Example #1
0
 def get_f_by_comp(self, V):
     V_ = V[0:V.shape[0] - 1, :]
     v = V[V.shape[0] - 1, :]
     g = inv(dot(transpose(V_), V_))
     a = dot(v, g)
     P = dot(a, transpose(V_))
     return P
Example #2
0
    def get_z(self, r):
        V = self.V[:, 0:r]
        Vt = transpose(V)
        U = dot(Vt, self.X)
        Z = dot(V, U)

        return Z
Example #3
0
 def describ_by_component(self, comp_ind):
     V = self.V[:, comp_ind]
     Vt = transpose(V)
     U = dot(Vt, self.X)
     Z = dot(V, U)
     t = self.ts_from_z(Z)
     return t
Example #4
0
 def get_v(self, X):
     C = dot((1 / (self.K)), dot(X, transpose(X)))
     V, _ = qr(C)
     eigV = eigvals(C)
     eigV = np.sort(eigV)[::-1]
     ind = np.where(eigV > 0)[0]
     r = len(ind)
     return V, r
Example #5
0
def preconditioned_conjugate_gradient(A, x0, b, preconditioner, max_iterations):
    # Calculate the FFT of the first column on the circular of A
    gA = precompute_g(A)

    # Store initial solution
    x = x0

    # Calculate initial residuals
    residual = b - fftmul(gA, x0)

    # Norm of the initial residual
    norm_residual0 = norm(residual, ord=2)

    # Calculate M based on the preconditioner and get its inverse
    Minv = inv(dot(preconditioner, preconditioner.T))

    # Initial z vector
    z = dot(Minv, residual)

    # z^T*z
    zr = inner(z, residual)

    # Calculate initial direction
    direction = z

    for  i in range(max_iterations):
        if i % 10000 == 0:
            logging.info('Preconditioned Conjugate Gradient iteration {}, dimenstion {}'.format(i, A.shape[0]))

        # If residuals are too small, terminate the algorithm
        if norm(residual, ord=2)/norm_residual0 < 0.0000001:
            logging.info('Preconditioned Conjugate Gradient converged after {} iterations'.format(i))
            break

        # Store previous residuals and direction
        old_residual = residual
        old_direction = direction
        old_z  = z
        old_zr = zr

        # Caclulate new update factor
        Ar = fftmul(gA, old_direction)
        a = old_zr / inner(old_direction, Ar)

        # Update solution
        x = x + a*old_direction

        # Update residuals
        residual = old_residual - a*Ar

        z = dot(Minv, residual)

        # Update direction
        zr = inner(z, residual)
        b = zr / old_zr
        direction = z + b*old_direction

    return x, i
Example #6
0
 def get_f(self, r):
     if r > self.R:
         r = self.R
     V_ = self.V[0:self.V.shape[0] - 1, 0:r]
     v = self.V[self.V.shape[0] - 1, 0:r]
     g = inv(dot(transpose(V_), V_))
     a = dot(v, g)
     P = dot(a, transpose(V_))
     return P
Example #7
0
    def draw_lines(self):
        if self.mode == 0:
            self.geom = self.geometry()
            self.geom = [
                np.array(self.geom[i:i + 3] + [1])
                for i in range(0, len(self.geom), 3)
            ]
            self.geom = reduce(lambda l, v: l + [v, v], self.geom, [])
            self.geom.pop(0)
            self.geom.pop()
            self.count = len(self.geom)

            self.mode = 1

        p = glGetFloatv(GL_TRANSPOSE_PROJECTION_MATRIX)
        m = glGetFloatv(GL_TRANSPOSE_MODELVIEW_MATRIX)

        ng = []
        for i in range(0, len(self.geom), 2):
            v = la.dot(m, self.geom[i])
            w = la.dot(m, self.geom[i + 1])

            def multlistcut(mat, vec):
                vec = la.dot(mat, vec)
                vec /= vec[3]
                return list(vec)[0:3]

