Example #1
0
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default():
    # get data off disk at random to validate
    paths, labels = validation_data()

    # get validation tensor: [batch_size, image_size, image_size, num_channels]
    X, y = validation_tensor(paths, labels)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = models.xtal24_inference(X)

    # Calculate predictions
    top_k_op = tf.nn.in_top_k(logits, tf.to_int32(y, name='ToInt32'), 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        builder.MOVING_AVERAGE_DECAY)
    variables_to_restore = {}
    for v in tf.all_variables():
      if v in tf.trainable_variables():
        restore_name = variable_averages.average_name(v)
      else:
        restore_name = v.op.name
      variables_to_restore[restore_name] = v
    saver = tf.train.Saver(variables_to_restore)

    graph_def = tf.get_default_graph().as_graph_def()

    # run validation
    evaluations = eval_once(saver, top_k_op)
    cm = confusion_matrix(zip(evaluations, paths, y))
    print cm
Example #2
0
def tower_loss(scope):
  """Calculate the total loss on a single tower running the CIFAR model.

  Args:
    scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'

  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """
  # Get images and labels for CIFAR-10.
  images, labels = builder.distorted_inputs()

  # Build inference Graph.
  logits = models.xtal24_inference(images)

  # Build the portion of the Graph calculating the losses. Note that we will
  # assemble the total_loss using a custom function below.
  _ = builder.loss(logits, labels)

  # Assemble all of the losses for the current tower only.
  losses = tf.get_collection('losses', scope)

  # Calculate the total loss for the current tower.
  total_loss = tf.add_n(losses, name='total_loss')

  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summmary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
    # session. This helps the clarity of presentation on tensorboard.
    loss_name = re.sub('%s_[0-9]*/' % builder.TOWER_NAME, '', l.op.name)
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.scalar_summary(loss_name +' (raw)', l)
    tf.scalar_summary(loss_name, loss_averages.average(l))

  with tf.control_dependencies([loss_averages_op]):
    total_loss = tf.identity(total_loss)
  return total_loss
Example #3
0
def train():
  """Train XTAL24 for a number of steps."""
  with tf.Graph().as_default():
    global_step = tf.Variable(0, trainable=False)

    # Get images and labels for CIFAR-10.
    train_images, train_labels = builder.distorted_inputs()

    # Build a Graph that computes the logits predictions from the
    # inference model.
    train_logits = models.xtal24_inference(train_images)

    # will need to modify scope, in order to get this to work
    # then, instead of having a test and train graph, the two
    # graphs are shared

    # Calculate loss.
    loss = builder.loss(train_logits, train_labels)

    # log accuracies on train / test
    _accuracy_summary(train_logits, train_labels, train=True)
    # _accuracy_summary(test_logits, train=False)

    # Build a Graph that trains the model with one batch of examples and
    # updates the model parameters.
    train_op = builder.train(loss, global_step)

    # Create a saver.
    saver = tf.train.Saver(tf.all_variables())

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.merge_all_summaries()

    # Build an initialization operation to run below.
    init = tf.initialize_all_variables()

    # Start running operations on the Graph.
    sess = tf.Session(config=tf.ConfigProto(
        log_device_placement=FLAGS.log_device_placement))
    sess.run(init)

    # Start the queue runners.
    tf.train.start_queue_runners(sess=sess)

    summary_writer = tf.train.SummaryWriter(FLAGS.log_dir,
                                            graph_def=sess.graph_def)

    for step in xrange(FLAGS.maxiter):
      start_time = time.time()
      _, loss_value = sess.run([train_op, loss])
      duration = time.time() - start_time

      assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

      if step % 10 == 0:
        num_examples_per_step = FLAGS.batch_size
        examples_per_sec = num_examples_per_step / duration
        sec_per_batch = float(duration)

        format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                      'sec/batch)')
        print (format_str % (datetime.now(), step, loss_value,
                             examples_per_sec, sec_per_batch))

      # save the summaries periodically
      if step % FLAGS.summary_interval == 0:
        summary_str = sess.run(summary_op)
        summary_writer.add_summary(summary_str, step)

      # Save the model checkpoint periodically.
      if step % FLAGS.parameter_interval == 0 or (step + 1) == FLAGS.maxiter:
        checkpoint_path = os.path.join(FLAGS.log_dir, 'model.ckpt')
        saver.save(sess, checkpoint_path, global_step=step)