def get_image_size( imgdata, myid ):
	from mpi import mpi_gather, mpi_bcast, MPI_COMM_WORLD, MPI_INT
	nimg = len(imgdata)

        nimgs = mpi_gather( nimg, 1, MPI_INT, 1, MPI_INT, 0, MPI_COMM_WORLD )

        if myid==0:
		src = -1
		for i in xrange( len(nimgs) ):
			if int(nimgs[i]) > 0 :
				src = i
				break
		if src==-1:
			return 0
	else:
		src = -1

	size_src = mpi_bcast( src, 1, MPI_INT, 0, MPI_COMM_WORLD )

	if myid==int(size_src[0]):
		assert nimg > 0
		size = imgdata[0].get_xsize()
	else:
		size = -1

	nx = mpi_bcast( size, 1, MPI_INT, size_src[0], MPI_COMM_WORLD )
	return int(nx[0])
Example #2
0
def identify_outliers(myid, main_node, rviper_iter, no_of_viper_runs_analyzed_together, 
	no_of_viper_runs_analyzed_together_from_user_options, masterdir, bdb_stack_location, outlier_percentile, 
	criterion_name, outlier_index_threshold_method, angle_threshold):
	
	no_of_viper_runs_analyzed_together_must_be_incremented = 0
	do_calculation = 1

	if (myid == main_node):
		mainoutputdir = masterdir + DIR_DELIM + NAME_OF_MAIN_DIR + ("%03d" + DIR_DELIM) % (rviper_iter)
		if(os.path.exists(mainoutputdir + DIR_DELIM + "list_of_viper_runs_included_in_outlier_elimination.json")):
			# list_of_independent_viper_run_indices_used_for_outlier_elimination = map(int, read_text_file(mainoutputdir + DIR_DELIM + "list_of_viper_runs_included_in_outlier_elimination.txt"))
			import json; f = open(mainoutputdir + "list_of_viper_runs_included_in_outlier_elimination.json", 'r')
			list_of_independent_viper_run_indices_used_for_outlier_elimination  = json.load(f); f.close()
			do_calculation = 0
		do_calculation = mpi_bcast(do_calculation, 1, MPI_INT, 0, MPI_COMM_WORLD)[0]
	else:
		do_calculation = mpi_bcast(do_calculation, 1, MPI_INT, 0, MPI_COMM_WORLD)[0]

	if do_calculation:
		list_of_independent_viper_run_indices_used_for_outlier_elimination = calculate_list_of_independent_viper_run_indices_used_for_outlier_elimination(no_of_viper_runs_analyzed_together,
			no_of_viper_runs_analyzed_together_from_user_options, masterdir, rviper_iter, criterion_name)

	# only master has the actual list: list_of_independent_viper_run_indices_used_for_outlier_elimination
	# only master has the actual list: list_of_independent_viper_run_indices_used_for_outlier_elimination
	# only master has the actual list: list_of_independent_viper_run_indices_used_for_outlier_elimination

	error_status = 0
	if (myid == main_node):
		# if len(list_of_independent_viper_run_indices_used_for_outlier_elimination) == 0:
		if list_of_independent_viper_run_indices_used_for_outlier_elimination[0] == EMPTY_VIPER_RUN_INDICES_LIST:
			if no_of_viper_runs_analyzed_together > MAXIMUM_NO_OF_VIPER_RUNS_ANALYZED_TOGETHER:
				error_status = 1
				print "RVIPER reached maximum number of VIPER runs analyzed together without finding a core set of stable projections for the current RVIPER iteration (%d)! Finishing."%rviper_iter
				cmd = "{} {}".format("mkdir ", masterdir + "MAXIMUM_NO_OF_VIPER_RUNS_ANALYZED_TOGETHER__Reached"); cmdexecute(cmd)
			else:
				# No set of solutions has been found to make a selection for outlier elimination.
				# A new independent viper run will be performed
				no_of_viper_runs_analyzed_together_must_be_incremented = 1
				cmd = "{} {}".format("rm ", mainoutputdir + "list_of_viper_runs_included_in_outlier_elimination.json"); cmdexecute(cmd)

		else:
			# Outliers are eliminated based on the viper runs contained in "list_of_independent_viper_run_indices_used_for_outlier_elimination"
			if list_of_independent_viper_run_indices_used_for_outlier_elimination[0] == MUST_END_PROGRAM_THIS_ITERATION:
				no_of_viper_runs_analyzed_together_must_be_incremented = MUST_END_PROGRAM_THIS_ITERATION
				found_outliers(list_of_independent_viper_run_indices_used_for_outlier_elimination[1:], outlier_percentile, 
					rviper_iter, masterdir, bdb_stack_location, "use all images", angle_threshold)
			else:
				# still need to eliminate DUMMY_INDEX_USED_AS_BUFFER
				found_outliers(list_of_independent_viper_run_indices_used_for_outlier_elimination[1:], outlier_percentile, 
					rviper_iter, masterdir, bdb_stack_location, outlier_index_threshold_method, angle_threshold)

	if_error_then_all_processes_exit_program(error_status)

	no_of_viper_runs_analyzed_together_must_be_incremented = mpi_bcast(no_of_viper_runs_analyzed_together_must_be_incremented, 1, MPI_INT, 0, MPI_COMM_WORLD)[0]

	return no_of_viper_runs_analyzed_together_must_be_incremented
Example #3
0
def mpi_bcast_recv(src):
	"""Unlike the C routine, in this python module, mpi_bcast is split into a send and a receive method. Send must be 
	called on exactly one core, and receive called on all of the others. This routine also coordinates transfer of
	variable length objects. src is the rank of the sender"""
	from mpi import mpi_bcast, MPI_CHAR, MPI_COMM_WORLD
	
	l = mpi_bcast(None, 4, MPI_CHAR, src, MPI_COMM_WORLD)
	l=unpack("I",l)[0]
	data = mpi_bcast(None, l, MPI_CHAR, src, MPI_COMM_WORLD)
	return loads(str(data.data))
Example #4
0
def mpi_bcast_send(data):
	"""Unlike the C routine, in this python module, mpi_bcast is split into a send and a receive method. Send must be 
	called on exactly one core, and receive called on all of the others. This routine also coordinates transfer of
	variable length objects."""
	from mpi import mpi_comm_rank, mpi_bcast, MPI_CHAR, MPI_COMM_WORLD

	data=dumps(data,-1)
	l=pack("I",len(data))
	rank = mpi_comm_rank(MPI_COMM_WORLD)	
	mpi_bcast(l, len(l), MPI_CHAR, rank, MPI_COMM_WORLD)
	mpi_bcast(data, len(data), MPI_CHAR, rank, MPI_COMM_WORLD)
def if_error_then_all_processes_exit_program(error_status):
	import sys, os
	from utilities import print_msg

	if "OMPI_COMM_WORLD_SIZE" not in os.environ:
		def mpi_comm_rank(n): return 0
		def mpi_bcast(*largs):
			return [largs[0]]
		def mpi_finalize():
			return None
		MPI_INT, MPI_COMM_WORLD = 0, 0
	else:
		from mpi import mpi_comm_rank, mpi_bcast, mpi_finalize, MPI_INT, MPI_COMM_WORLD

	myid = mpi_comm_rank(MPI_COMM_WORLD)
	if error_status != None and error_status != 0:
		error_status_info = error_status
		error_status = 1
	else:
		error_status = 0

	error_status = mpi_bcast(error_status, 1, MPI_INT, 0, MPI_COMM_WORLD)
	error_status = int(error_status[0])

	if error_status > 0:
		if myid == 0:
			if type(error_status_info) == type((1,1)):
				if len(error_status_info) == 2:
					frameinfo = error_status_info[1]
					print_msg("***********************************\n")
					print_msg("** Error: %s\n"%error_status_info[0])
					print_msg("***********************************\n")
					print_msg("** Location: %s\n"%(frameinfo.filename + ":" + str(frameinfo.lineno)))
					print_msg("***********************************\n")
		sys.stdout.flush()
		mpi_finalize()
		sys.exit(1)
Example #6
0
def main():
	from logger import Logger, BaseLogger_Files
        arglist = []
        i = 0
        while( i < len(sys.argv) ):
            if sys.argv[i]=='-p4pg':
                i = i+2
            elif sys.argv[i]=='-p4wd':
                i = i+2
            else:
                arglist.append( sys.argv[i] )
                i = i+1
	progname = os.path.basename(arglist[0])
	usage = progname + " stack  outdir  <mask> --focus=3Dmask --radius=outer_radius --delta=angular_step" +\
	"--an=angular_neighborhood --maxit=max_iter  --CTF --sym=c1 --function=user_function --independent=indenpendent_runs  --number_of_images_per_group=number_of_images_per_group  --low_pass_frequency=.25  --seed=random_seed"
	parser = OptionParser(usage,version=SPARXVERSION)
	parser.add_option("--focus",                         type   ="string",        default ='',                    help="bineary 3D mask for focused clustering ")
	parser.add_option("--ir",                            type   = "int",          default =1, 	                  help="inner radius for rotational correlation > 0 (set to 1)")
	parser.add_option("--radius",                        type   = "int",          default =-1,	                  help="particle radius in pixel for rotational correlation <nx-1 (set to the radius of the particle)")
	parser.add_option("--maxit",	                     type   = "int",          default =25, 	                  help="maximum number of iteration")
	parser.add_option("--rs",                            type   = "int",          default =1,	                  help="step between rings in rotational correlation >0 (set to 1)" ) 
	parser.add_option("--xr",                            type   ="string",        default ='1',                   help="range for translation search in x direction, search is +/-xr ")
	parser.add_option("--yr",                            type   ="string",        default ='-1',	              help="range for translation search in y direction, search is +/-yr (default = same as xr)")
	parser.add_option("--ts",                            type   ="string",        default ='0.25',                help="step size of the translation search in both directions direction, search is -xr, -xr+ts, 0, xr-ts, xr ")
	parser.add_option("--delta",                         type   ="string",        default ='2',                   help="angular step of reference projections")
	parser.add_option("--an",                            type   ="string",        default ='-1',	              help="angular neighborhood for local searches")
	parser.add_option("--center",                        type   ="int",           default =0,	                  help="0 - if you do not want the volume to be centered, 1 - center the volume using cog (default=0)")
	parser.add_option("--nassign",                       type   ="int",           default =1, 	                  help="number of reassignment iterations performed for each angular step (set to 3) ")
	parser.add_option("--nrefine",                       type   ="int",           default =0, 	                  help="number of alignment iterations performed for each angular step (set to 0)")
	parser.add_option("--CTF",                           action ="store_true",    default =False,                 help="do CTF correction during clustring")
	parser.add_option("--stoprnct",                      type   ="float",         default =3.0,                   help="Minimum percentage of assignment change to stop the program")
	parser.add_option("--sym",                           type   ="string",        default ='c1',                  help="symmetry of the structure ")
	parser.add_option("--function",                      type   ="string",        default ='do_volume_mrk05',     help="name of the reference preparation function")
	parser.add_option("--independent",                   type   ="int",           default = 3,                    help="number of independent run")
	parser.add_option("--number_of_images_per_group",    type   ="int",           default =1000,                  help="number of groups")
	parser.add_option("--low_pass_filter",               type   ="float",         default =-1.0,                  help="absolute frequency of low-pass filter for 3d sorting on the original image size" )
	parser.add_option("--nxinit",                        type   ="int",           default =64,                    help="initial image size for sorting" )
	parser.add_option("--unaccounted",                   action ="store_true",    default =False,                 help="reconstruct the unaccounted images")
	parser.add_option("--seed",                          type   ="int",           default =-1,                    help="random seed for create initial random assignment for EQ Kmeans")
	parser.add_option("--smallest_group",                type   ="int",           default =500,                   help="minimum members for identified group")
	parser.add_option("--sausage",                       action ="store_true",    default =False,                 help="way of filter volume")
	parser.add_option("--chunkdir",                      type   ="string",        default ='',                    help="chunkdir for computing margin of error")
	parser.add_option("--PWadjustment",                  type   ="string",        default ='',                    help="1-D power spectrum of PDB file used for EM volume power spectrum correction")
	parser.add_option("--protein_shape",                 type   ="string",        default ='g',                   help="protein shape. It defines protein preferred orientation angles. Currently it has g and f two types ")
	parser.add_option("--upscale",                       type   ="float",         default =0.5,                   help=" scaling parameter to adjust the power spectrum of EM volumes")
	parser.add_option("--wn",                            type   ="int",           default =0,                     help="optimal window size for data processing")
	parser.add_option("--interpolation",                 type   ="string",        default ="4nn",                 help="3-d reconstruction interpolation method, two options trl and 4nn")
	(options, args) = parser.parse_args(arglist[1:])
	if len(args) < 1  or len(args) > 4:
    		print "usage: " + usage
    		print "Please run '" + progname + " -h' for detailed options"
	else:

