Example #1
0
def npartitions(n, verbose=False):
    """
    Calculate the partition function P(n), i.e. the number of ways that
    n can be written as a sum of positive integers.

    P(n) is computed using the Hardy-Ramanujan-Rademacher formula [1]_.


    The correctness of this implementation has been tested through 10**10.

    Examples
    ========

    >>> from sympy.ntheory import npartitions
    >>> npartitions(25)
    1958

    References
    ==========

    .. [1] http://mathworld.wolfram.com/PartitionFunctionP.html

    """
    n = int(n)
    if n < 0:
        return 0
    if n <= 5:
        return [1, 1, 2, 3, 5, 7][n]
    if '_factor' not in globals():
        _pre()
    # Estimate number of bits in p(n). This formula could be tidied
    pbits = int((
        math.pi*(2*n/3.)**0.5 -
        math.log(4*n))/math.log(10) + 1) * \
        math.log(10, 2)
    prec = p = int(pbits * 1.1 + 100)
    s = fzero
    M = max(6, int(0.24 * n**0.5 + 4))
    if M > 10**5:
        raise ValueError("Input too big")  # Corresponds to n > 1.7e11
    sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
    sqrt8 = mpf_sqrt(from_int(8), p)
    for q in range(1, M):
        a = _a(n, q, p)
        d = _d(n, q, p, sq23pi, sqrt8)
        s = mpf_add(s, mpf_mul(a, d), prec)
        if verbose:
            print("step", q, "of", M, to_str(a, 10), to_str(d, 10))
        # On average, the terms decrease rapidly in magnitude.
        # Dynamically reducing the precision greatly improves
        # performance.
        p = bitcount(abs(to_int(d))) + 50
    return int(to_int(mpf_add(s, fhalf, prec)))
Example #2
0
def npartitions(n, verbose=False):
    """
    Calculate the partition function P(n), i.e. the number of ways that
    n can be written as a sum of positive integers.

    P(n) is computed using the Hardy-Ramanujan-Rademacher formula [1]_.


    The correctness of this implementation has been tested through 10**10.

    Examples
    ========

    >>> from sympy.ntheory import npartitions
    >>> npartitions(25)
    1958

    References
    ==========

    .. [1] http://mathworld.wolfram.com/PartitionFunctionP.html

    """
    n = int(n)
    if n < 0:
        return 0
    if n <= 5:
        return [1, 1, 2, 3, 5, 7][n]
    if '_factor' not in globals():
        _pre()
    # Estimate number of bits in p(n). This formula could be tidied
    pbits = int((
        math.pi*(2*n/3.)**0.5 -
        math.log(4*n))/math.log(10) + 1) * \
        math.log(10, 2)
    prec = p = int(pbits*1.1 + 100)
    s = fzero
    M = max(6, int(0.24*n**0.5 + 4))
    if M > 10**5:
        raise ValueError("Input too big") # Corresponds to n > 1.7e11
    sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
    sqrt8 = mpf_sqrt(from_int(8), p)
    for q in range(1, M):
        a = _a(n, q, p)
        d = _d(n, q, p, sq23pi, sqrt8)
        s = mpf_add(s, mpf_mul(a, d), prec)
        if verbose:
            print("step", q, "of", M, to_str(a, 10), to_str(d, 10))
        # On average, the terms decrease rapidly in magnitude.
        # Dynamically reducing the precision greatly improves
        # performance.
        p = bitcount(abs(to_int(d))) + 50
    return int(to_int(mpf_add(s, fhalf, prec)))
Example #3
0
def _d(n, j, prec, sq23pi, sqrt8):
    """
    Compute the sinh term in the outer sum of the HRR formula.
    The constants sqrt(2/3*pi) and sqrt(8) must be precomputed.
    """
    j = from_int(j)
    pi = mpf_pi(prec)
    a = mpf_div(sq23pi, j, prec)
    b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec)
    c = mpf_sqrt(b, prec)
    ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec)
    D = mpf_div(mpf_sqrt(j, prec), mpf_mul(mpf_mul(sqrt8, b), pi), prec)
    E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec)
    return mpf_mul(D, E)
Example #4
0
def _d(n, j, prec, sq23pi, sqrt8):
    """
    Compute the sinh term in the outer sum of the HRR formula.
    The constants sqrt(2/3*pi) and sqrt(8) must be precomputed.
    """
    j = from_int(j)
    pi = mpf_pi(prec)
    a = mpf_div(sq23pi, j, prec)
    b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec)
    c = mpf_sqrt(b, prec)
    ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec)
    D = mpf_div(mpf_sqrt(j, prec), mpf_mul(mpf_mul(sqrt8, b), pi), prec)
    E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec)
    return mpf_mul(D, E)
Example #5
0
def npartitions(n):
    """Calculate the partition function P(n), i.e. the number of ways that
    n can be written as a sum of positive integers.

