Example #1
0
def monge_elkan(bag1, bag2, sim_func=jaro_winkler):
    """
    Compute Monge-Elkan similarity measure between two bags (lists).

    The Monge-Elkan similarity measure is a type of Hybrid similarity measure that combine the benefits of
    sequence-based and set-based methods. This can be effective for domains in which more control is needed
    over the similarity measure. It implicitly uses a secondary similarity measure, such as levenshtein to compute
    over all similarity score.

    Args:
        bag1,bag2 (list): Input lists

        sim_func (function): Secondary similarity function. This is expected to be a sequence-based
            similarity measure (defaults to levenshtein)

    Returns:
        Monge-Elkan similarity score (float)

    Raises:
        TypeError : If the inputs are not lists or if one of the inputs is None


    Examples:
        >>> monge_elkan(['Niall'], ['Neal'])
        0.8049999999999999
        >>> monge_elkan(['Comput.', 'Sci.', 'and', 'Eng.', 'Dept.,', 'University', 'of', 'California,', 'San', 'Diego'], ['Department', 'of', 'Computer', 'Science,', 'Univ.', 'Calif.,', 'San', 'Diego'])
        0.8677218614718616
        >>> monge_elkan(['Comput.', 'Sci.', 'and', 'Eng.', 'Dept.,', 'University', 'of', 'California,', 'San', 'Diego'], ['Department', 'of', 'Computer', 'Science,', 'Univ.', 'Calif.,', 'San', 'Diego'], sim_func=needleman_wunsch)
        2.0
        >>> monge_elkan(['Comput.', 'Sci.', 'and', 'Eng.', 'Dept.,', 'University', 'of', 'California,', 'San', 'Diego'], ['Department', 'of', 'Computer', 'Science,', 'Univ.', 'Calif.,', 'San', 'Diego'], sim_func=affine)
        2.25
        >>> monge_elkan([''], ['a'])
        0.0
        >>> monge_elkan(['Niall'], ['Nigel'])
        0.7866666666666667

    References:
        * Principles of Data Integration book
    """
    # input validations
    utils.sim_check_for_none(bag1, bag2)
    utils.sim_check_for_list_or_set_inputs(bag1, bag2)
    # if exact match return 1.0
    if utils.sim_check_for_exact_match(bag1, bag2):
        return 1.0
    # if one of the strings is empty return 0
    if utils.sim_check_for_empty(bag1, bag2):
        return 0
    # aggregated sum of all the max sim score of all the elements in bag1
    # with elements in bag2
    sum_of_maxes = 0
    for t1 in bag1:
        max_sim = float('-inf')
        for t2 in bag2:
            max_sim = max(max_sim, sim_func(t1, t2))
        sum_of_maxes += max_sim
    sim = float(sum_of_maxes) / float(len(bag1))
    return sim
Example #2
0
def overlap_coefficient(set1, set2):
    """
    Computes the overlap coefficient between two sets.

    The overlap coefficient is a similarity measure related to the Jaccard
    measure  that measures the overlap between two sets, and is defined as the size of the intersection divided by
    the smaller of the size of the two sets.

    For two sets X and Y, the overlap coefficient is:

    :math:`overlap\\_coefficient(X, Y) = \\frac{|X \\cap Y|}{\\min(|X|, |Y|)}`

    Args:
        set1,set2 (set or list): Input sets (or lists). Input lists are converted to sets.

    Returns:
        Overlap coefficient (float)

    Raises:
        TypeError : If the inputs are not sets (or lists) or if one of the inputs is None.

    Examples:
        >>> (overlap_coefficient([], [])
        1.0
        >>> overlap_coefficient([], ['data'])
        0
        >>> overlap_coefficient(['data', 'science'], ['data'])
        1.0

    References:
        * Wikipedia article : https://en.wikipedia.org/wiki/Overlap_coefficient
        * Simmetrics library

    """
    # input validations
    utils.sim_check_for_none(set1, set2)
    utils.sim_check_for_list_or_set_inputs(set1, set2)
    # if exact match return 1.0
    if utils.sim_check_for_exact_match(set1, set2):
        return 1.0
    # if one of the strings is empty return 0
    if utils.sim_check_for_empty(set1, set2):
        return 0
    if not isinstance(set1, set):
        set1 = set(set1)
    if not isinstance(set2, set):
        set2 = set(set2)

    return float(len(set1 & set2)) / min(len(set1), len(set2))
Example #3
0
def jaccard(set1, set2):
    """
    Computes the Jaccard measure between two sets.

    The Jaccard measure, also known as the Jaccard similarity coefficient, is a statistic used for comparing
    the similarity and diversity of sample sets. The Jaccard coefficient measures similarity between finite sample
    sets, and is defined as the size of the intersection divided by the size of the union of the sample sets.


    For two sets X and Y, the Jaccard measure is:

    :math:`jaccard(X, Y) = \\frac{|X \\cap Y|}{|X| \\cup |Y|}`


    Args:
        set1,set2 (set or list): Input sets (or lists). Input lists are converted to sets.

    Returns:
        Jaccard similarity (float)

    Raises:
        TypeError : If the inputs are not sets (or lists) or if one of the inputs is None.