		if len(args)>2:
			mask_file = args[2]
		else:
			mask_file = None

		orgstack                        =args[0]
		masterdir                       =args[1]
		global_def.BATCH = True
		#---initialize MPI related variables
		from mpi import mpi_init, mpi_comm_size, MPI_COMM_WORLD, mpi_comm_rank,mpi_barrier,mpi_bcast, mpi_bcast, MPI_INT,MPI_CHAR
		sys.argv = mpi_init(len(sys.argv),sys.argv)
		nproc    = mpi_comm_size(MPI_COMM_WORLD)
		myid     = mpi_comm_rank(MPI_COMM_WORLD)
		mpi_comm = MPI_COMM_WORLD
		main_node= 0
		# import some utilities
		from utilities import get_im,bcast_number_to_all,cmdexecute,write_text_file,read_text_file,wrap_mpi_bcast, get_params_proj, write_text_row
		from applications import recons3d_n_MPI, mref_ali3d_MPI, Kmref_ali3d_MPI
		from statistics import k_means_match_clusters_asg_new,k_means_stab_bbenum
		from applications import mref_ali3d_EQ_Kmeans, ali3d_mref_Kmeans_MPI  
		# Create the main log file
		from logger import Logger,BaseLogger_Files
		if myid ==main_node:
			log_main=Logger(BaseLogger_Files())
			log_main.prefix = masterdir+"/"
		else:
			log_main =None
		#--- fill input parameters into dictionary named after Constants
		Constants		                         ={}
		Constants["stack"]                       = args[0]
		Constants["masterdir"]                   = masterdir
		Constants["mask3D"]                      = mask_file
		Constants["focus3Dmask"]                 = options.focus
		Constants["indep_runs"]                  = options.independent
		Constants["stoprnct"]                    = options.stoprnct
		Constants["number_of_images_per_group"]  = options.number_of_images_per_group
		Constants["CTF"]                         = options.CTF
		Constants["maxit"]                       = options.maxit
		Constants["ir"]                          = options.ir 
		Constants["radius"]                      = options.radius 
		Constants["nassign"]                     = options.nassign
		Constants["rs"]                          = options.rs 
		Constants["xr"]                          = options.xr
		Constants["yr"]                          = options.yr
		Constants["ts"]                          = options.ts
		Constants["delta"]               		 = options.delta
		Constants["an"]                  		 = options.an
		Constants["sym"]                 		 = options.sym
		Constants["center"]              		 = options.center
		Constants["nrefine"]             		 = options.nrefine
		#Constants["fourvar"]            		 = options.fourvar 
		Constants["user_func"]           		 = options.function
		Constants["low_pass_filter"]     		 = options.low_pass_filter # enforced low_pass_filter
		#Constants["debug"]              		 = options.debug
		Constants["main_log_prefix"]     		 = args[1]
		#Constants["importali3d"]        		 = options.importali3d
		Constants["myid"]	             		 = myid
		Constants["main_node"]           		 = main_node
		Constants["nproc"]               		 = nproc
		Constants["log_main"]            		 = log_main
		Constants["nxinit"]              		 = options.nxinit
		Constants["unaccounted"]         		 = options.unaccounted
		Constants["seed"]                		 = options.seed
		Constants["smallest_group"]      		 = options.smallest_group
		Constants["sausage"]             		 = options.sausage
		Constants["chunkdir"]            		 = options.chunkdir
		Constants["PWadjustment"]        		 = options.PWadjustment
		Constants["upscale"]             		 = options.upscale
		Constants["wn"]                  		 = options.wn
		Constants["3d-interpolation"]    		 = options.interpolation
		Constants["protein_shape"]    		     = options.protein_shape 
		# -----------------------------------------------------
		#
		# Create and initialize Tracker dictionary with input options
		Tracker = 			    		{}
		Tracker["constants"]       = Constants
		Tracker["maxit"]           = Tracker["constants"]["maxit"]
		Tracker["radius"]          = Tracker["constants"]["radius"]
		#Tracker["xr"]             = ""
		#Tracker["yr"]             = "-1"  # Do not change!
		#Tracker["ts"]             = 1
		#Tracker["an"]             = "-1"
		#Tracker["delta"]          = "2.0"
		#Tracker["zoom"]           = True
		#Tracker["nsoft"]          = 0
		#Tracker["local"]          = False
		#Tracker["PWadjustment"]   = Tracker["constants"]["PWadjustment"]
		Tracker["upscale"]         = Tracker["constants"]["upscale"]
		#Tracker["upscale"]        = 0.5
		Tracker["applyctf"]        = False  #  Should the data be premultiplied by the CTF.  Set to False for local continuous.
		#Tracker["refvol"]         = None
		Tracker["nxinit"]          = Tracker["constants"]["nxinit"]
		#Tracker["nxstep"]         = 32
		Tracker["icurrentres"]     = -1
		#Tracker["ireachedres"]    = -1
		#Tracker["lowpass"]        = 0.4
		#Tracker["falloff"]        = 0.2
		#Tracker["inires"]         = options.inires  # Now in A, convert to absolute before using
		Tracker["fuse_freq"]       = 50  # Now in A, convert to absolute before using
		#Tracker["delpreviousmax"] = False
		#Tracker["anger"]          = -1.0
		#Tracker["shifter"]        = -1.0
		#Tracker["saturatecrit"]   = 0.95
		#Tracker["pixercutoff"]    = 2.0
		#Tracker["directory"]      = ""
		#Tracker["previousoutputdir"] = ""
		#Tracker["eliminated-outliers"] = False
		#Tracker["mainiteration"]  = 0
		#Tracker["movedback"]      = False
		#Tracker["state"]          = Tracker["constants"]["states"][0] 
		#Tracker["global_resolution"] =0.0
		Tracker["orgstack"]        = orgstack
		#--------------------------------------------------------------------
		# import from utilities
		from utilities import sample_down_1D_curve,get_initial_ID,remove_small_groups,print_upper_triangular_matrix,print_a_line_with_timestamp
		from utilities import print_dict,get_resolution_mrk01,partition_to_groups,partition_independent_runs,get_outliers
		from utilities import merge_groups, save_alist, margin_of_error, get_margin_of_error, do_two_way_comparison, select_two_runs, get_ali3d_params
		from utilities import counting_projections, unload_dict, load_dict, get_stat_proj, create_random_list, get_number_of_groups, recons_mref
		from utilities import apply_low_pass_filter, get_groups_from_partition, get_number_of_groups, get_complementary_elements_total, update_full_dict
		from utilities import count_chunk_members, set_filter_parameters_from_adjusted_fsc, adjust_fsc_down, get_two_chunks_from_stack
		####------------------------------------------------------------------
		#
		# Get the pixel size; if none, set to 1.0, and the original image size
		from utilities import get_shrink_data_huang
		if(myid == main_node):
			line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>"
			print(line+"Initialization of 3-D sorting")
			a = get_im(orgstack)
			nnxo = a.get_xsize()
			if( Tracker["nxinit"] > nnxo ):
				ERROR("Image size less than minimum permitted $d"%Tracker["nxinit"],"sxsort3d.py",1)
				nnxo = -1
			else:
				if Tracker["constants"]["CTF"]:
					i = a.get_attr('ctf')
					pixel_size = i.apix
					fq = pixel_size/Tracker["fuse_freq"]
				else:
					pixel_size = 1.0
					#  No pixel size, fusing computed as 5 Fourier pixels
					fq = 5.0/nnxo
					del a
		else:
			nnxo = 0
			fq = 0.0
			pixel_size = 1.0
		nnxo = bcast_number_to_all(nnxo, source_node = main_node)
		if( nnxo < 0 ):
			mpi_finalize()
			exit()
		pixel_size = bcast_number_to_all(pixel_size, source_node = main_node)
		fq         = bcast_number_to_all(fq, source_node = main_node)
		if Tracker["constants"]["wn"]==0:
			Tracker["constants"]["nnxo"]          = nnxo
		else:
			Tracker["constants"]["nnxo"]          = Tracker["constants"]["wn"]
			nnxo                                  = Tracker["constants"]["nnxo"]
		Tracker["constants"]["pixel_size"]        = pixel_size
		Tracker["fuse_freq"]                      = fq
		del fq, nnxo, pixel_size
		if(Tracker["constants"]["radius"] < 1):
			Tracker["constants"]["radius"]  = Tracker["constants"]["nnxo"]//2-2
		elif((2*Tracker["constants"]["radius"] +2) > Tracker["constants"]["nnxo"]):
			ERROR("Particle radius set too large!","sxsort3d.py",1,myid)
####-----------------------------------------------------------------------------------------
		# Master directory
		if myid == main_node:
			if masterdir =="":
				timestring = strftime("_%d_%b_%Y_%H_%M_%S", localtime())
				masterdir ="master_sort3d"+timestring
			li =len(masterdir)
			cmd="{} {}".format("mkdir", masterdir)
			os.system(cmd)
		else:
			li=0
		li = mpi_bcast(li,1,MPI_INT,main_node,MPI_COMM_WORLD)[0]
		if li>0:
			masterdir = mpi_bcast(masterdir,li,MPI_CHAR,main_node,MPI_COMM_WORLD)
			import string
			masterdir = string.join(masterdir,"")
		if myid ==main_node:
			print_dict(Tracker["constants"],"Permanent settings of 3-D sorting program")
		######### create a vstack from input stack to the local stack in masterdir
		# stack name set to default
		Tracker["constants"]["stack"]       = "bdb:"+masterdir+"/rdata"
		Tracker["constants"]["ali3d"]       = os.path.join(masterdir, "ali3d_init.txt")
		Tracker["constants"]["ctf_params"]  = os.path.join(masterdir, "ctf_params.txt")
		Tracker["constants"]["partstack"]   = Tracker["constants"]["ali3d"]  # also serves for refinement
		if myid == main_node:
			total_stack = EMUtil.get_image_count(Tracker["orgstack"])
		else:
			total_stack = 0
		total_stack = bcast_number_to_all(total_stack, source_node = main_node)
		mpi_barrier(MPI_COMM_WORLD)
		from time import sleep
		while not os.path.exists(masterdir):
				print  "Node ",myid,"  waiting..."
				sleep(5)
		mpi_barrier(MPI_COMM_WORLD)
		if myid == main_node:
			log_main.add("Sphire sort3d ")
			log_main.add("the sort3d master directory is "+masterdir)
		#####
		###----------------------------------------------------------------------------------
		# Initial data analysis and handle two chunk files
		from random import shuffle
		# Compute the resolution 
		#### make chunkdir dictionary for computing margin of error
		import user_functions
		user_func  = user_functions.factory[Tracker["constants"]["user_func"]]
		chunk_dict = {}
		chunk_list = []
		if myid == main_node:
			chunk_one = read_text_file(os.path.join(Tracker["constants"]["chunkdir"],"chunk0.txt"))
			chunk_two = read_text_file(os.path.join(Tracker["constants"]["chunkdir"],"chunk1.txt"))
		else:
			chunk_one = 0
			chunk_two = 0
		chunk_one = wrap_mpi_bcast(chunk_one, main_node)
		chunk_two = wrap_mpi_bcast(chunk_two, main_node)
		mpi_barrier(MPI_COMM_WORLD)
		######################## Read/write bdb: data on main node ############################
	   	if myid==main_node:
			if(orgstack[:4] == "bdb:"):	cmd = "{} {} {}".format("e2bdb.py", orgstack,"--makevstack="+Tracker["constants"]["stack"])
			else:  cmd = "{} {} {}".format("sxcpy.py", orgstack, Tracker["constants"]["stack"])
	   		cmdexecute(cmd)
			cmd = "{} {} {}".format("sxheader.py  --params=xform.projection", "--export="+Tracker["constants"]["ali3d"],orgstack)
			cmdexecute(cmd)
			cmd = "{} {} {}".format("sxheader.py  --params=ctf", "--export="+Tracker["constants"]["ctf_params"],orgstack)
			cmdexecute(cmd)
		mpi_barrier(MPI_COMM_WORLD)	   		   	
		########-----------------------------------------------------------------------------
		Tracker["total_stack"]              = total_stack
		Tracker["constants"]["total_stack"] = total_stack
		Tracker["shrinkage"]                = float(Tracker["nxinit"])/Tracker["constants"]["nnxo"]
		Tracker["radius"]                   = Tracker["constants"]["radius"]*Tracker["shrinkage"]
		if Tracker["constants"]["mask3D"]:
			Tracker["mask3D"] = os.path.join(masterdir,"smask.hdf")
		else:
			Tracker["mask3D"]  = None
		if Tracker["constants"]["focus3Dmask"]:
			Tracker["focus3D"] = os.path.join(masterdir,"sfocus.hdf")
		else:
			Tracker["focus3D"] = None
		if myid == main_node:
			if Tracker["constants"]["mask3D"]:
				mask_3D = get_shrink_3dmask(Tracker["nxinit"],Tracker["constants"]["mask3D"])
				mask_3D.write_image(Tracker["mask3D"])
			if Tracker["constants"]["focus3Dmask"]:
				mask_3D = get_shrink_3dmask(Tracker["nxinit"],Tracker["constants"]["focus3Dmask"])
				st = Util.infomask(mask_3D, None, True)
				if( st[0] == 0.0 ):  ERROR("sxrsort3d","incorrect focused mask, after binarize all values zero",1)
				mask_3D.write_image(Tracker["focus3D"])
				del mask_3D
		if Tracker["constants"]["PWadjustment"] !='':
			PW_dict              = {}
			nxinit_pwsp          = sample_down_1D_curve(Tracker["constants"]["nxinit"],Tracker["constants"]["nnxo"],Tracker["constants"]["PWadjustment"])
			Tracker["nxinit_PW"] = os.path.join(masterdir,"spwp.txt")
			if myid == main_node:  write_text_file(nxinit_pwsp,Tracker["nxinit_PW"])
			PW_dict[Tracker["constants"]["nnxo"]]   = Tracker["constants"]["PWadjustment"]
			PW_dict[Tracker["constants"]["nxinit"]] = Tracker["nxinit_PW"]
			Tracker["PW_dict"]                      = PW_dict
		mpi_barrier(MPI_COMM_WORLD)
		#-----------------------From two chunks to FSC, and low pass filter-----------------------------------------###
		for element in chunk_one: chunk_dict[element] = 0
		for element in chunk_two: chunk_dict[element] = 1
		chunk_list =[chunk_one, chunk_two]
		Tracker["chunk_dict"] = chunk_dict
		Tracker["P_chunk0"]   = len(chunk_one)/float(total_stack)
		Tracker["P_chunk1"]   = len(chunk_two)/float(total_stack)
		### create two volumes to estimate resolution
		if myid == main_node:
			for index in xrange(2): write_text_file(chunk_list[index],os.path.join(masterdir,"chunk%01d.txt"%index))
		mpi_barrier(MPI_COMM_WORLD)
		vols = []
		for index in xrange(2):
			data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nxinit"], os.path.join(masterdir,"chunk%01d.txt"%index), Tracker["constants"]["partstack"],myid,main_node,nproc,preshift=True)
			vol             = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data,symmetry=Tracker["constants"]["sym"], finfo=None)
			if myid == main_node:
				vol.write_image(os.path.join(masterdir, "vol%d.hdf"%index))
			vols.append(vol)
			mpi_barrier(MPI_COMM_WORLD)
		if myid ==main_node:
			low_pass, falloff,currentres = get_resolution_mrk01(vols,Tracker["constants"]["radius"],Tracker["constants"]["nxinit"],masterdir,Tracker["mask3D"])
			if low_pass >Tracker["constants"]["low_pass_filter"]: low_pass= Tracker["constants"]["low_pass_filter"]
		else:
			low_pass    =0.0
			falloff     =0.0
			currentres  =0.0
		bcast_number_to_all(currentres,source_node = main_node)
		bcast_number_to_all(low_pass,source_node   = main_node)
		bcast_number_to_all(falloff,source_node    = main_node)
		Tracker["currentres"]                      = currentres
		Tracker["falloff"]                         = falloff
		if Tracker["constants"]["low_pass_filter"] ==-1.0:
			Tracker["low_pass_filter"] = min(.45,low_pass/Tracker["shrinkage"]) # no better than .45
		else:
			Tracker["low_pass_filter"] = min(.45,Tracker["constants"]["low_pass_filter"]/Tracker["shrinkage"])
		Tracker["lowpass"]             = Tracker["low_pass_filter"]
		Tracker["falloff"]             =.1
		Tracker["global_fsc"]          = os.path.join(masterdir, "fsc.txt")
		############################################################################################
		if myid == main_node:
			log_main.add("The command-line inputs are as following:")
			log_main.add("**********************************************************")
		for a in sys.argv:
			if myid == main_node:log_main.add(a)
		if myid == main_node:
			log_main.add("number of cpus used in this run is %d"%Tracker["constants"]["nproc"])
			log_main.add("**********************************************************")
		from filter import filt_tanl
		### START 3-D sorting
		if myid ==main_node:
			log_main.add("----------3-D sorting  program------- ")
			log_main.add("current resolution %6.3f for images of original size in terms of absolute frequency"%Tracker["currentres"])
			log_main.add("equivalent to %f Angstrom resolution"%(Tracker["constants"]["pixel_size"]/Tracker["currentres"]/Tracker["shrinkage"]))
			log_main.add("the user provided enforced low_pass_filter is %f"%Tracker["constants"]["low_pass_filter"])
			#log_main.add("equivalent to %f Angstrom resolution"%(Tracker["constants"]["pixel_size"]/Tracker["constants"]["low_pass_filter"]))
			for index in xrange(2):
				filt_tanl(get_im(os.path.join(masterdir,"vol%01d.hdf"%index)), Tracker["low_pass_filter"],Tracker["falloff"]).write_image(os.path.join(masterdir, "volf%01d.hdf"%index))
		mpi_barrier(MPI_COMM_WORLD)
		from utilities import get_input_from_string
		delta       = get_input_from_string(Tracker["constants"]["delta"])
		delta       = delta[0]
		from utilities import even_angles
		n_angles    = even_angles(delta, 0, 180)
		this_ali3d  = Tracker["constants"]["ali3d"]
		sampled     = get_stat_proj(Tracker,delta,this_ali3d)
		if myid ==main_node:
			nc = 0
			for a in sampled:
				if len(sampled[a])>0:
					nc += 1
			log_main.add("total sampled direction %10d  at angle step %6.3f"%(len(n_angles), delta)) 
			log_main.add("captured sampled directions %10d percentage covered by data  %6.3f"%(nc,float(nc)/len(n_angles)*100))
		number_of_images_per_group = Tracker["constants"]["number_of_images_per_group"]
		if myid ==main_node: log_main.add("user provided number_of_images_per_group %d"%number_of_images_per_group)
		Tracker["number_of_images_per_group"] = number_of_images_per_group
		number_of_groups = get_number_of_groups(total_stack,number_of_images_per_group)
		Tracker["number_of_groups"] =  number_of_groups
		generation     =0
		partition_dict ={}
		full_dict      ={}
		workdir =os.path.join(masterdir,"generation%03d"%generation)
		Tracker["this_dir"] = workdir
		if myid ==main_node:
			log_main.add("---- generation         %5d"%generation)
			log_main.add("number of images per group is set as %d"%number_of_images_per_group)
			log_main.add("the initial number of groups is  %10d "%number_of_groups)
			cmd="{} {}".format("mkdir",workdir)
			os.system(cmd)
		mpi_barrier(MPI_COMM_WORLD)
		list_to_be_processed = range(Tracker["constants"]["total_stack"])
		Tracker["this_data_list"] = list_to_be_processed
		create_random_list(Tracker)
		#################################
		full_dict ={}
		for iptl in xrange(Tracker["constants"]["total_stack"]):
			 full_dict[iptl]    = iptl
		Tracker["full_ID_dict"] = full_dict
		################################# 	
		for indep_run in xrange(Tracker["constants"]["indep_runs"]):
			Tracker["this_particle_list"] = Tracker["this_indep_list"][indep_run]
			ref_vol =  recons_mref(Tracker)
			if myid == main_node: log_main.add("independent run  %10d"%indep_run)
			mpi_barrier(MPI_COMM_WORLD)
			Tracker["this_data_list"]          = list_to_be_processed
			Tracker["total_stack"]             = len(Tracker["this_data_list"])
			Tracker["this_particle_text_file"] = os.path.join(workdir,"independent_list_%03d.txt"%indep_run) # for get_shrink_data
			if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_particle_text_file"])
			mpi_barrier(MPI_COMM_WORLD)
			outdir  = os.path.join(workdir, "EQ_Kmeans%03d"%indep_run)
			ref_vol = apply_low_pass_filter(ref_vol,Tracker)
			mref_ali3d_EQ_Kmeans(ref_vol, outdir, Tracker["this_particle_text_file"], Tracker)
			partition_dict[indep_run]=Tracker["this_partition"]
		Tracker["partition_dict"]    = partition_dict
		Tracker["total_stack"]       = len(Tracker["this_data_list"])
		Tracker["this_total_stack"]  = Tracker["total_stack"]
		###############################
		do_two_way_comparison(Tracker)
		###############################
		ref_vol_list = []
		from time import sleep
		number_of_ref_class = []
		for igrp in xrange(len(Tracker["two_way_stable_member"])):
			Tracker["this_data_list"]      = Tracker["two_way_stable_member"][igrp]
			Tracker["this_data_list_file"] = os.path.join(workdir,"stable_class%d.txt"%igrp)
			if myid == main_node:
				write_text_file(Tracker["this_data_list"], Tracker["this_data_list_file"])
			data,old_shifts = get_shrink_data_huang(Tracker,Tracker["nxinit"], Tracker["this_data_list_file"], Tracker["constants"]["partstack"], myid, main_node, nproc, preshift = True)
			volref          = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"], finfo = None)
			ref_vol_list.append(volref)
			number_of_ref_class.append(len(Tracker["this_data_list"]))
			if myid == main_node:
				log_main.add("group  %d  members %d "%(igrp,len(Tracker["this_data_list"])))
		Tracker["number_of_ref_class"] = number_of_ref_class
		nx_of_image = ref_vol_list[0].get_xsize()
		if Tracker["constants"]["PWadjustment"]:
			Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image]
		else:
			Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"]	 # no PW adjustment
		if myid == main_node:
			for iref in xrange(len(ref_vol_list)):
				refdata    = [None]*4
				refdata[0] = ref_vol_list[iref]
				refdata[1] = Tracker
				refdata[2] = Tracker["constants"]["myid"]
				refdata[3] = Tracker["constants"]["nproc"]
				volref     = user_func(refdata)
				volref.write_image(os.path.join(workdir,"volf_stable.hdf"),iref)
		mpi_barrier(MPI_COMM_WORLD)
		Tracker["this_data_list"]           = Tracker["this_accounted_list"]
		outdir                              = os.path.join(workdir,"Kmref")  
		empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI(ref_vol_list,outdir,Tracker["this_accounted_text"],Tracker)
		Tracker["this_unaccounted_list"]    = get_complementary_elements(list_to_be_processed,final_list)
		if myid == main_node:
			log_main.add("the number of particles not processed is %d"%len(Tracker["this_unaccounted_list"]))
			write_text_file(Tracker["this_unaccounted_list"],Tracker["this_unaccounted_text"])
		update_full_dict(Tracker["this_unaccounted_list"], Tracker)
		#######################################
		number_of_groups    = len(res_groups)
		vol_list            = []
		number_of_ref_class = []
		for igrp in xrange(number_of_groups):
			data,old_shifts = get_shrink_data_huang(Tracker, Tracker["constants"]["nnxo"], os.path.join(outdir,"Class%d.txt"%igrp), Tracker["constants"]["partstack"],myid,main_node,nproc,preshift = True)
			volref          = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"], finfo=None)
			vol_list.append(volref)