    P(n) is computed using the Hardy-Ramanujan-Rademacher formula.

    The correctness of this implementation has been tested for 10**n
    up to n = 8.

    Examples
    ========

    >>> npartitions(25)
    1958

    References
    ==========

    * https://mathworld.wolfram.com/PartitionFunctionP.html

    """
    n = int(n)
    if n < 0:
        return 0
    if n <= 5:
        return [1, 1, 2, 3, 5, 7][n]
    # Estimate number of bits in p(n). This formula could be tidied
    pbits = int((math.pi*(2*n/3.)**0.5 - math.log(4*n))/math.log(10) + 1) * \
        math.log(10, 2)
    prec = p = int(pbits * 1.1 + 100)
    s = fzero
    M = max(6, int(0.24 * n**0.5 + 4))
    sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
    sqrt8 = mpf_sqrt(from_int(8), p)
    for q in range(1, M):
        a = _a(n, q, p)
        d = _d(n, q, p, sq23pi, sqrt8)
        s = mpf_add(s, mpf_mul(a, d), prec)
        debug('step', q, 'of', M, to_str(a, 10), to_str(d, 10))
        # On average, the terms decrease rapidly in magnitude. Dynamically
        # reducing the precision greatly improves performance.
        p = bitcount(abs(to_int(d))) + 50
    return int(to_int(mpf_add(s, fhalf, prec)))
Example #6
0
def npartitions(n):
    """Calculate the partition function P(n), i.e. the number of ways that
    n can be written as a sum of positive integers.

    P(n) is computed using the Hardy-Ramanujan-Rademacher formula.

    The correctness of this implementation has been tested for 10**n
    up to n = 8.

    Examples
    ========

    >>> npartitions(25)
    1958

    References
    ==========

    * http://mathworld.wolfram.com/PartitionFunctionP.html

    """
    n = int(n)
    if n < 0:
        return 0
    if n <= 5:
        return [1, 1, 2, 3, 5, 7][n]
    # Estimate number of bits in p(n). This formula could be tidied
    pbits = int((math.pi*(2*n/3.)**0.5 - math.log(4*n))/math.log(10) + 1) * \
        math.log(10, 2)
    prec = p = int(pbits*1.1 + 100)
    s = fzero
    M = max(6, int(0.24*n**0.5 + 4))
    sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
    sqrt8 = mpf_sqrt(from_int(8), p)
    for q in range(1, M):
        a = _a(n, q, p)
        d = _d(n, q, p, sq23pi, sqrt8)
        s = mpf_add(s, mpf_mul(a, d), prec)
        debug("step", q, "of", M, to_str(a, 10), to_str(d, 10))
        # On average, the terms decrease rapidly in magnitude. Dynamically
        # reducing the precision greatly improves performance.
        p = bitcount(abs(to_int(d))) + 50
    return int(to_int(mpf_add(s, fhalf, prec)))
Example #7
0
def evalf_pow(v, prec, options):

    target_prec = prec
    base, exp = v.args

    # We handle x**n separately. This has two purposes: 1) it is much
    # faster, because we avoid calling evalf on the exponent, and 2) it
    # allows better handling of real/imaginary parts that are exactly zero
    if exp.is_Integer:
        p = exp.p
        # Exact
        if not p:
            return fone, None, prec, None
        # Exponentiation by p magnifies relative error by |p|, so the
        # base must be evaluated with increased precision if p is large
        prec += int(math.log(abs(p), 2))
        re, im, re_acc, im_acc = evalf(base, prec + 5, options)
        # Real to integer power
        if re and not im:
            return mpf_pow_int(re, p, target_prec), None, target_prec, None
        # (x*I)**n = I**n * x**n
        if im and not re:
            z = mpf_pow_int(im, p, target_prec)
            case = p % 4
            if case == 0:
                return z, None, target_prec, None
            if case == 1:
                return None, z, None, target_prec
            if case == 2:
                return mpf_neg(z), None, target_prec, None
            if case == 3:
                return None, mpf_neg(z), None, target_prec
        # Zero raised to an integer power
        if not re:
            return None, None, None, None
        # General complex number to arbitrary integer power
        re, im = libmp.mpc_pow_int((re, im), p, prec)
        # Assumes full accuracy in input
        return finalize_complex(re, im, target_prec)