    Examples:
        >>> jaccard(['data', 'science'], ['data'])
        0.5
        >>> jaccard({1, 1, 2, 3, 4}, {2, 3, 4, 5, 6, 7, 7, 8})
        0.375
        >>> jaccard(['data', 'management'], ['data', 'data', 'science'])
        0.3333333333333333
    """
    # input validations
    utils.sim_check_for_none(set1, set2)
    utils.sim_check_for_list_or_set_inputs(set1, set2)
    # if exact match return 1.0
    if utils.sim_check_for_exact_match(set1, set2):
        return 1.0
    # if one of the strings is empty return 0
    if utils.sim_check_for_empty(set1, set2):
        return 0
    if not isinstance(set1, set):
        set1 = set(set1)
    if not isinstance(set2, set):
        set2 = set(set2)
    return float(len(set1 & set2)) / float(len(set1 | set2))
Example #4
0
def cosine(set1, set2):
    """
    Computes the cosine similarity between two sets.

    For two sets X and Y, the cosine similarity is:

    :math:`cosine(X, Y) = \\frac{|X \\cap Y|}{\\sqrt{|X| \\cdot |Y|}}`


    Args:
        set1,set2 (set or list): Input sets (or lists). Input lists are converted to sets.

    Returns:
        Cosine similarity (float)

    Raises:
        TypeError : If the inputs are not sets (or lists) or if one of the inputs is None.

    Examples:
     >>> cosine(['data', 'science'], ['data'])
     0.7071067811865475
     >>> cosine(['data', 'data', 'science'], ['data', 'management'])
     0.4999999999999999
     >>> cosine([], ['data'])
     0.0

    References:
        * String similarity joins: An Experimental Evaluation (VLDB 2014)
        * Project flamingo : Mike carey, Vernica
    """
    # input validations
    utils.sim_check_for_none(set1, set2)
    utils.sim_check_for_list_or_set_inputs(set1, set2)
    # if exact match return 1.0
    if utils.sim_check_for_exact_match(set1, set2):
        return 1.0
    # if one of the strings is empty return 0
    if utils.sim_check_for_empty(set1, set2):
        return 0
    if not isinstance(set1, set):
        set1 = set(set1)
    if not isinstance(set2, set):
        set2 = set(set2)
    return float(len(set1 & set2)) / (math.sqrt(float(len(set1))) * math.sqrt(float(len(set2))))
Example #5
0
def soft_tfidf(bag1, bag2, corpus_list=None, sim_func=jaro, threshold=0.5):
    """
    Compute Soft-tfidf measures between two lists given the corpus information.

    Args:
        bag1,bag2 (list): Input lists

        corpus_list (list of lists): Corpus list (default is set to None) of strings. If set to None,
            the input list are considered the only corpus

        sim_func (func): Secondary similarity function. This should return a similarity score between two strings (optional),
            default is jaro similarity measure

        threshold (float): Threshold value for the secondary similarity function (defaults to 0.5). If the similarity
            of a token pair exceeds the threshold, then the token pair is considered a match.

    Returns:
        Soft TF-IDF measure between the input lists

    Raises:
        TypeError : If the inputs are not lists or if one of the inputs is None.

    Examples:
        >>> soft_tfidf(['a', 'b', 'a'], ['a', 'c'], [['a', 'b', 'a'], ['a', 'c'], ['a']], sim_func=jaro, threshold=0.8)
        0.17541160386140586
        >>> soft_tfidf(['a', 'b', 'a'], ['a'], [['a', 'b', 'a'], ['a', 'c'], ['a']], threshold=0.9)
        0.5547001962252291
        >>> soft_tfidf(['a', 'b', 'a'], ['a'], [['x', 'y'], ['w'], ['q']])
        0.0
        >>> soft_tfidf(['aa', 'bb', 'a'], ['ab', 'ba'], sim_func=affine, threshold=0.6)
        0.81649658092772592