			if( myid == main_node ):  npergroup = len(read_text_file(os.path.join(outdir,"Class%d.txt"%igrp)))
			else:  npergroup = 0
			npergroup = bcast_number_to_all(npergroup, main_node )
			number_of_ref_class.append(npergroup)

		Tracker["number_of_ref_class"] = number_of_ref_class
		
		mpi_barrier(MPI_COMM_WORLD)
		nx_of_image = vol_list[0].get_xsize()
		if Tracker["constants"]["PWadjustment"]:
			Tracker["PWadjustment"]=Tracker["PW_dict"][nx_of_image]
		else:
			Tracker["PWadjustment"]=Tracker["constants"]["PWadjustment"]	

		if myid == main_node:
			for ivol in xrange(len(vol_list)):
				refdata     =[None]*4
				refdata[0] = vol_list[ivol]
				refdata[1] = Tracker
				refdata[2] = Tracker["constants"]["myid"]
				refdata[3] = Tracker["constants"]["nproc"] 
				volref = user_func(refdata)
				volref.write_image(os.path.join(workdir,"volf_of_Classes.hdf"),ivol)
				log_main.add("number of unaccounted particles  %10d"%len(Tracker["this_unaccounted_list"]))
				log_main.add("number of accounted particles  %10d"%len(Tracker["this_accounted_list"]))
				
		Tracker["this_data_list"]    = Tracker["this_unaccounted_list"]   # reset parameters for the next round calculation
		Tracker["total_stack"]       = len(Tracker["this_unaccounted_list"])
		Tracker["this_total_stack"]  = Tracker["total_stack"]
		number_of_groups             = get_number_of_groups(len(Tracker["this_unaccounted_list"]),number_of_images_per_group)
		Tracker["number_of_groups"]  =  number_of_groups
		while number_of_groups >= 2 :
			generation     +=1
			partition_dict ={}
			workdir =os.path.join(masterdir,"generation%03d"%generation)
			Tracker["this_dir"] = workdir
			if myid ==main_node:
				log_main.add("*********************************************")
				log_main.add("-----    generation             %5d    "%generation)
				log_main.add("number of images per group is set as %10d "%number_of_images_per_group)
				log_main.add("the number of groups is  %10d "%number_of_groups)
				log_main.add(" number of particles for clustering is %10d"%Tracker["total_stack"])
				cmd ="{} {}".format("mkdir",workdir)
				os.system(cmd)
			mpi_barrier(MPI_COMM_WORLD)
			create_random_list(Tracker)
			for indep_run in xrange(Tracker["constants"]["indep_runs"]):
				Tracker["this_particle_list"] = Tracker["this_indep_list"][indep_run]
				ref_vol                       = recons_mref(Tracker)
				if myid == main_node:
					log_main.add("independent run  %10d"%indep_run)
					outdir = os.path.join(workdir, "EQ_Kmeans%03d"%indep_run)
				Tracker["this_data_list"]   = Tracker["this_unaccounted_list"]
				#ref_vol=apply_low_pass_filter(ref_vol,Tracker)
				mref_ali3d_EQ_Kmeans(ref_vol,outdir,Tracker["this_unaccounted_text"],Tracker)
				partition_dict[indep_run]   = Tracker["this_partition"]
				Tracker["this_data_list"]   = Tracker["this_unaccounted_list"]
				Tracker["total_stack"]      = len(Tracker["this_unaccounted_list"])
				Tracker["partition_dict"]   = partition_dict
				Tracker["this_total_stack"] = Tracker["total_stack"]
			total_list_of_this_run          = Tracker["this_unaccounted_list"]
			###############################
			do_two_way_comparison(Tracker)
			###############################
			ref_vol_list        = []
			number_of_ref_class = []
			for igrp in xrange(len(Tracker["two_way_stable_member"])):
				Tracker["this_data_list"]      = Tracker["two_way_stable_member"][igrp]
				Tracker["this_data_list_file"] = os.path.join(workdir,"stable_class%d.txt"%igrp)
				if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_data_list_file"])
				mpi_barrier(MPI_COMM_WORLD)
				data,old_shifts  = get_shrink_data_huang(Tracker,Tracker["constants"]["nxinit"],Tracker["this_data_list_file"],Tracker["constants"]["partstack"],myid,main_node,nproc,preshift = True)
				volref           = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"],finfo= None)
				#volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1)
				if myid == main_node:volref.write_image(os.path.join(workdir,"vol_stable.hdf"),iref)
				#volref = resample(volref,Tracker["shrinkage"])
				ref_vol_list.append(volref)
				number_of_ref_class.append(len(Tracker["this_data_list"]))
				mpi_barrier(MPI_COMM_WORLD)
			Tracker["number_of_ref_class"]      = number_of_ref_class
			Tracker["this_data_list"]           = Tracker["this_accounted_list"]
			outdir                              = os.path.join(workdir,"Kmref")
			empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI(ref_vol_list,outdir,Tracker["this_accounted_text"],Tracker)
			# calculate the 3-D structure of original image size for each group
			number_of_groups                    =  len(res_groups)
			Tracker["this_unaccounted_list"]    = get_complementary_elements(total_list_of_this_run,final_list)
			if myid == main_node:
				log_main.add("the number of particles not processed is %d"%len(Tracker["this_unaccounted_list"]))
				write_text_file(Tracker["this_unaccounted_list"],Tracker["this_unaccounted_text"])
			mpi_barrier(MPI_COMM_WORLD)
			update_full_dict(Tracker["this_unaccounted_list"],Tracker)
			vol_list = []
			for igrp in xrange(number_of_groups):
				data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nnxo"], os.path.join(outdir,"Class%d.txt"%igrp), Tracker["constants"]["partstack"], myid, main_node, nproc,preshift = True)
				volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"],finfo= None)
				vol_list.append(volref)

			mpi_barrier(MPI_COMM_WORLD)
			nx_of_image=ref_vol_list[0].get_xsize()
			if Tracker["constants"]["PWadjustment"]:
				Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image]
			else:
				Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"]	

			if myid == main_node:
				for ivol in xrange(len(vol_list)):
					refdata    = [None]*4
					refdata[0] = vol_list[ivol]
					refdata[1] = Tracker
					refdata[2] = Tracker["constants"]["myid"]
					refdata[3] = Tracker["constants"]["nproc"] 
					volref     = user_func(refdata)
					volref.write_image(os.path.join(workdir, "volf_of_Classes.hdf"),ivol)
				log_main.add("number of unaccounted particles  %10d"%len(Tracker["this_unaccounted_list"]))
				log_main.add("number of accounted particles  %10d"%len(Tracker["this_accounted_list"]))
			del vol_list
			mpi_barrier(MPI_COMM_WORLD)
			number_of_groups            = get_number_of_groups(len(Tracker["this_unaccounted_list"]),number_of_images_per_group)
			Tracker["number_of_groups"] =  number_of_groups
			Tracker["this_data_list"]   = Tracker["this_unaccounted_list"]
			Tracker["total_stack"]      = len(Tracker["this_unaccounted_list"])
		if Tracker["constants"]["unaccounted"]:
			data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nnxo"],Tracker["this_unaccounted_text"],Tracker["constants"]["partstack"],myid,main_node,nproc,preshift = True)
			volref          = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"],finfo= None)
			nx_of_image     = volref.get_xsize()
			if Tracker["constants"]["PWadjustment"]:
				Tracker["PWadjustment"]=Tracker["PW_dict"][nx_of_image]
			else:
				Tracker["PWadjustment"]=Tracker["constants"]["PWadjustment"]	
			if( myid == main_node ):
				refdata    = [None]*4
				refdata[0] = volref
				refdata[1] = Tracker
				refdata[2] = Tracker["constants"]["myid"]
				refdata[3] = Tracker["constants"]["nproc"]
				volref     = user_func(refdata)
				#volref    = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1)
				volref.write_image(os.path.join(workdir,"volf_unaccounted.hdf"))
		# Finish program
		if myid ==main_node: log_main.add("sxsort3d finishes")
		mpi_barrier(MPI_COMM_WORLD)
		from mpi import mpi_finalize
		mpi_finalize()
		exit()
Example #7
0
def main():

	from logger import Logger, BaseLogger_Files
	import user_functions
	from optparse import OptionParser, SUPPRESS_HELP
	from global_def import SPARXVERSION
	from EMAN2 import EMData

	main_node = 0
	mpi_init(0, [])
	mpi_comm = MPI_COMM_WORLD
	myid = mpi_comm_rank(MPI_COMM_WORLD)
	mpi_size = mpi_comm_size(MPI_COMM_WORLD)	# Total number of processes, passed by --np option.