    # Pure square root
    if exp is S.Half:
        xre, xim, _, _ = evalf(base, prec + 5, options)
        # General complex square root
        if xim:
            re, im = libmp.mpc_sqrt((xre or fzero, xim), prec)
            return finalize_complex(re, im, prec)
        if not xre:
            return None, None, None, None
        # Square root of a negative real number
        if mpf_lt(xre, fzero):
            return None, mpf_sqrt(mpf_neg(xre), prec), None, prec
        # Positive square root
        return mpf_sqrt(xre, prec), None, prec, None

    # We first evaluate the exponent to find its magnitude
    # This determines the working precision that must be used
    prec += 10
    yre, yim, _, _ = evalf(exp, prec, options)
    # Special cases: x**0
    if not (yre or yim):
        return fone, None, prec, None

    ysize = fastlog(yre)
    # Restart if too big
    # XXX: prec + ysize might exceed maxprec
    if ysize > 5:
        prec += ysize
        yre, yim, _, _ = evalf(exp, prec, options)

    # Pure exponential function; no need to evalf the base
    if base is S.Exp1:
        if yim:
            re, im = libmp.mpc_exp((yre or fzero, yim), prec)
            return finalize_complex(re, im, target_prec)
        return mpf_exp(yre, target_prec), None, target_prec, None

    xre, xim, _, _ = evalf(base, prec + 5, options)
    # 0**y
    if not (xre or xim):
        return None, None, None, None

    # (real ** complex) or (complex ** complex)
    if yim:
        re, im = libmp.mpc_pow((xre or fzero, xim or fzero),
                               (yre or fzero, yim), target_prec)
        return finalize_complex(re, im, target_prec)
    # complex ** real
    if xim:
        re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec)
        return finalize_complex(re, im, target_prec)
    # negative ** real
    elif mpf_lt(xre, fzero):
        re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec)
        return finalize_complex(re, im, target_prec)
    # positive ** real
    else:
        return mpf_pow(xre, yre, target_prec), None, target_prec, None
Example #8
0
def _a(n, k, prec):
    """ Compute the inner sum in HRR formula [1]_

    References
    ==========

    .. [1] http://msp.org/pjm/1956/6-1/pjm-v6-n1-p18-p.pdf

    """
    if k == 1:
        return fone

    k1 = k
    e = 0
    p = _factor[k]
    while k1 % p == 0:
        k1 //= p
        e += 1
    k2 = k//k1 # k2 = p^e
    v = 1 - 24*n
    pi = mpf_pi(prec)

    if k1 == 1:
        # k  = p^e
        if p == 2:
            mod = 8*k
            v = mod + v % mod
            v = (v*pow(9, k - 1, mod)) % mod
            m = _sqrt_mod_prime_power(v, 2, e + 3)[0]
            arg = mpf_div(mpf_mul(
                from_int(4*m), pi, prec), from_int(mod), prec)
            return mpf_mul(mpf_mul(
                from_int((-1)**e*jacobi_symbol(m - 1, m)),
                mpf_sqrt(from_int(k), prec), prec),
                mpf_sin(arg, prec), prec)
        if p == 3:
            mod = 3*k
            v = mod + v % mod
            if e > 1:
                v = (v*pow(64, k//3 - 1, mod)) % mod
            m = _sqrt_mod_prime_power(v, 3, e + 1)[0]
            arg = mpf_div(mpf_mul(from_int(4*m), pi, prec),
                from_int(mod), prec)
            return mpf_mul(mpf_mul(
                from_int(2*(-1)**(e + 1)*legendre_symbol(m, 3)),
                mpf_sqrt(from_int(k//3), prec), prec),
                mpf_sin(arg, prec), prec)
        v = k + v % k
        if v % p == 0:
            if e == 1:
                return mpf_mul(
                    from_int(jacobi_symbol(3, k)),
                    mpf_sqrt(from_int(k), prec), prec)
            return fzero
        if not is_quad_residue(v, p):
            return fzero
        _phi = p**(e - 1)*(p - 1)
        v = (v*pow(576, _phi - 1, k))
        m = _sqrt_mod_prime_power(v, p, e)[0]
        arg = mpf_div(
            mpf_mul(from_int(4*m), pi, prec),
            from_int(k), prec)
        return mpf_mul(mpf_mul(
            from_int(2*jacobi_symbol(3, k)),
            mpf_sqrt(from_int(k), prec), prec),
            mpf_cos(arg, prec), prec)

