def tuneParamenters(): numberOfPoints = 5 numberOfRounds = 1 branchDepth,bridgingDepth, msaWidth = 1 , 10 , 10 headerName = "synthetic_reads\\" listOfNLKDataPts = logging.loadingLNKFile(headerName) resultList = [] for index in range(numberOfPoints): N, L = listOfNLKDataPts[index][1], listOfNLKDataPts[index][2] print N, L for roundNum in range(numberOfRounds): folderName = headerName + "sample_point_"+ str(index) +"\\round_"+str(roundNum) +"\\" branchClearingUnitTest(folderName, branchDepth) numMistakes, success = ECUnitTest(N, L, folderName,bridgingDepth, msaWidth ) resultList.append([N, L, roundNum , numMistakes, success]) print "resultList", resultList logging.logBatch(resultList)
def batchProcessingLNKTest(): print "Batch Processing LNK Test" headerName = "synthetic_reads/" os.system("mkdir " + headerName) logging.savingLNKFile(headerName) listOfNLKDataPts = logging.loadingLNKFile(headerName) numberOfRounds = 1 listOfNLKDataPts = [listOfNLKDataPts[0]] for testPoint, roundNum in zip(listOfNLKDataPts, range(len(listOfNLKDataPts))): folderName = headerName + "sample_point_" + str(roundNum) os.system("mkdir " + folderName) snpRate, typeOfGen, detail = 0.001, 'm', "500-200-50" [ G, N, L, p, epsilon, K, liid, threshold, NKcov, Nbridge, Ncov, ratio, numberOfClusterRounds, brachingDepth, bridgingDepth, msaWidth, clusterRounds, fingerPrint, clusterRatio ] = testPoint parameterRobot = logging.parameterObj( G, N, L, p, epsilon, K, liid, threshold, NKcov, Nbridge, Ncov, ratio, numberOfClusterRounds, brachingDepth, bridgingDepth, msaWidth, folderName, clusterRounds, fingerPrint, clusterRatio) parameterRobot.indel = True batchProcessingUnitTest(numberOfRounds, parameterRobot, snpRate, typeOfGen, detail)
def tuneParamenters(): numberOfPoints = 5 numberOfRounds = 1 branchDepth, bridgingDepth, msaWidth = 1, 10, 10 headerName = "synthetic_reads\\" listOfNLKDataPts = logging.loadingLNKFile(headerName) resultList = [] for index in range(numberOfPoints): N, L = listOfNLKDataPts[index][1], listOfNLKDataPts[index][2] print N, L for roundNum in range(numberOfRounds): folderName = headerName + "sample_point_" + str( index) + "\\round_" + str(roundNum) + "\\" branchClearingUnitTest(folderName, branchDepth) numMistakes, success = ECUnitTest(N, L, folderName, bridgingDepth, msaWidth) resultList.append([N, L, roundNum, numMistakes, success]) print "resultList", resultList logging.logBatch(resultList)
def batchProcessingLNKTest(): print "Batch Processing LNK Test" headerName = "synthetic_reads/" os.system("mkdir "+headerName) logging.savingLNKFile(headerName) listOfNLKDataPts = logging.loadingLNKFile(headerName) numberOfRounds = 1 listOfNLKDataPts = [listOfNLKDataPts[0]] for testPoint,roundNum in zip(listOfNLKDataPts, range(len(listOfNLKDataPts))): folderName = headerName+"sample_point_" + str(roundNum) os.system("mkdir " + folderName ) snpRate, typeOfGen , detail = 0.001,'m', "500-200-50" [G, N, L, p, epsilon, K, liid, threshold,NKcov, Nbridge, Ncov, ratio, numberOfClusterRounds,brachingDepth,bridgingDepth,msaWidth,clusterRounds, fingerPrint, clusterRatio ] = testPoint parameterRobot = logging.parameterObj(G, N, L, p, epsilon, K, liid, threshold,NKcov, Nbridge, Ncov, ratio, numberOfClusterRounds,brachingDepth,bridgingDepth,msaWidth,folderName,clusterRounds, fingerPrint, clusterRatio ) parameterRobot.indel = True batchProcessingUnitTest(numberOfRounds,parameterRobot,snpRate, typeOfGen , detail)