	# mpi_barrier(mpi_comm)
	# from mpi import mpi_finalize
	# mpi_finalize()
	# print "mpi finalize"
	# from sys import exit
	# exit()

	progname = os.path.basename(sys.argv[0])
	usage = progname + " stack  [output_directory] --ir=inner_radius --radius=outer_radius --rs=ring_step --xr=x_range --yr=y_range  --ts=translational_search_step  --delta=angular_step --an=angular_neighborhood  --center=center_type --maxit1=max_iter1 --maxit2=max_iter2 --L2threshold=0.1  --fl --aa --ref_a=S --sym=c1"
	usage += """

stack			2D images in a stack file: (default required string)
output_directory: directory name into which the output files will be written.  If it does not exist, the directory will be created.  If it does exist, the program will continue executing from where it stopped (if it did not already reach the end). The "--use_latest_master_directory" option can be used to choose the most recent directory that starts with "master".
"""

	parser = OptionParser(usage,version=SPARXVERSION)
	parser.add_option("--radius",                type="int",           help="radius of the particle: has to be less than < int(nx/2)-1 (default required int)")

	parser.add_option("--ir",                    type="int",           default=1,          help="inner radius for rotational search: > 0 (default 1)")
	parser.add_option("--rs",                    type="int",           default=1,          help="step between rings in rotational search: >0 (default 1)")
	parser.add_option("--xr",                    type="string",        default='0',        help="range for translation search in x direction: search is +/xr in pixels (default '0')")
	parser.add_option("--yr",                    type="string",        default='0',        help="range for translation search in y direction: if omitted will be set to xr, search is +/yr in pixels (default '0')")
	parser.add_option("--ts",                    type="string",        default='1.0',      help="step size of the translation search in x-y directions: search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default '1.0')")
	parser.add_option("--delta",                 type="string",        default='2.0',      help="angular step of reference projections: (default '2.0')")
	#parser.add_option("--an",       type="string", default= "-1",              help="angular neighborhood for local searches (phi and theta)")
	parser.add_option("--center",                type="float",         default=-1.0,       help="centering of 3D template: average shift method; 0: no centering; 1: center of gravity (default -1.0)")
	parser.add_option("--maxit1",                type="int",           default=400,        help="maximum number of iterations performed for the GA part: (default 400)")
	parser.add_option("--maxit2",                type="int",           default=50,         help="maximum number of iterations performed for the finishing up part: (default 50)")
	parser.add_option("--L2threshold",           type="float",         default=0.03,       help="stopping criterion of GA: given as a maximum relative dispersion of volumes' L2 norms: (default 0.03)")
	parser.add_option("--doga",                  type="float",         default=0.1,        help="do GA when fraction of orientation changes less than 1.0 degrees is at least doga: (default 0.1)")
	parser.add_option("--n_shc_runs",            type="int",           default=4,          help="number of quasi-independent shc runs (same as '--nruns' parameter from sxviper.py): (default 4)")
	parser.add_option("--n_rv_runs",             type="int",           default=10,         help="number of rviper iterations: (default 10)")
	parser.add_option("--n_v_runs",              type="int",           default=3,          help="number of viper runs for each r_viper cycle: (default 3)")
	parser.add_option("--outlier_percentile",    type="float",         default=95.0,       help="percentile above which outliers are removed every rviper iteration: (default 95.0)")
	parser.add_option("--iteration_start",       type="int",           default=0,          help="starting iteration for rviper: 0 means go to the most recent one (default 0)")
	#parser.add_option("--CTF",      action="store_true", default=False,        help="NOT IMPLEMENTED Consider CTF correction during the alignment ")
	#parser.add_option("--snr",      type="float",  default= 1.0,               help="Signal-to-Noise Ratio of the data (default 1.0)")
	parser.add_option("--ref_a",                 type="string",        default='S',        help="method for generating the quasi-uniformly distributed projection directions: (default S)")
	parser.add_option("--sym",                   type="string",        default='c1',       help="point-group symmetry of the structure: (default c1)")
	# parser.add_option("--function", type="string", default="ref_ali3d",         help="name of the reference preparation function (ref_ali3d by default)")
	##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	parser.add_option("--function", type="string", default="ref_ali3d",         help=SUPPRESS_HELP)
	parser.add_option("--npad",                  type="int",           default=2,          help="padding size for 3D reconstruction: (default 2)")
	# parser.add_option("--npad", type="int",  default= 2,            help="padding size for 3D reconstruction (default 2)")

	#options introduced for the do_volume function
	parser.add_option("--fl",                    type="float",         default=0.25,       help="cut-off frequency applied to the template volume: using a hyperbolic tangent low-pass filter (default 0.25)")
	parser.add_option("--aa",                    type="float",         default=0.1,        help="fall-off of hyperbolic tangent low-pass filter: (default 0.1)")
	parser.add_option("--pwreference",           type="string",        default='',         help="text file with a reference power spectrum: (default none)")
	parser.add_option("--mask3D",                type="string",        default=None,       help="3D mask file: (default sphere)")
	parser.add_option("--moon_elimination",      type="string",        default='',         help="elimination of disconnected pieces: two arguments: mass in KDa and pixel size in px/A separated by comma, no space (default none)")

	# used for debugging, help is supressed with SUPPRESS_HELP
	##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	parser.add_option("--my_random_seed",      type="int",  default=123,  help = SUPPRESS_HELP)
	##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	parser.add_option("--run_get_already_processed_viper_runs", action="store_true", dest="run_get_already_processed_viper_runs", default=False, help = SUPPRESS_HELP)
	##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	parser.add_option("--use_latest_master_directory", action="store_true", dest="use_latest_master_directory", default=False, help = SUPPRESS_HELP)
	
	parser.add_option("--criterion_name",        type="string",        default='80th percentile',help="criterion deciding if volumes have a core set of stable projections: '80th percentile', other options:'fastest increase in the last quartile' (default '80th percentile')")
	parser.add_option("--outlier_index_threshold_method",type="string",        default='discontinuity_in_derivative',help="method that decides which images to keep: discontinuity_in_derivative, other options:percentile, angle_measure (default discontinuity_in_derivative)")
	parser.add_option("--angle_threshold",       type="int",           default=30,         help="angle threshold for projection removal if using 'angle_measure': (default 30)")
	

	required_option_list = ['radius']
	(options, args) = parser.parse_args(sys.argv[1:])

	options.CTF = False
	options.snr = 1.0
	options.an = -1

	if options.moon_elimination == "":
		options.moon_elimination = []
	else:
		options.moon_elimination = map(float, options.moon_elimination.split(","))

	# Making sure all required options appeared.
	for required_option in required_option_list:
		if not options.__dict__[required_option]:
			print "\n ==%s== mandatory option is missing.\n"%required_option
			print "Please run '" + progname + " -h' for detailed options"
			return 1

	mpi_barrier(MPI_COMM_WORLD)
	if(myid == main_node):
		print "****************************************************************"
		Util.version()
		print "****************************************************************"
		sys.stdout.flush()
	mpi_barrier(MPI_COMM_WORLD)

	# this is just for benefiting from a user friendly parameter name
	options.ou = options.radius 
	my_random_seed = options.my_random_seed
	criterion_name = options.criterion_name
	outlier_index_threshold_method = options.outlier_index_threshold_method
	use_latest_master_directory = options.use_latest_master_directory
	iteration_start_default = options.iteration_start
	number_of_rrr_viper_runs = options.n_rv_runs
	no_of_viper_runs_analyzed_together_from_user_options = options.n_v_runs
	no_of_shc_runs_analyzed_together = options.n_shc_runs 
	outlier_percentile = options.outlier_percentile 
	angle_threshold = options.angle_threshold 
	
	run_get_already_processed_viper_runs = options.run_get_already_processed_viper_runs
	get_already_processed_viper_runs(run_get_already_processed_viper_runs)

	import random
	random.seed(my_random_seed)

	if len(args) < 1 or len(args) > 3:
		print "usage: " + usage
		print "Please run '" + progname + " -h' for detailed options"
		return 1

	# if len(args) > 2:
	# 	ref_vol = get_im(args[2])
	# else:
	ref_vol = None
	
	# error_status = None
	# if myid == 0:
	# 	number_of_images = EMUtil.get_image_count(args[0])
	# 	if mpi_size > number_of_images:
	# 		error_status = ('Number of processes supplied by --np in mpirun needs to be less than or equal to %d (total number of images) ' % number_of_images, getframeinfo(currentframe()))
	# if_error_then_all_processes_exit_program(error_status)
	
	bdb_stack_location = ""

	masterdir = ""
	if len(args) == 2:
		masterdir = args[1]
		if masterdir[-1] != DIR_DELIM:
			masterdir += DIR_DELIM
	elif len(args) == 1:
		if use_latest_master_directory:
			all_dirs = [d for d in os.listdir(".") if os.path.isdir(d)]
			import re; r = re.compile("^master.*$")
			all_dirs = filter(r.match, all_dirs)
			if len(all_dirs)>0:
				# all_dirs = max(all_dirs, key=os.path.getctime)
				masterdir = max(all_dirs, key=os.path.getmtime)
				masterdir += DIR_DELIM

	log = Logger(BaseLogger_Files())

	error_status = 0	
	if mpi_size % no_of_shc_runs_analyzed_together != 0:
		ERROR('Number of processes needs to be a multiple of the number of quasi-independent runs (shc) within each viper run. '
		'Total quasi-independent runs by default are 3, you can change it by specifying '
		'--n_shc_runs option (in sxviper this option is called --nruns). Also, to improve communication time it is recommended that '
		'the number of processes divided by the number of quasi-independent runs is a power '
		'of 2 (e.g. 2, 4, 8 or 16 depending on how many physical cores each node has).', 'sxviper', 1)
		error_status = 1
	if_error_then_all_processes_exit_program(error_status)

	#Create folder for all results or check if there is one created already
	if(myid == main_node):
		#cmd = "{}".format("Rmycounter ccc")
		#cmdexecute(cmd)

		if( masterdir == ""):
			timestring = strftime("%Y_%m_%d__%H_%M_%S" + DIR_DELIM, localtime())
			masterdir = "master"+timestring

		if not os.path.exists(masterdir):
			cmd = "{} {}".format("mkdir", masterdir)
			cmdexecute(cmd)

		if ':' in args[0]:
			bdb_stack_location = args[0].split(":")[0] + ":" + masterdir + args[0].split(":")[1]
			org_stack_location = args[0]

			if(not os.path.exists(os.path.join(masterdir,"EMAN2DB" + DIR_DELIM))):
				# cmd = "{} {}".format("cp -rp EMAN2DB", masterdir, "EMAN2DB" DIR_DELIM)
				# cmdexecute(cmd)
				cmd = "{} {} {}".format("e2bdb.py", org_stack_location,"--makevstack=" + bdb_stack_location + "_000")
				cmdexecute(cmd)

				from applications import header
				try:
					header(bdb_stack_location + "_000", params='original_image_index', fprint=True)
					print "Images were already indexed!"
				except KeyError:
					print "Indexing images"
					header(bdb_stack_location + "_000", params='original_image_index', consecutive=True)
		else:
			filename = os.path.basename(args[0])
			bdb_stack_location = "bdb:" + masterdir + os.path.splitext(filename)[0]
			if(not os.path.exists(os.path.join(masterdir,"EMAN2DB" + DIR_DELIM))):
				cmd = "{} {} {}".format("sxcpy.py  ", args[0], bdb_stack_location + "_000")
				cmdexecute(cmd)

				from applications import header
				try:
					header(bdb_stack_location + "_000", params='original_image_index', fprint=True)
					print "Images were already indexed!"
				except KeyError:
					print "Indexing images"
					header(bdb_stack_location + "_000", params='original_image_index', consecutive=True)

	# send masterdir to all processes
	dir_len  = len(masterdir)*int(myid == main_node)
	dir_len = mpi_bcast(dir_len,1,MPI_INT,0,MPI_COMM_WORLD)[0]
	masterdir = mpi_bcast(masterdir,dir_len,MPI_CHAR,main_node,MPI_COMM_WORLD)
	masterdir = string.join(masterdir,"")
	if masterdir[-1] != DIR_DELIM:
		masterdir += DIR_DELIM
		
	global_def.LOGFILE =  os.path.join(masterdir, global_def.LOGFILE)
	print_program_start_information()
	

	# mpi_barrier(mpi_comm)
	# from mpi import mpi_finalize
	# mpi_finalize()
	# print "mpi finalize"
	# from sys import exit
	# exit()
		
	
	# send bdb_stack_location to all processes
	dir_len  = len(bdb_stack_location)*int(myid == main_node)
	dir_len = mpi_bcast(dir_len,1,MPI_INT,0,MPI_COMM_WORLD)[0]
	bdb_stack_location = mpi_bcast(bdb_stack_location,dir_len,MPI_CHAR,main_node,MPI_COMM_WORLD)
	bdb_stack_location = string.join(bdb_stack_location,"")

	iteration_start = get_latest_directory_increment_value(masterdir, "main")

	if (myid == main_node):
		if (iteration_start < iteration_start_default):
			ERROR('Starting iteration provided is greater than last iteration performed. Quiting program', 'sxviper', 1)
			error_status = 1
	if iteration_start_default!=0:
		iteration_start = iteration_start_default
	if (myid == main_node):
		if (number_of_rrr_viper_runs < iteration_start):
			ERROR('Please provide number of rviper runs (--n_rv_runs) greater than number of iterations already performed.', 'sxviper', 1)
			error_status = 1

	if_error_then_all_processes_exit_program(error_status)

	for rviper_iter in range(iteration_start, number_of_rrr_viper_runs + 1):
		if(myid == main_node):
			all_projs = EMData.read_images(bdb_stack_location + "_%03d"%(rviper_iter - 1))
			print "XXXXXXXXXXXXXXXXX"
			print "Number of projections (in loop): " + str(len(all_projs))
			print "XXXXXXXXXXXXXXXXX"
			subset = range(len(all_projs))
		else:
			all_projs = None
			subset = None

		runs_iter = get_latest_directory_increment_value(masterdir + NAME_OF_MAIN_DIR + "%03d"%rviper_iter, DIR_DELIM + NAME_OF_RUN_DIR, start_value=0) - 1
		no_of_viper_runs_analyzed_together = max(runs_iter + 2, no_of_viper_runs_analyzed_together_from_user_options)

		first_time_entering_the_loop_need_to_do_full_check_up = True
		while True:
			runs_iter += 1

			if not first_time_entering_the_loop_need_to_do_full_check_up:
				if runs_iter >= no_of_viper_runs_analyzed_together:
					break
			first_time_entering_the_loop_need_to_do_full_check_up = False

			this_run_is_NOT_complete = 0
			if (myid == main_node):
				independent_run_dir = masterdir + DIR_DELIM + NAME_OF_MAIN_DIR + ('%03d' + DIR_DELIM + NAME_OF_RUN_DIR + "%03d" + DIR_DELIM)%(rviper_iter, runs_iter)
				if run_get_already_processed_viper_runs:
					cmd = "{} {}".format("mkdir -p", masterdir + DIR_DELIM + NAME_OF_MAIN_DIR + ('%03d' + DIR_DELIM)%(rviper_iter)); cmdexecute(cmd)
					cmd = "{} {}".format("rm -rf", independent_run_dir); cmdexecute(cmd)
					cmd = "{} {}".format("cp -r", get_already_processed_viper_runs() + " " +  independent_run_dir); cmdexecute(cmd)

				if os.path.exists(independent_run_dir + "log.txt") and (string_found_in_file("Finish VIPER2", independent_run_dir + "log.txt")):
					this_run_is_NOT_complete = 0
				else:
					this_run_is_NOT_complete = 1
					cmd = "{} {}".format("rm -rf", independent_run_dir); cmdexecute(cmd)
					cmd = "{} {}".format("mkdir -p", independent_run_dir); cmdexecute(cmd)

				this_run_is_NOT_complete = mpi_bcast(this_run_is_NOT_complete,1,MPI_INT,main_node,MPI_COMM_WORLD)[0]
				dir_len = len(independent_run_dir)
				dir_len = mpi_bcast(dir_len,1,MPI_INT,main_node,MPI_COMM_WORLD)[0]
				independent_run_dir = mpi_bcast(independent_run_dir,dir_len,MPI_CHAR,main_node,MPI_COMM_WORLD)
				independent_run_dir = string.join(independent_run_dir,"")
			else:
				this_run_is_NOT_complete = mpi_bcast(this_run_is_NOT_complete,1,MPI_INT,main_node,MPI_COMM_WORLD)[0]
				dir_len = 0
				independent_run_dir = ""
				dir_len = mpi_bcast(dir_len,1,MPI_INT,main_node,MPI_COMM_WORLD)[0]
				independent_run_dir = mpi_bcast(independent_run_dir,dir_len,MPI_CHAR,main_node,MPI_COMM_WORLD)
				independent_run_dir = string.join(independent_run_dir,"")

			if this_run_is_NOT_complete:
				mpi_barrier(MPI_COMM_WORLD)

				if independent_run_dir[-1] != DIR_DELIM:
					independent_run_dir += DIR_DELIM

				log.prefix = independent_run_dir

				options.user_func = user_functions.factory[options.function]