    if p != 2 or e >= 3:
        d1, d2 = igcd(k1, 24), igcd(k2, 24)
        e = 24//(d1*d2)
        n1 = ((d2*e*n + (k2**2 - 1)//d1)*
            pow(e*k2*k2*d2, _totient[k1] - 1, k1)) % k1
        n2 = ((d1*e*n + (k1**2 - 1)//d2)*
            pow(e*k1*k1*d1, _totient[k2] - 1, k2)) % k2
        return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
    if e == 2:
        n1 = ((8*n + 5)*pow(128, _totient[k1] - 1, k1)) % k1
        n2 = (4 + ((n - 2 - (k1**2 - 1)//8)*(k1**2)) % 4) % 4
        return mpf_mul(mpf_mul(
            from_int(-1),
            _a(n1, k1, prec), prec),
            _a(n2, k2, prec))
    n1 = ((8*n + 1)*pow(32, _totient[k1] - 1, k1)) % k1
    n2 = (2 + (n - (k1**2 - 1)//8) % 2) % 2
    return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
Example #9
0
def _a(n, k, prec):
    """ Compute the inner sum in HRR formula [1]_

    References
    ==========

    .. [1] http://msp.org/pjm/1956/6-1/pjm-v6-n1-p18-p.pdf

    """
    if k == 1:
        return fone

    k1 = k
    e = 0
    p = _factor[k]
    while k1 % p == 0:
        k1 //= p
        e += 1
    k2 = k // k1  # k2 = p^e
    v = 1 - 24 * n
    pi = mpf_pi(prec)

    if k1 == 1:
        # k  = p^e
        if p == 2:
            mod = 8 * k
            v = mod + v % mod
            v = (v * pow(9, k - 1, mod)) % mod
            m = _sqrt_mod_prime_power(v, 2, e + 3)[0]
            arg = mpf_div(mpf_mul(from_int(4 * m), pi, prec), from_int(mod),
                          prec)
            return mpf_mul(
                mpf_mul(from_int((-1)**e * jacobi_symbol(m - 1, m)),
                        mpf_sqrt(from_int(k), prec), prec), mpf_sin(arg, prec),
                prec)
        if p == 3:
            mod = 3 * k
            v = mod + v % mod
            if e > 1:
                v = (v * pow(64, k // 3 - 1, mod)) % mod
            m = _sqrt_mod_prime_power(v, 3, e + 1)[0]
            arg = mpf_div(mpf_mul(from_int(4 * m), pi, prec), from_int(mod),
                          prec)
            return mpf_mul(
                mpf_mul(from_int(2 * (-1)**(e + 1) * legendre_symbol(m, 3)),
                        mpf_sqrt(from_int(k // 3), prec), prec),
                mpf_sin(arg, prec), prec)
        v = k + v % k
        if v % p == 0:
            if e == 1:
                return mpf_mul(from_int(jacobi_symbol(3, k)),
                               mpf_sqrt(from_int(k), prec), prec)
            return fzero
        if not is_quad_residue(v, p):
            return fzero
        _phi = p**(e - 1) * (p - 1)
        v = (v * pow(576, _phi - 1, k))
        m = _sqrt_mod_prime_power(v, p, e)[0]
        arg = mpf_div(mpf_mul(from_int(4 * m), pi, prec), from_int(k), prec)
        return mpf_mul(
            mpf_mul(from_int(2 * jacobi_symbol(3, k)),
                    mpf_sqrt(from_int(k), prec), prec), mpf_cos(arg, prec),
            prec)

