Example #1
0
def test():
    layers = [
        base_layer.DirectLayer((28, 28)),
        NeuronLayer(50, tf_neurons.Relu()),
        NeuronLayer(10, tf_neurons.SoftMax())
    ]
    # layers = [base_layer.DirectLayer((28, 28)), Conv2DPoolingLayer(32, (5, 5), (2, 2)), NeuronLayer(50, tf_neurons.Relu()),
    #           NeuronLayer(10, tf_neurons.SoftMax())]

    net = BaseNet(layers)
    # net._get_b()
    # net.save_params()
    train(net, 200, 64)
    print('after training:')
    net._get_b()
    net.load_params()
    net._get_b()
    print(net.test(mn.tf_valid_set()))
    # print('test before reset:{0}'.format(net.test_model()))
    # net.reset_params()
    #
    # print('test after reset:{0}'.format(net.test_model()))
    # net._get_b()
    # # train(net, 1000, 600, learning_rate=0.01)
    # net.load_params()
    # print('after loading:')
    # net._get_b()
    # print('load best test:{0}'.format(net.test_model()))
    print('done')
Example #2
0
def test():
    layers = [base_layer.DirectLayer((28, 28)), NeuronLayer(50, tf_neurons.Relu()),
              NeuronLayer(10, tf_neurons.SoftMax())]
    # layers = [base_layer.DirectLayer((28, 28)), Conv2DPoolingLayer(32, (5, 5), (2, 2)), NeuronLayer(50, tf_neurons.Relu()),
    #           NeuronLayer(10, tf_neurons.SoftMax())]

    net = BaseNet(layers)
    # net._get_b()
    # net.save_params()
    train(net, 200, 64)
    print('after training:')
    net._get_b()
    net.load_params()
    net._get_b()
    print(net.test(mn.tf_valid_set()))
    # print('test before reset:{0}'.format(net.test_model()))
    # net.reset_params()
    #
    # print('test after reset:{0}'.format(net.test_model()))
    # net._get_b()
    # # train(net, 1000, 600, learning_rate=0.01)
    # net.load_params()
    # print('after loading:')
    # net._get_b()
    # print('load best test:{0}'.format(net.test_model()))
    print('done')
Example #3
0
def train(net: BaseNet, n_epochs, batch_size=64, learning_rate=1e-3, auto_load_mnist=True, **kwargs):
    print('layers:{!r}'.format(net.layers))
    print('loading data sets...')
    if auto_load_mnist:

        train_set = mn.tf_train_set()
        valid_set = mn.tf_valid_set()
        test_set = mn.tf_test_set()
        # train_set = (mnist1.train.images, mnist1.train.labels)
        # valid_set = (mnist1.validation.images, mnist1.validation.labels)
        # test_set = (mnist1.test.images, mnist1.test.labels)
    else:
        train_set = kwargs['train_set']
        valid_set = kwargs['valid_set']
        test_set = kwargs['test_set']

    data_sets = (train_set, valid_set, test_set)
    # select custom cost/loss function
    net.train(data_sets, batch_size, n_epochs, learning_rate)
Example #4
0
def train(net: BaseNet,
          n_epochs,
          batch_size=64,
          learning_rate=1e-3,
          auto_load_mnist=True,
          **kwargs):
    print('layers:{!r}'.format(net.layers))
    print('loading data sets...')
    if auto_load_mnist:

        train_set = mn.tf_train_set()
        valid_set = mn.tf_valid_set()
        test_set = mn.tf_test_set()
        # train_set = (mnist1.train.images, mnist1.train.labels)
        # valid_set = (mnist1.validation.images, mnist1.validation.labels)
        # test_set = (mnist1.test.images, mnist1.test.labels)
    else:
        train_set = kwargs['train_set']
        valid_set = kwargs['valid_set']
        test_set = kwargs['test_set']

    data_sets = (train_set, valid_set, test_set)
    # select custom cost/loss function
    net.train(data_sets, batch_size, n_epochs, learning_rate)