    References:
        * Principles of Data Integration book
    """
    # input validations
    utils.sim_check_for_none(bag1, bag2)
    utils.sim_check_for_list_or_set_inputs(bag1, bag2)
    # if the strings match exactly return 1.0
    if utils.sim_check_for_exact_match(bag1, bag2):
        return 1.0
    # if one of the strings is empty return 0
    if utils.sim_check_for_empty(bag1, bag2):
        return 0
    # if corpus is not provided treat input string as corpus
    if corpus_list is None:
        corpus_list = [bag1, bag2]
    corpus_size = len(corpus_list) * 1.0
    # term frequency for input strings
    tf_x, tf_y = collections.Counter(bag1), collections.Counter(bag2)
    # number of documents an element appeared
    element_freq = {}
    # set of unique element
    total_unique_elements = set()
    for document in corpus_list:
        temp_set = set()
        for element in document:
            # adding element only if it is present in one of two input string
            if element in bag1 or element in bag2:
                temp_set.add(element)
                total_unique_elements.add(element)
        # update element document frequency for this document
        for element in temp_set:
            element_freq[element] = element_freq[element] + 1 if element in element_freq else 1
    similarity_map = {}
    # calculating the term sim score against the input string 2, construct similarity map
    for x in bag1:
        if x not in similarity_map:
            max_score = 0.0
            for y in bag2:
                score = sim_func(x, y)
                # adding sim only if it is above threshold and highest for this element
                if score > threshold and score > max_score:
                    similarity_map[x] = utils.Similarity(x, y, score)
                    max_score = score
    result, v_x_2, v_y_2 = 0.0, 0.0, 0.0
    # soft-tfidf calculation
    for element in total_unique_elements:
        # numerator
        if element in similarity_map:
            sim = similarity_map[element]
            idf_first = corpus_size if sim.first_string not in element_freq else corpus_size / \
                                                                                 element_freq[sim.first_string]
            idf_second = corpus_size if sim.second_string not in element_freq else corpus_size / \
                                                                                   element_freq[sim.second_string]
            v_x = 0 if sim.first_string not in tf_x else idf_first * tf_x[sim.first_string]
            v_y = 0 if sim.second_string not in tf_y else idf_second * tf_y[sim.second_string]
            result += v_x * v_y * sim.similarity_score
        # denominator
        idf = corpus_size if element not in element_freq else corpus_size / element_freq[element]
        v_x = 0 if element not in tf_x else idf * tf_x[element]
        v_x_2 += v_x * v_x
        v_y = 0 if element not in tf_y else idf * tf_y[element]
        v_y_2 += v_y * v_y
    return result if v_x_2 == 0 else result / (math.sqrt(v_x_2) * math.sqrt(v_y_2))
Example #6
0
def tfidf(bag1, bag2, corpus_list=None, dampen=False):
    """
    Compute tfidf measures between two lists given the corpus information.
    This measure employs the notion of TF/IDF score commonly used in information retrieval (IR) to find documents that
    are relevant to keyword queries.
    The intuition underlying the TF/IDF measure is that two strings are similar if they share distinguishing terms.

    Args:
        bag1,bag2 (list): Input lists

        corpus_list (list of lists): Corpus list (default is set to None) of strings. If set to None,
            the input list are considered the only corpus.

        dampen (boolean): Flag to indicate whether 'log' should be applied to tf and idf measure.

    Returns:
        TF-IDF measure between the input lists (float)

    Raises:
        TypeError : If the inputs are not lists or if one of the inputs is None


    Examples:
        >>> tfidf(['a', 'b', 'a'], ['a', 'c'], [['a', 'b', 'a'], ['a', 'c'], ['a']])
        0.17541160386140586
        >>> tfidf(['a', 'b', 'a'], ['a', 'c'], [['a', 'b', 'a'], ['a', 'c'], ['a'], ['b']], True)
        0.11166746710505392
        >>> tfidf(['a', 'b', 'a'], ['a'], [['a', 'b', 'a'], ['a', 'c'], ['a']])
        0.5547001962252291
        >>> tfidf(['a', 'b', 'a'], ['a'], [['x', 'y'], ['w'], ['q']])
        0.0
        >>> tfidf(['a', 'b', 'a'], ['a'], [['x', 'y'], ['w'], ['q']], True)
        0.0
        >>> tfidf(['a', 'b', 'a'], ['a'])
        0.7071067811865475
    """
    # input validations
    utils.sim_check_for_none(bag1, bag2)
    utils.sim_check_for_list_or_set_inputs(bag1, bag2)
    # if the strings match exactly return 1.0
    if utils.sim_check_for_exact_match(bag1, bag2):
        return 1.0
    # if one of the strings is empty return 0
    if utils.sim_check_for_empty(bag1, bag2):
        return 0
    # if corpus is not provided treat input string as corpus
    if corpus_list is None:
        corpus_list = [bag1, bag2]
    corpus_size = len(corpus_list)
    # term frequency for input strings
    tf_x, tf_y = collections.Counter(bag1), collections.Counter(bag2)
    # number of documents an element appeared
    element_freq = {}
    # set of unique element
    total_unique_elements = set()
    for document in corpus_list:
        temp_set = set()
        for element in document:
            # adding element only if it is present in one of two input string
            if element in bag1 or element in bag2:
                temp_set.add(element)
                total_unique_elements.add(element)
        # update element document frequency for this document
        for element in temp_set:
            element_freq[element] = element_freq[element] + 1 if element in element_freq else 1
    idf_element, v_x, v_y, v_x_y, v_x_2, v_y_2 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    # tfidf calculation
    for element in total_unique_elements:
        idf_element = corpus_size * 1.0 / element_freq[element]
        v_x = 0 if element not in tf_x else (math.log(idf_element) * math.log(tf_x[element] + 1)) if dampen else (
            idf_element * tf_x[element])
        v_y = 0 if element not in tf_y else (math.log(idf_element) * math.log(tf_y[element] + 1)) if dampen else (
            idf_element * tf_y[element])
        v_x_y += v_x * v_y
        v_x_2 += v_x * v_x
        v_y_2 += v_y * v_y
    return 0.0 if v_x_y == 0 else v_x_y / (math.sqrt(v_x_2) * math.sqrt(v_y_2))