            if v[2] < self.P0 and w[2] < self.P0:
                ng += multlistcut(p, v)
                ng += multlistcut(p, w)
            elif v[2] < self.P0 and w[2] >= self.P0:
                s = (w[2] - v[2]) / (self.P0 - v[2])
                ng += multlistcut(p, v)
                ng += multlistcut(p, (w - v) / s + v)
            elif v[2] >= self.P0 and w[2] < self.P0:
                s = (v[2] - w[2]) / (self.P0 - w[2])
                ng += multlistcut(p, (v - w) / s + w)
                ng += multlistcut(p, w)

        glMatrixMode(GL_PROJECTION)
        glPushMatrix()
        glLoadIdentity()
        glOrtho(-1, 1, -1, 1, -100, 100)
        glMatrixMode(GL_MODELVIEW)
        glPushMatrix()
        glLoadIdentity()

        glEnableClientState(GL_VERTEX_ARRAY)
        glVertexPointer(3, GL_FLOAT, 0, ng)
        glDrawArrays(GL_LINES, 0, len(ng) / 3)
        glDisableClientState(GL_VERTEX_ARRAY)

        glMatrixMode(GL_PROJECTION)
        glPopMatrix()
        glMatrixMode(GL_MODELVIEW)
        glPopMatrix()
Example #8
0
	def draw_lines( self ) :
		if self.mode == 0 :
			self.geom = self.geometry()
			self.geom = [ np.array(self.geom[i:i+3]+[1]) for i in range(0,len(self.geom),3) ]
			self.geom = reduce( lambda l , v : l+[v,v] , self.geom , [] )
			self.geom.pop(0)
			self.geom.pop()
			self.count = len(self.geom)

			self.mode = 1

		p = glGetFloatv(GL_TRANSPOSE_PROJECTION_MATRIX)
		m = glGetFloatv(GL_TRANSPOSE_MODELVIEW_MATRIX)

		ng = []
		for i in range(0,len(self.geom),2) :
			v = la.dot(m,self.geom[i  ])
			w = la.dot(m,self.geom[i+1])

			def multlistcut( mat , vec ) :
				vec = la.dot(mat,vec)
				vec/=vec[3]
				return list(vec)[0:3]

			if v[2] < self.P0 and w[2] < self.P0 :
				ng += multlistcut(p,v)
				ng += multlistcut(p,w)
			elif v[2] < self.P0 and w[2] >=self.P0 :
				s = (w[2] - v[2])/(self.P0-v[2])
				ng += multlistcut(p,v)
				ng += multlistcut(p,(w-v)/s + v)
			elif v[2] >=self.P0 and w[2] < self.P0 :
				s = (v[2] - w[2])/(self.P0-w[2])
				ng += multlistcut(p,(v-w)/s + w)
				ng += multlistcut(p,w)


		glMatrixMode(GL_PROJECTION)
		glPushMatrix()
		glLoadIdentity()
		glOrtho( -1 , 1 , -1 , 1 , -100 , 100 )
		glMatrixMode(GL_MODELVIEW)
		glPushMatrix()
		glLoadIdentity()

		glEnableClientState(GL_VERTEX_ARRAY)
		glVertexPointer(3,GL_FLOAT,0,ng)
		glDrawArrays(GL_LINES,0,len(ng)/3)
		glDisableClientState(GL_VERTEX_ARRAY)

		glMatrixMode(GL_PROJECTION)
		glPopMatrix()
		glMatrixMode(GL_MODELVIEW)
		glPopMatrix()
Example #9
0
 def Apply(self,h,tf,y0_,f_):
     nt=int(tf/h)
     t_ = [i*h for i in xrange(nt+1)]
     y__= [y0_ for i in xrange(nt+1)]
     k__= [y0_ for i in xrange(self.n)]         
     