				# for debugging purposes
				#if (myid == main_node):
					#cmd = "{} {}".format("cp ~/log.txt ", independent_run_dir)
					#cmdexecute(cmd)
					#cmd = "{} {}{}".format("cp ~/paramdir/params$(mycounter ccc).txt ", independent_run_dir, "param%03d.txt"%runs_iter)
					#cmd = "{} {}{}".format("cp ~/paramdir/params$(mycounter ccc).txt ", independent_run_dir, "params.txt")
					#cmdexecute(cmd)

				if (myid == main_node):
					store_value_of_simple_vars_in_json_file(masterdir + 'program_state_stack.json', locals(), exclude_list_of_vars=["usage"], 
						vars_that_will_show_only_size = ["subset"])
					store_value_of_simple_vars_in_json_file(masterdir + 'program_state_stack.json', options.__dict__, write_or_append='a')

				# mpi_barrier(mpi_comm)
				# from mpi import mpi_finalize
				# mpi_finalize()
				# print "mpi finalize"
				# from sys import exit
				# exit()

				out_params, out_vol, out_peaks = multi_shc(all_projs, subset, no_of_shc_runs_analyzed_together, options,
				mpi_comm=mpi_comm, log=log, ref_vol=ref_vol)

				# end of: if this_run_is_NOT_complete:

			if runs_iter >= (no_of_viper_runs_analyzed_together_from_user_options - 1):
				increment_for_current_iteration = identify_outliers(myid, main_node, rviper_iter,
				no_of_viper_runs_analyzed_together, no_of_viper_runs_analyzed_together_from_user_options, masterdir,
				bdb_stack_location, outlier_percentile, criterion_name, outlier_index_threshold_method, angle_threshold)

				if increment_for_current_iteration == MUST_END_PROGRAM_THIS_ITERATION:
					break

				no_of_viper_runs_analyzed_together += increment_for_current_iteration

		# end of independent viper loop

		calculate_volumes_after_rotation_and_save_them(options, rviper_iter, masterdir, bdb_stack_location, myid,
		mpi_size, no_of_viper_runs_analyzed_together, no_of_viper_runs_analyzed_together_from_user_options)

		if increment_for_current_iteration == MUST_END_PROGRAM_THIS_ITERATION:
			if (myid == main_node):
				print "RVIPER found a core set of stable projections for the current RVIPER iteration (%d), the maximum angle difference between corresponding projections from different VIPER volumes is less than %.2f. Finishing."%(rviper_iter, ANGLE_ERROR_THRESHOLD)
			break
	else:
		if (myid == main_node):
			print "After running the last iteration (%d), RVIPER did not find a set of projections with the maximum angle difference between corresponding projections from different VIPER volumes less than %.2f Finishing."%(rviper_iter, ANGLE_ERROR_THRESHOLD)
		
			
	# end of RVIPER loop

	#mpi_finalize()
	#sys.exit()

	mpi_barrier(MPI_COMM_WORLD)
	mpi_finalize()
Example #8
0
def cml_find_structure2(Prj, Ori, Rot, outdir, outname, maxit, first_zero, flag_weights, myid, main_node, number_of_proc):
	from projection import cml_export_progress, cml_disc, cml_export_txtagls
	import time, sys
	from random import shuffle,random

	from mpi import MPI_FLOAT, MPI_INT, MPI_SUM, MPI_COMM_WORLD
	from mpi import mpi_reduce, mpi_bcast, mpi_barrier

	# global vars
	global g_i_prj, g_n_prj, g_n_anglst, g_anglst, g_d_psi, g_debug, g_n_lines, g_seq

	# list of free orientation
	ocp = [-1] * g_n_anglst

	if first_zero:
		listprj = range(1, g_n_prj)
		ocp[0]  = 0 
	else:   listprj = range(g_n_prj)

	# to stop when the solution oscillates
	period_disc = [0, 0, 0]
	period_ct   = 0
	period_th   = 2
	#if not flag_weights:   weights = [1.0] * g_n_lines

	# iteration loop
	for ite in xrange(maxit):
		#print ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>    ite = ", ite, "   myid = ", myid
		t_start = time.time()

		# loop over i prj
		change = False
		tlistprj = listprj[:]
		shuffle(tlistprj)
		nnn = len(tlistprj)
		tlistprj = mpi_bcast(tlistprj, nnn, MPI_INT, main_node, MPI_COMM_WORLD)
		tlistprj = map(int, tlistprj)
		"""
		if(ite>1 and ite%5 == 0  and ite<140):
			if(myid == main_node):
				for i in xrange(0,len(tlistprj),5):
					ind          = 4*i
					Ori[ind]      =  360.*random()
					Ori[ind+1]    =  180.*random()
					Ori[ind+2]    =  360.*random()
					Ori[ind+3]    =  -1
				for i in xrange(len(tlistprj)):
					ind          = 4*i
					Ori[ind+3]    = float(Ori[ind+3])
			nnn = len(Ori)
			Ori = mpi_bcast(Ori, nnn, MPI_FLOAT, main_node, MPI_COMM_WORLD)
			Ori = map(float, Ori)
			for i in xrange(len(tlistprj)):
				ind          = 4*i
				Ori[ind+3]    = int(Ori[ind+3])
		"""

		for iprj in tlistprj:
			#print "**********************************  iprj = ", iprj, g_n_anglst

			# Store current the current orientation
			ind          = 4*iprj
			store_phi    = Ori[ind]
			store_theta  = Ori[ind+1]
			store_psi    = Ori[ind+2]
			cur_agl      = Ori[ind+3]
			if cur_agl  != -1: ocp[cur_agl] = -1

			# prepare active index of cml for weighting in order to earn time later
			iw = [0] * (g_n_prj - 1)
			c  = 0
			ct = 0
			for i in xrange(g_n_prj):
				for j in xrange(i+1, g_n_prj):
					if i == iprj or j == iprj:
						iw[ct] = c
						ct += 1
					c += 1

			# loop over all angles
			best_disc_list = [0]*g_n_anglst
			best_psi_list  = [0]*g_n_anglst
			for iagl in xrange(myid, g_n_anglst, number_of_proc):
				# if orientation is free
				if ocp[iagl] == -1:
					# assign new orientation
					Ori[ind]   = g_anglst[iagl][0]
					Ori[ind+1] = g_anglst[iagl][1]
					Rot        = Util.cml_update_rot(Rot, iprj, Ori[ind], Ori[ind+1], 0.0)
					# weights
					if flag_weights:
						cml = Util.cml_line_in3d(Ori, g_seq, g_n_prj, g_n_lines)
						weights = Util.cml_weights(cml)
						mw  = max(weights)
						for i in xrange(g_n_lines): weights[i]  = mw - weights[i]
						sw = sum(weights)
						if sw == 0:
							weights = [6.28 / float(g_n_lines)] * g_n_lines
						else:
							for i in xrange(g_n_lines):
								weights[i] /= sw
								weights[i] *= weights[i]

					# spin all psi
					com = Util.cml_line_insino(Rot, iprj, g_n_prj)
					if flag_weights:
						res = Util.cml_spin_psi(Prj, com, weights, iprj, iw, g_n_psi, g_d_psi, g_n_prj)
					else:
						res = Util.cml_spin_psi_now(Prj, com, iprj, iw, g_n_psi, g_d_psi, g_n_prj)

					# select the best
					best_disc_list[iagl] = res[0]
					best_psi_list[iagl]  = res[1]

					if g_debug: cml_export_progress(outdir, ite, iprj, iagl, res[1], res[0], 'progress')
				else:
					if g_debug: cml_export_progress(outdir, ite, iprj, iagl, -1, -1, 'progress')
			best_disc_list = mpi_reduce(best_disc_list, g_n_anglst, MPI_FLOAT, MPI_SUM, main_node, MPI_COMM_WORLD)
			best_psi_list = mpi_reduce(best_psi_list, g_n_anglst, MPI_FLOAT, MPI_SUM, main_node, MPI_COMM_WORLD)

			best_psi = -1
			best_iagl = -1

			if myid == main_node:
				best_disc = 1.0e20
				for iagl in xrange(g_n_anglst):
					if best_disc_list[iagl] > 0.0 and best_disc_list[iagl] < best_disc:
						best_disc = best_disc_list[iagl]
						best_psi = best_psi_list[iagl]
						best_iagl = iagl
			best_psi = mpi_bcast(best_psi, 1, MPI_FLOAT, main_node, MPI_COMM_WORLD)
			best_iagl = mpi_bcast(best_iagl, 1, MPI_INT, main_node, MPI_COMM_WORLD)
			best_psi = float(best_psi[0])
			best_iagl =  int(best_iagl[0])
			
			#print "xxxxx myid = ", myid, "    best_psi = ", best_psi, "   best_ialg = ", best_iagl

			# if change, assign
			if best_iagl != cur_agl:
				ocp[best_iagl] = iprj
				Ori[ind]       = g_anglst[best_iagl][0] # phi
				Ori[ind+1]     = g_anglst[best_iagl][1] # theta
				Ori[ind+2]     = best_psi * g_d_psi     # psi
				Ori[ind+3]     = best_iagl              # index
				change = True
			else:
				if cur_agl != -1: ocp[cur_agl] = iprj
				Ori[ind]    = store_phi
				Ori[ind+1]  = store_theta
				Ori[ind+2]  = store_psi
				Ori[ind+3]  = cur_agl

			Rot = Util.cml_update_rot(Rot, iprj, Ori[ind], Ori[ind+1], Ori[ind+2])

			if g_debug: cml_export_progress(outdir, ite, iprj, best_iagl, best_psi * g_d_psi, best_disc, 'choose')

		# if one change, compute new full disc
		disc = cml_disc(Prj, Ori, Rot, flag_weights)

		# display in the progress file
		if myid == main_node:
			cml_export_txtagls(outdir, outname, Ori, disc, 'Ite: %03i' % (ite + 1))

		if not change: break

		# to stop when the solution oscillates
		period_disc.pop(0)
		period_disc.append(disc)
		if period_disc[0] == period_disc[2]:
			period_ct += 1
			if period_ct >= period_th and min(period_disc) == disc and myid == main_node:
				angfile = open(outdir + '/' + outname, 'a')
				angfile.write('\nSTOP SOLUTION UNSTABLE\n')
				angfile.write('Discrepancy period: %s\n' % period_disc)
				angfile.close()
				break
		else:
			period_ct = 0
		mpi_barrier(MPI_COMM_WORLD)

	return Ori, disc, ite
Example #9
0
def compare(compare_ref_free, outfile_repro,ref_free_output,yrng, xrng, rstep,nx,apix,ref_free_cutoff, nproc, myid, main_node):

	from alignment      import   Numrinit, ringwe,  Applyws
	from random	 import   seed, randint
	from utilities      import   get_params2D, set_params2D, model_circle, inverse_transform2, combine_params2
	from fundamentals   import   rot_shift2D
	from mpi	    import   MPI_COMM_WORLD, mpi_barrier, mpi_bcast, MPI_INT
	from statistics     import   fsc_mask
	from filter	 import   fit_tanh
	from numpy	  import   array	

	fout = "%s.hdf" % ref_free_output
	frc_out = "%s_frc" % ref_free_output
	res_out = "%s_res" % ref_free_output
	
	
	nima = EMUtil.get_image_count(compare_ref_free)
	image_start, image_end = MPI_start_end(nima, nproc, myid)
	ima = EMData()
	ima.read_image(compare_ref_free, image_start)
	
	last_ring = nx/2-2
	first_ring = 1
	mask = model_circle(last_ring, nx, nx)

	refi = []
	numref = EMUtil.get_image_count(outfile_repro)
	cnx = nx/2 +1
	cny = cnx
	
	mode = "F"
	numr = Numrinit(first_ring, last_ring, rstep, mode)	
	wr = ringwe(numr, mode)

	ima.to_zero()
	for j in xrange(numref):
		temp = EMData()
		temp.read_image(outfile_repro, j)
		#  even, odd, numer of even, number of images.  After frc, totav
		refi.append(temp)
	#  for each node read its share of data
	data = EMData.read_images(compare_ref_free, range(image_start, image_end))
	for im in xrange(image_start, image_end):
		data[im-image_start].set_attr('ID', im)
		set_params2D(data[im-image_start],[0,0,0,0,1])
	ringref = []
	for j in xrange(numref):
			refi[j].process_inplace("normalize.mask", {"mask":mask, "no_sigma":1}) # normalize reference images to N(0,1)
			cimage = Util.Polar2Dm(refi[j], cnx, cny, numr, mode)
			Util.Frngs(cimage, numr)
			Applyws(cimage, numr, wr)
			ringref.append(cimage)
	
	if myid == main_node: seed(1000)
	data_shift = []	
	frc = []
	res = []
	for im in xrange(image_start, image_end):
		alpha, sx, sy, mirror, scale = get_params2D(data[im-image_start])
		alphai, sxi, syi, scalei = inverse_transform2(alpha, sx, sy, 1.0)
		# normalize
		data[im-image_start].process_inplace("normalize.mask", {"mask":mask, "no_sigma":1}) # subtract average under the mask
		# align current image to the reference
		[angt, sxst, syst, mirrort, xiref, peakt] = Util.multiref_polar_ali_2d(data[im-image_start], ringref, xrng, yrng, 1, mode, numr, cnx+sxi, cny+syi)
		iref = int(xiref)
		[alphan, sxn, syn, mn] = combine_params2(0.0, -sxi, -syi, 0, angt, sxst, syst, (int)(mirrort))
		set_params2D(data[im-image_start], [alphan, sxn, syn, int(mn), scale])
		temp = rot_shift2D(data[im-image_start], alphan, sxn, syn, mn)
		temp.set_attr('assign',iref)
		tfrc = fsc_mask(temp,refi[iref],mask = mask)
		temp.set_attr('frc',tfrc[1])
		res = fit_tanh(tfrc)
		temp.set_attr('res',res)
		data_shift.append(temp)
	
	for node in xrange(nproc):
		if myid == node:
			for image in data_shift:
				image.write_image(fout,-1)
				refindex = image.get_attr('assign')
				refi[refindex].write_image(fout,-1)	
		mpi_barrier(MPI_COMM_WORLD)
	rejects = []
	if myid == main_node:
		a = EMData()
		index = 0
		frc = []
		res = []
		temp = []
		classes = []
		for im in xrange(nima):
			a.read_image(fout, index)
			frc.append(a.get_attr("frc"))
			if ref_free_cutoff != -1: classes.append(a.get_attr("class_ptcl_idxs"))
			tmp = a.get_attr("res")
			temp.append(tmp[0])
			res.append("%12f" %(apix/tmp[0]))
			res.append("\n")
			index = index + 2
		res_num = array(temp)
		mean_score = res_num.mean(axis=0)
		std_score = res_num.std(axis=0)
		std = std_score / 2
		if ref_free_cutoff !=-1:
			cutoff = mean_score - std * ref_free_cutoff
			reject = res_num < cutoff
			index = 0
			for i in reject:
				if i: rejects.extend(classes[index])
				index = index + 1
			rejects.sort()
			length = mpi_bcast(len(rejects),1,MPI_INT,main_node, MPI_COMM_WORLD)	
			rejects = mpi_bcast(rejects,length , MPI_INT, main_node, MPI_COMM_WORLD)
		del a
		fout_frc = open(frc_out,'w')
		fout_res = open(res_out,'w')
		fout_res.write("".join(res))
		temp = zip(*frc)
		datstrings = []
		for i in temp:
			for j in i:
				datstrings.append("  %12f" % (j))
			datstrings.append("\n")
		fout_frc.write("".join(datstrings))
		fout_frc.close()
	
