Example #1
0
    def test_predict(self):
        mng = MlpManager()
        mng.createMlp(self.output, self.factors, self.output, [10])
        weights = mng.copyWeights()

        # Set weights=0
        # then the output must be sigmoid(0)
        layers = []
        for layer in weights:
            shape = layer.shape
            layers.append(np.zeros(shape))
        mng.setMlpWeights(layers)
        mng._predict(self.output, self.factors)


        # Prediction ( the output must be sigmoid(0) )
        raster = mng.getPrediction(self.output, self.factors, calcTransitions=True)
        assert_array_equal(raster.getBand(1), sigmoid(0)*np.ones((3,3)))
        # Confidence is zero
        confid = mng.getConfidence()
        self.assertEquals(confid.getBand(1).dtype, np.uint8)
        assert_array_equal(confid.getBand(1), np.zeros((3,3)))
        # Transition Potentials (is (sigmoid(0) - sigmin)/sigrange )
        potentials = mng.getTransitionPotentials()
        cats = self.output.getBandGradation(1)
        for cat in cats:
            map = potentials[cat]
            self.assertEquals(map.getBand(1).dtype, np.uint8)
            assert_array_equal(map.getBand(1), 50*np.ones((3,3)))
Example #2
0
 def test_predict(self):
     mng = MlpManager()
     mng.createMlp(self.output, self.factors, self.output, [10])
     weights = mng.copyWeights()
     
     # Set weights=0
     # then the output must be sigmoid(0)
     layers = []
     for layer in weights:
         shape = layer.shape
         layers.append(np.zeros(shape))
     mng.setMlpWeights(layers)
     mng._predict(self.output, self.factors)
     
     # Prediction
     raster = mng.getPrediction(self.output, self.factors)
     assert_array_equal(raster.getBand(1), sigmoid(0)*np.zeros((3,3)))
     # Confidence
     confid = mng.getConfidence()
     assert_array_equal(confid.getBand(1), sigmoid(0)*np.zeros((3,3)))