     for i in xrange(nt):
         k__[0] = f_(t_[i],y__[i])
         for j in xrange(1, self.n):
             k__[j] = f_(t_[i] + self.c[j-1]*h, y__[i] + h*dot(self.a[j-1], k__[0:j]))
         y__[i+1] = y__[i] + h*dot(self.b, k__)
         print(i)
     return y__, t_
Example #10
0
 def RKX(self, f, t0, Y0, n, tf):
     h = (tf-t0)/(1.0*n)
     Y = zeros(len(Y0),n+1)
     Y[:,0] = Y0
     t = t0
     k = [zeros(len(Y0),1) for i in range(self.N)]
     for i in range(n):
         k[0] = f(t, Y[:,i])
         for j in range(self.N-1):
             k[j+1] = f(t + h*self.b[j], Y[:,i] + h*dot(self.a[j],k[0:j+1]) )
         Y[:,i+1] = Y[:,i] + h*dot(self.c,k) 
         t += h
     return Y
Example #11
0
	def move_vec( self , vec ) :
		vec = np.array(vec)
		vec = vec * 0.001
		vec.resize( 4 , refcheck=False )
		vec = la.dot( la.inv( np.reshape(self.currmv,(4,4)) ) , vec )
		self.translate( *vec[0:3] )

		return vec[0:3]
Example #12
0
    def move_vec(self, vec):
        vec = np.array(vec)
        vec = vec * 0.001
        vec.resize(4, refcheck=False)
        vec = la.dot(la.inv(np.reshape(self.currmv, (4, 4))), vec)
        self.translate(*vec[0:3])

        return vec[0:3]
Example #13
0
 def forecast(self, n):
     N = len(self.pred_ts)
     for k in range(n):
         q = self.pred_ts[N - self.L + 1 + k:N + k]
         q = np.reshape(q, (len(q), 1))
         f = dot(self.F, q)
         self.pred_ts = np.concatenate((self.pred_ts, f))
     return self.pred_ts[N:]
 def compute_cos_similarity(self, doc_vector, query_vector):
     '''
     Uses the dot produt to compute cosine similarity between vectors
     :param doc_vector: a document vector
     :param query_vector: a query vector
     :return: the cosine similarity between the document and query vectors
     '''
     return linalg.dot(doc_vector, query_vector) / (
         linalg.norm(doc_vector) * linalg.norm(query_vector))
Example #15
0
def hsqrt(A):
    '''
    Computes Hermitian square root of input Hermitian matrix A

    Parameters
    ----------
    A : (N, N) array_like
        A square array of real or complex elements

    Returns
    -------
    B : (N, N) ndarray (matrix)
    Hermitian square root of Ax
    '''
    w, V = eig(A)
    D = np.diag(np.sqrt(w))
    B = dot(V, dot(D, V.T))
    return B
Example #16
0
	def _find_nearest( self , pos , containter , mindist = .05 ) :
		def dist( a , b ) :
			return m.pow(a[0]-b[0],2) + m.pow(a[1]-b[1],2)

		mc = la.dot( self.currp , self.currmv )

		minv= None
		minp= None
		for mp in containter :
			p = la.dot( mc , np.array((mp[0],mp[1],mp[2],1)) )
			p = p / p[3]
			if minv == None or minv > dist( pos , p ) :
				minp = mp
				minv = dist( pos , p )

		if not mindist or minv <= mindist :
			return ( minv , minp )
		else :
			return ( float('inf') , None )
Example #17
0
def problem4():
    logging.basicConfig(filename='problem4.log', level=logging.DEBUG)

    logging.info('Starting problem 4')

    lmin = 10
    lmax = 13

    matrix = [my_toeplitz(2**l) for l in range(lmin, lmax + 1)]
    preconditioner = [my_preconditioner(2**l) for l in range(lmin, lmax + 1)]
    precond_matrix = [
        dot(inv(preconditioner[i]), matrix[i]) for i in range(len(matrix))
    ]

    matrix_eig = [eigvals(m) for m in matrix]
    precond_matrix_eig = [eigvals(m) for m in precond_matrix]

    matrix_cond = [
        max(matrix_eig[i]) / min(matrix_eig[i]) for i in range(len(matrix_eig))
    ]
    precond_matrix_cond = [
        max(precond_matrix_eig[i]) / min(precond_matrix_eig[i])
        for i in range(len(precond_matrix_eig))
    ]

    logging.info('Ending problem 4')