    if p != 2 or e >= 3:
        d1, d2 = igcd(k1, 24), igcd(k2, 24)
        e = 24 // (d1 * d2)
        n1 = ((d2 * e * n + (k2**2 - 1) // d1) *
              pow(e * k2 * k2 * d2, _totient[k1] - 1, k1)) % k1
        n2 = ((d1 * e * n + (k1**2 - 1) // d2) *
              pow(e * k1 * k1 * d1, _totient[k2] - 1, k2)) % k2
        return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
    if e == 2:
        n1 = ((8 * n + 5) * pow(128, _totient[k1] - 1, k1)) % k1
        n2 = (4 + ((n - 2 - (k1**2 - 1) // 8) * (k1**2)) % 4) % 4
        return mpf_mul(mpf_mul(from_int(-1), _a(n1, k1, prec), prec),
                       _a(n2, k2, prec))
    n1 = ((8 * n + 1) * pow(32, _totient[k1] - 1, k1)) % k1
    n2 = (2 + (n - (k1**2 - 1) // 8) % 2) % 2
    return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
Example #10
0
def evalf_pow(v, prec, options):

    target_prec = prec
    base, exp = v.args

    # We handle x**n separately. This has two purposes: 1) it is much
    # faster, because we avoid calling evalf on the exponent, and 2) it
    # allows better handling of real/imaginary parts that are exactly zero
    if exp.is_Integer:
        p = exp.p
        # Exact
        if not p:
            return fone, None, prec, None
        # Exponentiation by p magnifies relative error by |p|, so the
        # base must be evaluated with increased precision if p is large
        prec += int(math.log(abs(p), 2))
        re, im, re_acc, im_acc = evalf(base, prec + 5, options)
        # Real to integer power
        if re and not im:
            return mpf_pow_int(re, p, target_prec), None, target_prec, None
        # (x*I)**n = I**n * x**n
        if im and not re:
            z = mpf_pow_int(im, p, target_prec)
            case = p % 4
            if case == 0:
                return z, None, target_prec, None
            if case == 1:
                return None, z, None, target_prec
            if case == 2:
                return mpf_neg(z), None, target_prec, None
            if case == 3:
                return None, mpf_neg(z), None, target_prec
        # Zero raised to an integer power
        if not re:
            return None, None, None, None
        # General complex number to arbitrary integer power
        re, im = libmp.mpc_pow_int((re, im), p, prec)
        # Assumes full accuracy in input
        return finalize_complex(re, im, target_prec)

    # Pure square root
    if exp is S.Half:
        xre, xim, _, _ = evalf(base, prec + 5, options)
        # General complex square root
        if xim:
            re, im = libmp.mpc_sqrt((xre or fzero, xim), prec)
            return finalize_complex(re, im, prec)
        if not xre:
            return None, None, None, None
        # Square root of a negative real number
        if mpf_lt(xre, fzero):
            return None, mpf_sqrt(mpf_neg(xre), prec), None, prec
        # Positive square root
        return mpf_sqrt(xre, prec), None, prec, None

    # We first evaluate the exponent to find its magnitude
    # This determines the working precision that must be used
    prec += 10
    yre, yim, _, _ = evalf(exp, prec, options)
    # Special cases: x**0
    if not (yre or yim):
        return fone, None, prec, None

    ysize = fastlog(yre)
    # Restart if too big
    # XXX: prec + ysize might exceed maxprec
    if ysize > 5:
        prec += ysize
        yre, yim, _, _ = evalf(exp, prec, options)

    # Pure exponential function; no need to evalf the base
    if base is S.Exp1:
        if yim:
            re, im = libmp.mpc_exp((yre or fzero, yim), prec)
            return finalize_complex(re, im, target_prec)
        return mpf_exp(yre, target_prec), None, target_prec, None

    xre, xim, _, _ = evalf(base, prec + 5, options)
    # 0**y
    if not (xre or xim):
        return None, None, None, None

    # (real ** complex) or (complex ** complex)
    if yim:
        re, im = libmp.mpc_pow(
            (xre or fzero, xim or fzero), (yre or fzero, yim),
            target_prec)
        return finalize_complex(re, im, target_prec)
    # complex ** real
    if xim:
        re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec)
        return finalize_complex(re, im, target_prec)
    # negative ** real
    elif mpf_lt(xre, fzero):
        re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec)
        return finalize_complex(re, im, target_prec)
    # positive ** real
    else:
        return mpf_pow(xre, yre, target_prec), None, target_prec, None