	del refi		
	del ringref
	return rejects
Example #10
0
def ali3d_MPI(stack, ref_vol, outdir, maskfile = None, ir = 1, ou = -1, rs = 1, 
	    xr = "4 2 2 1", yr = "-1", ts = "1 1 0.5 0.25", delta = "10 6 4 4", an = "-1",
	    center = 0, maxit = 5, term = 95, CTF = False, fourvar = False, snr = 1.0,  ref_a = "S", sym = "c1", 
	    sort=True, cutoff=999.99, pix_cutoff="0", two_tail=False, model_jump="1 1 1 1 1", restart=False, save_half=False,
	    protos=None, oplane=None, lmask=-1, ilmask=-1, findseam=False, vertstep=None, hpars="-1", hsearch="73.0 170.0",
	    full_output = False, compare_repro = False, compare_ref_free = "-1", ref_free_cutoff= "-1 -1 -1 -1",
	    wcmask = None, debug = False, recon_pad = 4):

	from alignment      import Numrinit, prepare_refrings
	from utilities      import model_circle, get_image, drop_image, get_input_from_string
	from utilities      import bcast_list_to_all, bcast_number_to_all, reduce_EMData_to_root, bcast_EMData_to_all 
	from utilities      import send_attr_dict
	from utilities      import get_params_proj, file_type
	from fundamentals   import rot_avg_image
	import os
	import types
	from utilities      import print_begin_msg, print_end_msg, print_msg
	from mpi	    import mpi_bcast, mpi_comm_size, mpi_comm_rank, MPI_FLOAT, MPI_COMM_WORLD, mpi_barrier, mpi_reduce
	from mpi	    import mpi_reduce, MPI_INT, MPI_SUM, mpi_finalize
	from filter	 import filt_ctf
	from projection     import prep_vol, prgs
	from statistics     import hist_list, varf3d_MPI, fsc_mask
	from numpy	  import array, bincount, array2string, ones

	number_of_proc = mpi_comm_size(MPI_COMM_WORLD)
	myid	   = mpi_comm_rank(MPI_COMM_WORLD)
	main_node = 0
	if myid == main_node:
		if os.path.exists(outdir):  ERROR('Output directory exists, please change the name and restart the program', "ali3d_MPI", 1)
		os.mkdir(outdir)
	mpi_barrier(MPI_COMM_WORLD)

	if debug:
		from time import sleep
		while not os.path.exists(outdir):
			print  "Node ",myid,"  waiting..."
			sleep(5)

		info_file = os.path.join(outdir, "progress%04d"%myid)
		finfo = open(info_file, 'w')
	else:
		finfo = None
	mjump = get_input_from_string(model_jump)
	xrng	= get_input_from_string(xr)
	if  yr == "-1":  yrng = xrng
	else	  :  yrng = get_input_from_string(yr)
	step	= get_input_from_string(ts)
	delta       = get_input_from_string(delta)
	ref_free_cutoff = get_input_from_string(ref_free_cutoff)	
	pix_cutoff = get_input_from_string(pix_cutoff)
	
	lstp = min(len(xrng), len(yrng), len(step), len(delta))
	if an == "-1":
		an = [-1] * lstp
	else:
		an = get_input_from_string(an)
	# make sure pix_cutoff is set for all iterations
	if len(pix_cutoff)<lstp:
		for i in xrange(len(pix_cutoff),lstp):
			pix_cutoff.append(pix_cutoff[-1])
	# don't waste time on sub-pixel alignment for low-resolution ang incr
	for i in range(len(step)):
		if (delta[i] > 4 or delta[i] == -1) and step[i] < 1:
			step[i] = 1

	first_ring  = int(ir)
	rstep       = int(rs)
	last_ring   = int(ou)
	max_iter    = int(maxit)
	center      = int(center)

	nrefs   = EMUtil.get_image_count( ref_vol )
	nmasks = 0
	if maskfile:
		# read number of masks within each maskfile (mc)
		nmasks   = EMUtil.get_image_count( maskfile )
		# open masks within maskfile (mc)
		maskF   = EMData.read_images(maskfile, xrange(nmasks))
	vol     = EMData.read_images(ref_vol, xrange(nrefs))
	nx      = vol[0].get_xsize()

	## make sure box sizes are the same
	if myid == main_node:
		im=EMData.read_images(stack,[0])
		bx = im[0].get_xsize()
		if bx!=nx:
			print_msg("Error: Stack box size (%i) differs from initial model (%i)\n"%(bx,nx))
			sys.exit()
		del im,bx
	
	# for helical processing:
	helicalrecon = False
	if protos is not None or hpars != "-1" or findseam is True:
		helicalrecon = True
		# if no out-of-plane param set, use 5 degrees
		if oplane is None:
			oplane=5.0
	if protos is not None:
		proto = get_input_from_string(protos)
		if len(proto) != nrefs:
			print_msg("Error: insufficient protofilament numbers supplied")
			sys.exit()
	if hpars != "-1":
		hpars = get_input_from_string(hpars)
		if len(hpars) != 2*nrefs:
			print_msg("Error: insufficient helical parameters supplied")
			sys.exit()
	## create helical parameter file for helical reconstruction
	if helicalrecon is True and myid == main_node:
		from hfunctions import createHpar
		# create initial helical parameter files
		dp=[0]*nrefs
		dphi=[0]*nrefs
		vdp=[0]*nrefs
		vdphi=[0]*nrefs
		for iref in xrange(nrefs):
			hpar = os.path.join(outdir,"hpar%02d.spi"%(iref))
			params = False
			if hpars != "-1":
				# if helical parameters explicitly given, set twist & rise
				params = [float(hpars[iref*2]),float(hpars[(iref*2)+1])]
			dp[iref],dphi[iref],vdp[iref],vdphi[iref] = createHpar(hpar,proto[iref],params,vertstep)

	# get values for helical search parameters
	hsearch = get_input_from_string(hsearch)
	if len(hsearch) != 2:
		print_msg("Error: specify outer and inner radii for helical search")
		sys.exit()

	if last_ring < 0 or last_ring > int(nx/2)-2 :	last_ring = int(nx/2) - 2

	if myid == main_node:
	#	import user_functions
	#	user_func = user_functions.factory[user_func_name]

		print_begin_msg("ali3d_MPI")
		print_msg("Input stack		 : %s\n"%(stack))
		print_msg("Reference volume	    : %s\n"%(ref_vol))	
		print_msg("Output directory	    : %s\n"%(outdir))
		if nmasks > 0:
			print_msg("Maskfile (number of masks)  : %s (%i)\n"%(maskfile,nmasks))
		print_msg("Inner radius		: %i\n"%(first_ring))
		print_msg("Outer radius		: %i\n"%(last_ring))
		print_msg("Ring step		   : %i\n"%(rstep))
		print_msg("X search range	      : %s\n"%(xrng))
		print_msg("Y search range	      : %s\n"%(yrng))
		print_msg("Translational step	  : %s\n"%(step))
		print_msg("Angular step		: %s\n"%(delta))
		print_msg("Angular search range	: %s\n"%(an))
		print_msg("Maximum iteration	   : %i\n"%(max_iter))
		print_msg("Center type		 : %i\n"%(center))
		print_msg("CTF correction	      : %s\n"%(CTF))
		print_msg("Signal-to-Noise Ratio       : %f\n"%(snr))
		print_msg("Reference projection method : %s\n"%(ref_a))
		print_msg("Symmetry group	      : %s\n"%(sym))
		print_msg("Fourier padding for 3D      : %i\n"%(recon_pad))
		print_msg("Number of reference models  : %i\n"%(nrefs))
		print_msg("Sort images between models  : %s\n"%(sort))
		print_msg("Allow images to jump	: %s\n"%(mjump))
		print_msg("CC cutoff standard dev      : %f\n"%(cutoff))
		print_msg("Two tail cutoff	     : %s\n"%(two_tail))
		print_msg("Termination pix error       : %f\n"%(term))
		print_msg("Pixel error cutoff	  : %s\n"%(pix_cutoff))
		print_msg("Restart		     : %s\n"%(restart))
		print_msg("Full output		 : %s\n"%(full_output))
		print_msg("Compare reprojections       : %s\n"%(compare_repro))
		print_msg("Compare ref free class avgs : %s\n"%(compare_ref_free))
		print_msg("Use cutoff from ref free    : %s\n"%(ref_free_cutoff))
		if protos:
			print_msg("Protofilament numbers	: %s\n"%(proto))
			print_msg("Using helical search range   : %s\n"%hsearch) 
		if findseam is True:
			print_msg("Using seam-based reconstruction\n")
		if hpars != "-1":
			print_msg("Using hpars		  : %s\n"%hpars)
		if vertstep != None:
			print_msg("Using vertical step    : %.2f\n"%vertstep)
		if save_half is True:
			print_msg("Saving even/odd halves\n")
		for i in xrange(100) : print_msg("*")
		print_msg("\n\n")
	if maskfile:
		if type(maskfile) is types.StringType: mask3D = get_image(maskfile)
		else:				  mask3D = maskfile
	else: mask3D = model_circle(last_ring, nx, nx, nx)

	numr	= Numrinit(first_ring, last_ring, rstep, "F")
	mask2D  = model_circle(last_ring,nx,nx) - model_circle(first_ring,nx,nx)

	fscmask = model_circle(last_ring,nx,nx,nx)
	if CTF:
		from filter	 import filt_ctf
	from reconstruction_rjh import rec3D_MPI_noCTF

	if myid == main_node:
		active = EMUtil.get_all_attributes(stack, 'active')
		list_of_particles = []
		for im in xrange(len(active)):
			if active[im]:  list_of_particles.append(im)
		del active
		nima = len(list_of_particles)
	else:
		nima = 0
	total_nima = bcast_number_to_all(nima, source_node = main_node)

	if myid != main_node:
		list_of_particles = [-1]*total_nima
	list_of_particles = bcast_list_to_all(list_of_particles, source_node = main_node)

	image_start, image_end = MPI_start_end(total_nima, number_of_proc, myid)

	# create a list of images for each node
	list_of_particles = list_of_particles[image_start: image_end]
	nima = len(list_of_particles)
	if debug:
		finfo.write("image_start, image_end: %d %d\n" %(image_start, image_end))
		finfo.flush()

	data = EMData.read_images(stack, list_of_particles)

	t_zero = Transform({"type":"spider","phi":0,"theta":0,"psi":0,"tx":0,"ty":0})
	transmulti = [[t_zero for i in xrange(nrefs)] for j in xrange(nima)]

	for iref,im in ((iref,im) for iref in xrange(nrefs) for im in xrange(nima)):
		if nrefs == 1:
			transmulti[im][iref] = data[im].get_attr("xform.projection")
		else:
			# if multi models, keep track of eulers for all models
			try:
				transmulti[im][iref] = data[im].get_attr("eulers_txty.%i"%iref)
			except:
				data[im].set_attr("eulers_txty.%i"%iref,t_zero)

	scoremulti = [[0.0 for i in xrange(nrefs)] for j in xrange(nima)] 
	pixelmulti = [[0.0 for i in xrange(nrefs)] for j in xrange(nima)] 
	ref_res = [0.0 for x in xrange(nrefs)] 
	apix = data[0].get_attr('apix_x')

	# for oplane parameter, create cylindrical mask
	if oplane is not None and myid == main_node:
		from hfunctions import createCylMask
		cmaskf=os.path.join(outdir, "mask3D_cyl.mrc")
		mask3D = createCylMask(data,ou,lmask,ilmask,cmaskf)
		# if finding seam of helix, create wedge masks
		if findseam is True:
			wedgemask=[]
			for pf in xrange(nrefs):
				wedgemask.append(EMData())
			# wedgemask option
			if wcmask is not None:
				wcmask = get_input_from_string(wcmask)
				if len(wcmask) != 3:
					print_msg("Error: wcmask option requires 3 values: x y radius")
					sys.exit()

	# determine if particles have helix info:
	try:
		data[0].get_attr('h_angle')
		original_data = []
		boxmask = True
		from hfunctions import createBoxMask
	except:
		boxmask = False

	# prepare particles
	for im in xrange(nima):
		data[im].set_attr('ID', list_of_particles[im])
		data[im].set_attr('pix_score', int(0))
		if CTF:
			# only phaseflip particles, not full CTF correction
			ctf_params = data[im].get_attr("ctf")
			st = Util.infomask(data[im], mask2D, False)
			data[im] -= st[0]
			data[im] = filt_ctf(data[im], ctf_params, sign = -1, binary=1)
			data[im].set_attr('ctf_applied', 1)
		# for window mask:
		if boxmask is True:
			h_angle = data[im].get_attr("h_angle")
			original_data.append(data[im].copy())
			bmask = createBoxMask(nx,apix,ou,lmask,h_angle)
			data[im]*=bmask
			del bmask
	if debug:
		finfo.write( '%d loaded  \n' % nima )
		finfo.flush()
	if myid == main_node:
		# initialize data for the reference preparation function
		ref_data = [ mask3D, max(center,0), None, None, None, None ]
		# for method -1, switch off centering in user function

	from time import time	

	#  this is needed for gathering of pixel errors
	disps = []
	recvcount = []
	disps_score = []
	recvcount_score = []
	for im in xrange(number_of_proc):
		if( im == main_node ):  
			disps.append(0)
			disps_score.append(0)
		else:		  
			disps.append(disps[im-1] + recvcount[im-1])
			disps_score.append(disps_score[im-1] + recvcount_score[im-1])
		ib, ie = MPI_start_end(total_nima, number_of_proc, im)
		recvcount.append( ie - ib )
		recvcount_score.append((ie-ib)*nrefs)

	pixer = [0.0]*nima
	cs = [0.0]*3
	total_iter = 0
	volodd = EMData.read_images(ref_vol, xrange(nrefs))
	voleve = EMData.read_images(ref_vol, xrange(nrefs))

	if restart:
		# recreate initial volumes from alignments stored in header
		itout = "000_00"
		for iref in xrange(nrefs):
			if(nrefs == 1):
				modout = ""
			else:
				modout = "_model_%02d"%(iref)	
	
			if(sort): 
				group = iref
				for im in xrange(nima):
					imgroup = data[im].get_attr('group')
					if imgroup == iref:
						data[im].set_attr('xform.projection',transmulti[im][iref])
			else: 
				group = int(999) 
				for im in xrange(nima):
					data[im].set_attr('xform.projection',transmulti[im][iref])
			
			fscfile = os.path.join(outdir, "fsc_%s%s"%(itout,modout))

			vol[iref], fscc, volodd[iref], voleve[iref] = rec3D_MPI_noCTF(data, sym, fscmask, fscfile, myid, main_node, index = group, npad = recon_pad)

			if myid == main_node:
				if helicalrecon:
					from hfunctions import processHelicalVol

					vstep=None
					if vertstep is not None:
						vstep=(vdp[iref],vdphi[iref])
					print_msg("Old rise and twist for model %i     : %8.3f, %8.3f\n"%(iref,dp[iref],dphi[iref]))
					hvals=processHelicalVol(vol[iref],voleve[iref],volodd[iref],iref,outdir,itout,
								dp[iref],dphi[iref],apix,hsearch,findseam,vstep,wcmask)
					(vol[iref],voleve[iref],volodd[iref],dp[iref],dphi[iref],vdp[iref],vdphi[iref])=hvals
					print_msg("New rise and twist for model %i     : %8.3f, %8.3f\n"%(iref,dp[iref],dphi[iref]))
					# get new FSC from symmetrized half volumes
					fscc = fsc_mask( volodd[iref], voleve[iref], mask3D, rstep, fscfile)
				else:
					vol[iref].write_image(os.path.join(outdir, "vol_%s.hdf"%itout),-1)

				if save_half is True:
					volodd[iref].write_image(os.path.join(outdir, "volodd_%s.hdf"%itout),-1)
					voleve[iref].write_image(os.path.join(outdir, "voleve_%s.hdf"%itout),-1)

				if nmasks > 1:
					# Read mask for multiplying
					ref_data[0] = maskF[iref]
				ref_data[2] = vol[iref]
				ref_data[3] = fscc
				#  call user-supplied function to prepare reference image, i.e., center and filter it
				vol[iref], cs,fl = ref_ali3d(ref_data)
				vol[iref].write_image(os.path.join(outdir, "volf_%s.hdf"%(itout)),-1)
				if (apix == 1):
					res_msg = "Models filtered at spatial frequency of:\t"
					res = fl
				else:
					res_msg = "Models filtered at resolution of:       \t"
					res = apix / fl	
				ares = array2string(array(res), precision = 2)
				print_msg("%s%s\n\n"%(res_msg,ares))	
			
			bcast_EMData_to_all(vol[iref], myid, main_node)
			# write out headers, under MPI writing has to be done sequentially
			mpi_barrier(MPI_COMM_WORLD)

