show_loss_every=200, inference_cache=50, logger=logger, #cache_tol='auto', inactive_threshold=1e-5, break_on_bad=False, #switch_to=('ogm', {'alg': 'dd'})) base_ssvm = learners.NSlackSSVM(model, verbose=4, C=C, n_jobs=-1, tol=0.1, show_loss_every=20, logger=logger, inactive_threshold=1e-8, break_on_bad=False, batch_size=36, inactive_window=10, switch_to=('ad3', { 'branch_and_bound': True })) ssvm = learners.LatentSSVM(base_ssvm, logger=latent_logger, latent_iter=3) #warm_start = True warm_start = False if warm_start: ssvm = logger.load() ssvm.logger = SaveLogger(experiment_name + "_retrain.pickle", save_every=10) ssvm.max_iter = 10000 ssvm.decay_exponent = 1 #ssvm.decay_t0 = 1000 #ssvm.learning_rate = 0.00001 #ssvm.momentum = 0 X_, Y_ = shuffle(X_, Y_) #ssvm.fit(data_train.X, data_train.Y) ssvm.fit(X_, Y_) #H_init = [np.hstack([y, np.random.randint(21, 26)]) for y in Y_] #ssvm.fit(X_, Y_, H_init=H_init) print("fit finished!")