	# projection matching	
	for N_step in xrange(lstp):
		terminate = 0
		Iter = -1
 		while(Iter < max_iter-1 and terminate == 0):
			Iter += 1
			total_iter += 1
			itout = "%03g_%02d" %(delta[N_step], Iter)
			if myid == main_node:
				print_msg("ITERATION #%3d, inner iteration #%3d\nDelta = %4.1f, an = %5.2f, xrange = %5.2f, yrange = %5.2f, step = %5.2f\n\n"%(N_step, Iter, delta[N_step], an[N_step], xrng[N_step],yrng[N_step],step[N_step]))
	
			for iref in xrange(nrefs):
				if myid == main_node: start_time = time()
				volft,kb = prep_vol( vol[iref] )

				## constrain projections to out of plane parameter
				theta1 = None
				theta2 = None
				if oplane is not None:
					theta1 = 90-oplane
					theta2 = 90+oplane
				refrings = prepare_refrings( volft, kb, nx, delta[N_step], ref_a, sym, numr, MPI=True, phiEqpsi = "Minus", initial_theta=theta1, delta_theta=theta2)
				
				del volft,kb

				if myid== main_node:
					print_msg( "Time to prepare projections for model %i: %s\n" % (iref, legibleTime(time()-start_time)) )
					start_time = time()
	
				for im in xrange( nima ):
					data[im].set_attr("xform.projection", transmulti[im][iref])
					if an[N_step] == -1:
						t1, peak, pixer[im] = proj_ali_incore(data[im],refrings,numr,xrng[N_step],yrng[N_step],step[N_step],finfo)
					else:
						t1, peak, pixer[im] = proj_ali_incore_local(data[im],refrings,numr,xrng[N_step],yrng[N_step],step[N_step],an[N_step],finfo)
					#data[im].set_attr("xform.projection"%iref, t1)
					if nrefs > 1: data[im].set_attr("eulers_txty.%i"%iref,t1)
					scoremulti[im][iref] = peak
					from pixel_error import max_3D_pixel_error
					# t1 is the current param, t2 is old
					t2 = transmulti[im][iref]
					pixelmulti[im][iref] = max_3D_pixel_error(t1,t2,numr[-3])
					transmulti[im][iref] = t1

				if myid == main_node:
					print_msg("Time of alignment for model %i: %s\n"%(iref, legibleTime(time()-start_time)))
					start_time = time()


			# gather scoring data from all processors
			from mpi import mpi_gatherv
			scoremultisend = sum(scoremulti,[])
			pixelmultisend = sum(pixelmulti,[])
			tmp = mpi_gatherv(scoremultisend,len(scoremultisend),MPI_FLOAT, recvcount_score, disps_score, MPI_FLOAT, main_node,MPI_COMM_WORLD)
			tmp1 = mpi_gatherv(pixelmultisend,len(pixelmultisend),MPI_FLOAT, recvcount_score, disps_score, MPI_FLOAT, main_node,MPI_COMM_WORLD)
			tmp = mpi_bcast(tmp,(total_nima * nrefs), MPI_FLOAT,0, MPI_COMM_WORLD)
			tmp1 = mpi_bcast(tmp1,(total_nima * nrefs), MPI_FLOAT,0, MPI_COMM_WORLD)
			tmp = map(float,tmp)
			tmp1 = map(float,tmp1)
			score = array(tmp).reshape(-1,nrefs)
			pixelerror = array(tmp1).reshape(-1,nrefs) 
			score_local = array(scoremulti)
			mean_score = score.mean(axis=0)
			std_score = score.std(axis=0)
			cut = mean_score - (cutoff * std_score)
			cut2 = mean_score + (cutoff * std_score)
			res_max = score_local.argmax(axis=1)
			minus_cc = [0.0 for x in xrange(nrefs)]
			minus_pix = [0.0 for x in xrange(nrefs)]
			minus_ref = [0.0 for x in xrange(nrefs)]
			
			#output pixel errors
			if(myid == main_node):
				from statistics import hist_list
				lhist = 20
				pixmin = pixelerror.min(axis=1)
				region, histo = hist_list(pixmin, lhist)
				if(region[0] < 0.0):  region[0] = 0.0
				print_msg("Histogram of pixel errors\n      ERROR       number of particles\n")
				for lhx in xrange(lhist):
					print_msg(" %10.3f     %7d\n"%(region[lhx], histo[lhx]))
				# Terminate if 95% within 1 pixel error
				im = 0
				for lhx in xrange(lhist):
					if(region[lhx] > 1.0): break
					im += histo[lhx]
				print_msg( "Percent of particles with pixel error < 1: %f\n\n"% (im/float(total_nima)*100))
				term_cond = float(term)/100
				if(im/float(total_nima) > term_cond): 
					terminate = 1
					print_msg("Terminating internal loop\n")
				del region, histo
			terminate = mpi_bcast(terminate, 1, MPI_INT, 0, MPI_COMM_WORLD)
			terminate = int(terminate[0])	
			
			for im in xrange(nima):
				if(sort==False):
					data[im].set_attr('group',999)
				elif (mjump[N_step]==1):
					data[im].set_attr('group',int(res_max[im]))
				
				pix_run = data[im].get_attr('pix_score')			
				if (pix_cutoff[N_step]==1 and (terminate==1 or Iter == max_iter-1)):
					if (pixelmulti[im][int(res_max[im])] > 1):
						data[im].set_attr('pix_score',int(777))

				if (score_local[im][int(res_max[im])]<cut[int(res_max[im])]) or (two_tail and score_local[im][int(res_max[im])]>cut2[int(res_max[im])]):
					data[im].set_attr('group',int(888))
					minus_cc[int(res_max[im])] = minus_cc[int(res_max[im])] + 1

				if(pix_run == 777):
					data[im].set_attr('group',int(777))
					minus_pix[int(res_max[im])] = minus_pix[int(res_max[im])] + 1

				if (compare_ref_free != "-1") and (ref_free_cutoff[N_step] != -1) and (total_iter > 1):
					id = data[im].get_attr('ID')
					if id in rejects:
						data[im].set_attr('group',int(666))
						minus_ref[int(res_max[im])] = minus_ref[int(res_max[im])] + 1	
						
				
			minus_cc_tot = mpi_reduce(minus_cc,nrefs,MPI_FLOAT,MPI_SUM,0,MPI_COMM_WORLD)	
			minus_pix_tot = mpi_reduce(minus_pix,nrefs,MPI_FLOAT,MPI_SUM,0,MPI_COMM_WORLD) 	
			minus_ref_tot = mpi_reduce(minus_ref,nrefs,MPI_FLOAT,MPI_SUM,0,MPI_COMM_WORLD)
			if (myid == main_node):
				if(sort):
					tot_max = score.argmax(axis=1)
					res = bincount(tot_max)
				else:
					res = ones(nrefs) * total_nima
				print_msg("Particle distribution:	     \t\t%s\n"%(res*1.0))
				afcut1 = res - minus_cc_tot
				afcut2 = afcut1 - minus_pix_tot
				afcut3 = afcut2 - minus_ref_tot
				print_msg("Particle distribution after cc cutoff:\t\t%s\n"%(afcut1))
				print_msg("Particle distribution after pix cutoff:\t\t%s\n"%(afcut2)) 
				print_msg("Particle distribution after ref cutoff:\t\t%s\n\n"%(afcut3)) 
					
						
			res = [0.0 for i in xrange(nrefs)]
			for iref in xrange(nrefs):
				if(center == -1):
					from utilities      import estimate_3D_center_MPI, rotate_3D_shift
					dummy=EMData()
					cs[0], cs[1], cs[2], dummy, dummy = estimate_3D_center_MPI(data, total_nima, myid, number_of_proc, main_node)				
					cs = mpi_bcast(cs, 3, MPI_FLOAT, main_node, MPI_COMM_WORLD)
					cs = [-float(cs[0]), -float(cs[1]), -float(cs[2])]
					rotate_3D_shift(data, cs)


				if(sort): 
					group = iref
					for im in xrange(nima):
						imgroup = data[im].get_attr('group')
						if imgroup == iref:
							data[im].set_attr('xform.projection',transmulti[im][iref])
				else: 
					group = int(999) 
					for im in xrange(nima):
						data[im].set_attr('xform.projection',transmulti[im][iref])
				if(nrefs == 1):
					modout = ""
				else:
					modout = "_model_%02d"%(iref)	
				
				fscfile = os.path.join(outdir, "fsc_%s%s"%(itout,modout))
				vol[iref], fscc, volodd[iref], voleve[iref] = rec3D_MPI_noCTF(data, sym, fscmask, fscfile, myid, main_node, index=group, npad=recon_pad)
	
				if myid == main_node:
					print_msg("3D reconstruction time for model %i: %s\n"%(iref, legibleTime(time()-start_time)))
					start_time = time()
	
				# Compute Fourier variance
				if fourvar:
					outvar = os.path.join(outdir, "volVar_%s.hdf"%(itout))
					ssnr_file = os.path.join(outdir, "ssnr_%s"%(itout))
					varf = varf3d_MPI(data, ssnr_text_file=ssnr_file, mask2D=None, reference_structure=vol[iref], ou=last_ring, rw=1.0, npad=1, CTF=None, sign=1, sym=sym, myid=myid)
					if myid == main_node:
						print_msg("Time to calculate 3D Fourier variance for model %i: %s\n"%(iref, legibleTime(time()-start_time)))
						start_time = time()
						varf = 1.0/varf
						varf.write_image(outvar,-1)
				else:  varf = None

				if myid == main_node:
					if helicalrecon:
						from hfunctions import processHelicalVol

						vstep=None
						if vertstep is not None:
							vstep=(vdp[iref],vdphi[iref])
						print_msg("Old rise and twist for model %i     : %8.3f, %8.3f\n"%(iref,dp[iref],dphi[iref]))
						hvals=processHelicalVol(vol[iref],voleve[iref],volodd[iref],iref,outdir,itout,
									dp[iref],dphi[iref],apix,hsearch,findseam,vstep,wcmask)
						(vol[iref],voleve[iref],volodd[iref],dp[iref],dphi[iref],vdp[iref],vdphi[iref])=hvals
						print_msg("New rise and twist for model %i     : %8.3f, %8.3f\n"%(iref,dp[iref],dphi[iref]))
						# get new FSC from symmetrized half volumes
						fscc = fsc_mask( volodd[iref], voleve[iref], mask3D, rstep, fscfile)

						print_msg("Time to search and apply helical symmetry for model %i: %s\n\n"%(iref, legibleTime(time()-start_time)))
						start_time = time()
					else:
						vol[iref].write_image(os.path.join(outdir, "vol_%s.hdf"%(itout)),-1)

					if save_half is True:
						volodd[iref].write_image(os.path.join(outdir, "volodd_%s.hdf"%(itout)),-1)
						voleve[iref].write_image(os.path.join(outdir, "voleve_%s.hdf"%(itout)),-1)

					if nmasks > 1:
						# Read mask for multiplying
						ref_data[0] = maskF[iref]
					ref_data[2] = vol[iref]
					ref_data[3] = fscc
					ref_data[4] = varf
					#  call user-supplied function to prepare reference image, i.e., center and filter it
					vol[iref], cs,fl = ref_ali3d(ref_data)
					vol[iref].write_image(os.path.join(outdir, "volf_%s.hdf"%(itout)),-1)
					if (apix == 1):
						res_msg = "Models filtered at spatial frequency of:\t"
						res[iref] = fl
					else:
						res_msg = "Models filtered at resolution of:       \t"
						res[iref] = apix / fl	
	
				del varf
				bcast_EMData_to_all(vol[iref], myid, main_node)
				
				if compare_ref_free != "-1": compare_repro = True
				if compare_repro:
					outfile_repro = comp_rep(refrings, data, itout, modout, vol[iref], group, nima, nx, myid, main_node, outdir)
					mpi_barrier(MPI_COMM_WORLD)
					if compare_ref_free != "-1":
						ref_free_output = os.path.join(outdir,"ref_free_%s%s"%(itout,modout))
						rejects = compare(compare_ref_free, outfile_repro,ref_free_output,yrng[N_step], xrng[N_step], rstep,nx,apix,ref_free_cutoff[N_step], number_of_proc, myid, main_node)

			# retrieve alignment params from all processors
			par_str = ['xform.projection','ID','group']
			if nrefs > 1:
				for iref in xrange(nrefs):
					par_str.append('eulers_txty.%i'%iref)

			if myid == main_node:
				from utilities import recv_attr_dict
				recv_attr_dict(main_node, stack, data, par_str, image_start, image_end, number_of_proc)
				
			else:	send_attr_dict(main_node, data, par_str, image_start, image_end)

			if myid == main_node:
				ares = array2string(array(res), precision = 2)
				print_msg("%s%s\n\n"%(res_msg,ares))
				dummy = EMData()
				if full_output:
					nimat = EMUtil.get_image_count(stack)
					output_file = os.path.join(outdir, "paramout_%s"%itout)
					foutput = open(output_file, 'w')
					for im in xrange(nimat):
						# save the parameters for each of the models
						outstring = ""
						dummy.read_image(stack,im,True)
						param3d = dummy.get_attr('xform.projection')
						g = dummy.get_attr("group")
						# retrieve alignments in EMAN-format
						pE = param3d.get_params('eman')
						outstring += "%f\t%f\t%f\t%f\t%f\t%i\n" %(pE["az"], pE["alt"], pE["phi"], pE["tx"], pE["ty"],g)
						foutput.write(outstring)
					foutput.close()
				del dummy
			mpi_barrier(MPI_COMM_WORLD)


#	mpi_finalize()	

	if myid == main_node: print_end_msg("ali3d_MPI")
def program_state_stack(full_current_state, frame_info, file_name_of_saved_state=None, last_call="", force_starting_execution = False):

	"""

	When used it needs: from inspect import currentframe, getframeinfo

	This function is used for restarting time consuming data processing programs/steps from the last saved point.

	This static variable must be defined before the first call:
	program_state_stack.PROGRAM_STATE_VARIABLES = {"local_var_i", "local_var_j", "local_var_h", "local_var_g"}
	It contains local variables at any level of the stack that define uniquely the state(flow/logic) of the program.

	It is assumed that the processed data is saved at each step and it is independent from the variables that uniquely define
	the state(flow/logic) of the program. All the variables that are used in more than one step must be calculated before
	the "if program_state_stack(locals(), getframeinfo(currentframe())):" call. It is assumed that they are not time consuming.
	Passing processed data from one step to the next is done only through files.

	First call needs to contain "file_name_of_saved_state".
	Then, the next calls are "if program_state_stack(locals(), getframeinfo(currentframe())):" to demarcate the blocks of
	processing steps that take a long time (hours/days).

	Example of initialization:
	program_state_stack.PROGRAM_STATE_VARIABLES = {"local_var_i", "local_var_j", "local_var_h", "local_var_g"}
	program_state_stack(locals(), getframeinfo(currentframe()), "my_state.json")

	Then regular usage in the data analysis program:

	if program_state_stack(locals(), getframeinfo(currentframe())):
		data_analysis_1()
	if program_state_stack(locals(), getframeinfo(currentframe())):
		data_analysis_2()


	"""
	
	import os

	from traceback import extract_stack
	from mpi import mpi_comm_rank, mpi_bcast, MPI_COMM_WORLD, MPI_INT
	from inspect import currentframe, getframeinfo
	

	def get_current_stack_info():
		return [[x[0], x[2]] for x in extract_stack()[:-2]]

	START_EXECUTING_FALSE = 0
	START_EXECUTING_TRUE = 1
	START_EXECUTING_ONLY_ONE_TIME_THEN_REVERT = 2

	current_state = dict()
	for var in program_state_stack.PROGRAM_STATE_VARIABLES & set(full_current_state) :
		current_state[var] =  full_current_state[var]

	if "restart_location_title" in program_state_stack.__dict__:
		location_in_program = frame_info.filename + "___" + program_state_stack.restart_location_title
		del program_state_stack.restart_location_title
	else:
		location_in_program = frame_info.filename + "___" + str(frame_info.lineno) + "_" + last_call

	current_state["location_in_program"] = location_in_program

	current_stack = get_current_stack_info()

	error_status = 0

	# not a real while, an if with the possibility of jumping with break
	while mpi_comm_rank(MPI_COMM_WORLD) == 0:
		if "file_name_of_saved_state" not in program_state_stack.__dict__:
			if type(file_name_of_saved_state) != type(""):
				error_status = ("Must provide the file name of saved state as a string in the first call of the function!", getframeinfo(currentframe()))
				break

			program_state_stack.file_name_of_saved_state = os.getcwd() + os.sep + file_name_of_saved_state
			program_state_stack.counter = 0
			program_state_stack.track_stack = get_current_stack_info()
			program_state_stack.track_state = [dict() for i in xrange(len(program_state_stack.track_stack))]
			program_state_stack.track_state[-1] = current_state

			file_name_of_saved_state_contains_information = False
			if (os.path.exists(file_name_of_saved_state)):
				statinfo = os.stat(file_name_of_saved_state)
				file_name_of_saved_state_contains_information = statinfo.st_size > 0
			if file_name_of_saved_state_contains_information:
				program_state_stack.saved_stack, \
				program_state_stack.saved_state = restore_program_stack_and_state(file_name_of_saved_state)
				program_state_stack.start_executing = START_EXECUTING_FALSE
			else:
				# check to see if file can be created
				f = open(file_name_of_saved_state, "w"); f.close()
				program_state_stack.start_executing = START_EXECUTING_TRUE
		else:
			program_state_stack.counter += 1
			# print "counter: ", program_state_stack.counter
			if program_state_stack.counter == program_state_stack.CCC:
				# error_status = ("Reached %d calls!"%program_state_stack.CCC, getframeinfo(currentframe()))
				error_status = 1
				break

			if program_state_stack.start_executing == START_EXECUTING_ONLY_ONE_TIME_THEN_REVERT:
				program_state_stack.start_executing = START_EXECUTING_FALSE

			# correct track_state to reflect track_stack
			for i in xrange(len(current_stack)):
				if i < len(program_state_stack.track_state):
					if program_state_stack.track_stack[i] != current_stack[i]:
						program_state_stack.track_state[i] = dict()
				else:
					program_state_stack.track_state.append(dict())
			program_state_stack.track_state[i] = current_state

			# correct track_stack to reflect current_stack
			program_state_stack.track_stack = current_stack

			# delete additional elements in track_state so that size of track_state is the same as current_stack
			program_state_stack.track_state[len(current_stack):len(program_state_stack.track_state)] = []

			if program_state_stack.start_executing == START_EXECUTING_TRUE or last_call != "" or force_starting_execution:
				store_program_state(program_state_stack.file_name_of_saved_state, program_state_stack.track_state, current_stack)
				program_state_stack.start_executing = START_EXECUTING_TRUE
			else:
				if len(program_state_stack.saved_state) >= len(current_stack):
					for i in range(len(program_state_stack.saved_state)):
						if i < len(current_stack):
							if program_state_stack.track_stack[i] == current_stack[i]:
								if program_state_stack.track_state[i] == program_state_stack.saved_state[i]:
									continue
							break
						else:
							program_state_stack.start_executing = START_EXECUTING_ONLY_ONE_TIME_THEN_REVERT
							# print "////////////////////////////"
							# print "Entering function: ", location_in_program
							# print "////////////////////////////"
							break
					else:
						program_state_stack.start_executing = START_EXECUTING_TRUE
						# print "////////////////////////////"
						# print "Start executing: ", location_in_program
						# print "////////////////////////////"
		break
	else:
		## needs to be initialized for all processes except master
		program_state_stack.start_executing = START_EXECUTING_FALSE

	if_error_then_all_processes_exit_program(error_status)

	program_state_stack.start_executing = mpi_bcast(program_state_stack.start_executing, 1, MPI_INT, 0, MPI_COMM_WORLD)
	program_state_stack.start_executing = int(program_state_stack.start_executing[0])

	return program_state_stack.start_executing
Example #12
0
def resample( prjfile, outdir, bufprefix, nbufvol, nvol, seedbase,\
		delta, d, snr, CTF, npad,\
		MPI, myid, ncpu, verbose = 0 ):
	from   utilities import even_angles
	from   random import seed, jumpahead, shuffle
	import os
	from   sys import exit

	nprj = EMUtil.get_image_count( prjfile )

	if MPI:
		from mpi import mpi_barrier, MPI_COMM_WORLD

		if myid == 0:
			if os.path.exists(outdir):  nx = 1
			else:  nx = 0
		else:  nx = 0
		ny = bcast_number_to_all(nx, source_node = 0)
		if ny == 1:  ERROR('Output directory exists, please change the name and restart the program', "resample", 1,myid)
		mpi_barrier(MPI_COMM_WORLD)

		if myid == 0:
			os.mkdir(outdir)
		mpi_barrier(MPI_COMM_WORLD)
	else:
		if os.path.exists(outdir):
			ERROR('Output directory exists, please change the name and restart the program', "resample", 1,0)
		os.mkdir(outdir)

	if(verbose == 1):  finfo=open( os.path.join(outdir, "progress%04d.txt" % myid), "w" )
	else:              finfo = None
	#print  " before evenangles",myid
	from utilities import getvec
	from numpy import array, reshape
	refa = even_angles(delta)
	nrefa = len(refa)
	refnormal = zeros((nrefa,3),'float32')

	tetref = [0.0]*nrefa
	for i in xrange(nrefa):
	        tr = getvec( refa[i][0], refa[i][1] )
	        for j in xrange(3):  refnormal[i][j] = tr[j]
		tetref[i] = refa[i][1]
	del refa
	vct = array([0.0]*(3*nprj),'float32')
	if myid == 0:
		print  " will read ",myid
	        tr = EMUtil.get_all_attributes(prjfile,'xform.projection')
		tetprj = [0.0]*nprj
	        for i in xrange(nprj):
			temp = tr[i].get_params("spider")
			tetprj[i] = temp["theta"]
			if(tetprj[i] > 90.0): tetprj[i]  = 180.0 - tetprj[i] 
	        	vct[3*i+0] = tr[i].at(2,0)
	        	vct[3*i+1] = tr[i].at(2,1)
	        	vct[3*i+2] = tr[i].at(2,2)
	        del tr
	else:
		tetprj = [0.0]*nprj
	#print "  READ ",myid
	if  MPI:
		#print " will bcast",myid
		from mpi import mpi_bcast, MPI_FLOAT, MPI_COMM_WORLD
		vct = mpi_bcast(vct,len(vct),MPI_FLOAT,0,MPI_COMM_WORLD)
		from utilities import  bcast_list_to_all
		tetprj = bcast_list_to_all(tetprj, myid, 0)
	#print  "  reshape  ",myid
	vct = reshape(vct,(nprj,3))
	assignments = [[] for i in xrange(nrefa)]
	dspn = 1.25*delta
	for k in xrange(nprj):
	        best_s = -1.0
	        best_i = -1
	        for i in xrange( nrefa ):
			if(abs(tetprj[k] - tetref[i]) <= dspn):
				s = abs(refnormal[i][0]*vct[k][0] + refnormal[i][1]*vct[k][1] + refnormal[i][2]*vct[k][2])
				if s > best_s:
					best_s = s
					best_i = i
	        assignments[best_i].append(k)
	am = len(assignments[0])
	mufur = 1.0/am
	for i in xrange(1,len(assignments)):
		ti = len(assignments[i])
		am = min(am, ti)
		if(ti>0):  mufur += 1.0/ti

	del tetprj,tetref

	dp = 1.0 - d  # keep that many in each direction
	keep = int(am*dp +0.5)
	mufur = keep*nrefa/(1.0 - mufur*keep/float(nrefa))
	if myid == 0:
		print  " Number of projections ",nprj,".  Number of reference directions ",nrefa,",  multiplicative factor for the variance ",mufur
		print  " Minimum number of assignments ",am,"  Number of projections used per stratum ", keep," Number of projections in resampled structure ",int(am*dp +0.5)*nrefa
		if am <2 or am == keep:
			print "incorrect settings"
			exit()  #                                         FIX

	if(seedbase < 1):
		seed()
		jumpahead(17*myid+123)
	else:
		seed(seedbase)
		jumpahead(17*myid+123)

	volfile = os.path.join(outdir, "bsvol%04d.hdf" % myid)
	from random import randint
	niter = nvol/ncpu/nbufvol
	for kiter in xrange(niter):
		if(verbose == 1):
			finfo.write( "Iteration %d: \n" % kiter )
			finfo.flush()

		iter_start = time()
		#  the following has to be converted to resample  mults=1 means take given projection., mults=0 means omit

		mults = [ [0]*nprj for i in xrange(nbufvol) ]
		for i in xrange(nbufvol):
			for l in xrange(nrefa):
				mass = assignments[l][:]
				shuffle(mass)
				mass = mass[:keep]
				mass.sort()
				#print  l, "  *  ",mass
				for k in xrange(keep):
					mults[i][mass[k]] = 1
			'''
			lout = []
			for l in xrange(len(mults[i])):
				if mults[i][l] == 1:  lout.append(l)
			write_text_file(lout, os.path.join(outdir, "list%04d_%03d.txt" %(i, myid)))
			del lout
			'''

		del mass

		rectors, fftvols, wgtvols = resample_prepare( prjfile, nbufvol, snr, CTF, npad )
		resample_insert( bufprefix, fftvols, wgtvols, mults, CTF, npad, finfo )
		del mults
		resample_finish( rectors, fftvols, wgtvols, volfile, kiter, nprj, finfo )
		rectors = None
		fftvols = None
		wgtvols = None
		if(verbose == 1):
			finfo.write( "time for iteration: %10.3f\n" % (time() - iter_start) )
			finfo.flush()
Example #13
0
from Numeric import *
import mpi
import sys
import math

#print "before",len(sys.argv),sys.argv
sys.argv = mpi.mpi_init(len(sys.argv), sys.argv)
#print "after ",len(sys.argv),sys.argv
myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD)
numnodes = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD)
print "hello from ", myid, " of ", numnodes

color = myid % 2
new_comm = mpi.mpi_comm_split(mpi.MPI_COMM_WORLD, color, myid)
new_id = mpi.mpi_comm_rank(new_comm)
new_nodes = mpi.mpi_comm_size(new_comm)
zero_one = -1
if new_id == 0:
    zero_one = color

zero_one = mpi.mpi_bcast(zero_one, 1, mpi.MPI_INT, 0, new_comm)
if zero_one == 0:
    print myid, " part of even processor communicator ", new_id

if zero_one == 1:
    print myid, " part of odd processor communicator ", new_id

print "old_id=", myid, "new_id=", new_id

mpi.mpi_finalize()
Example #14
0
##### start up remote tasks ####
toRun = getcwd() + "/worker.py"
print mpi.mpi_get_processor_name(), "starting", toRun
newcom1 = mpi.mpi_comm_spawn(toRun, "from_P_", copies, mpi.MPI_INFO_NULL, 0,
                             mpi.MPI_COMM_WORLD)
errors = mpi.mpi_array_of_errcodes()
print "errors=", errors
newcom1Size = mpi.mpi_comm_size(newcom1)
print "newcom1Size", newcom1Size, " yes it is strange but it should be 1"

##### bcast ####
x = array(([1, 2, 3, 4]), "i")
count = 4
print "head starting bcast", x
junk = mpi.mpi_bcast(x, count, mpi.MPI_INT, mpi.MPI_ROOT, newcom1)
print "head did bcast"

##### scatter ####
scat = array([10, 20, 30], "i")
junk = mpi.mpi_scatter(scat, 1, mpi.MPI_INT, 1, mpi.MPI_INT, mpi.MPI_ROOT,
                       newcom1)

##### send/recv ####
for i in range(0, copies):
    k = (i + 1) * 100
    mpi.mpi_send(k, 1, mpi.MPI_INT, i, 1234, newcom1)
    back = mpi.mpi_recv(1, mpi.MPI_INT, i, 5678, newcom1)
    print "from ", i, back

##### reduce ####
Example #15
0

sys.argv = mpi.mpi_init(len(sys.argv), sys.argv)
myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD)
numprocs = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD)
parent = mpi.mpi_comm_get_parent()
parentSize = mpi.mpi_comm_size(parent)
print "parentSize", parentSize

tod = stamp()
s = sys.argv[1] + "%2.2d" % myid
print "hello from python worker", myid, " writing to ", s

x = array([5, 3, 4, 2], 'i')
print "starting bcast"
buffer = mpi.mpi_bcast(x, 4, mpi.MPI_INT, 0, parent)
out = open(s, "w")
out.write(str(buffer))
out.write(tod + "\n")
out.close()

print myid, " got ", buffer
junk = mpi.mpi_scatter(x, 1, mpi.MPI_INT, 1, mpi.MPI_INT, 0, parent)
print myid, " got scatter ", junk

back = mpi.mpi_recv(1, mpi.MPI_INT, 0, 1234, parent)
back[0] = back[0] + 1
mpi.mpi_send(back, 1, mpi.MPI_INT, 0, 5678, parent)

dummy = myid
final = mpi.mpi_reduce(dummy, 1, mpi.MPI_INT, mpi.MPI_SUM, 0, parent)