    mateig = plt.plot([2**i for i in range(lmin, lmax + 1)],
                      matrix_cond,
                      label='CondT')
    pmateig = plt.plot([2**i for i in range(lmin, lmax + 1)],
                       precond_matrix_cond,
                       label='CondPT')
    plt.xlabel('Matrix size (n)')
    plt.ylabel('Condition')
    mateig_line = mpatches.Patch(color='blue', label='$T_n$')
    pmateig_line = mpatches.Patch(color='green', label='$P_n^{-1}T_n$')
    plt.legend(handles=[mateig_line, pmateig_line], loc=0)
    plt.savefig('4condition')

    plt.close()

    mateig = plt.plot([2**i for i in range(lmin, lmax + 1)],
                      log10(matrix_cond),
                      label='CondT')
    pmateig = plt.plot([2**i for i in range(lmin, lmax + 1)],
                       log10(precond_matrix_cond),
                       label='CondPT')
    plt.xlabel('Matrix size (n)')
    plt.ylabel('$Log_{10}(Condition)$')
    mateig_line = mpatches.Patch(color='blue', label='$T_n$')
    pmateig_line = mpatches.Patch(color='green', label='$P_n^{-1}T_n$')
    plt.legend(handles=[mateig_line, pmateig_line], loc=0)
    plt.savefig('4logcondition')
Example #18
0
 def forecast_by_component(self, n, comp_ind):
     V = self.V[:, comp_ind]
     F = self.get_f_by_comp(V)
     N = len(self.pred_ts)
     for k in range(n):
         q = self.pred_ts[N - self.L + 1 + k:N + k]
         q = np.reshape(q, (len(q), 1))
         f = dot(F, q)
         self.pred_ts = np.concatenate((self.pred_ts, f))
     pred = self.pred_ts[N:]
     self.pred_ts = self.ts
     return pred
Example #19
0
def gencosine(a, b, C=1):
    """
    Computes generalized cosine of angle
    between two vectors a and b in subspace spanned by C

    Parameters
    ----------
    a, b : (N, 1) array_like
            Input vectors of real or complex element

        Returns
        -------
        x : scalar
            Generalized cosine of angle between a and b in subspace of C

    """
    # Validate input
    if not (isvector(a) and isvector(b)):
        raise TypeError("Input not a vector")

    if not C.ndim == 2:
        raise TypeError("Third argument must be a matrix")
    
    nr = np.abs(dot(a.T, dot(C, b)))**2
    dr = dot(a.T, dot(C, a)) * dot(b.T, dot(C, b));
    x = float(nr)/dr
    return x
Example #20
0
    def loadCartesianPath(self):
        """
        Loads the Path from file specified earlier
        """
        rospy.loginfo('Loading Data ...')
        data = numpy.loadtxt(self.dataPath)

        posList = []
        quatList = []
        posList.append(data[0, 0:3])
        quatList.append(data[0, 3:7])

        # Check to send waypoint only if they are different (trajectory execution fails else)
        for i in range(1, len(data)):
            currPos = posList[-1]
            currQuat = quatList[-1]

            posDiff = norm(data[i, 0:3] - currPos)
            orientDiff = 1 - (dot(data[i, 3:7], currQuat))**2

            if posDiff >= self.MIN_POS_DIFF or orientDiff >= self.MIN_ANG_DIFF:
                posList.append(data[i, 0:3])
                quatList.append(data[i, 3:7])

        # Populating waypoint list
        for i in range(len(posList)):
            goalPosition = geometry_msgs.msg.Point(x=posList[i][0],
                                                   y=posList[i][1],
                                                   z=posList[i][2])
            goalOrientation = geometry_msgs.msg.Quaternion(x=quatList[i][0],
                                                           y=quatList[i][1],
                                                           z=quatList[i][2],
                                                           w=quatList[i][3])
            goalPose = geometry_msgs.msg.Pose(position=goalPosition,
                                              orientation=goalOrientation)
            self.goalList.append(goalPose)
Example #21
0
			def multlistcut( mat , vec ) :
				vec = la.dot(mat,vec)
				vec/=vec[3]
				return list(vec)[0:3]
Example #22
0
 def get_clipping_pos(self):
     pos = la.dot(self.currp, la.dot(self.currmv, np.array([0, 0, 0, 1])))
     pos = pos / pos[3]
     return pos[:3]
Example #23
0
#set up variables for the SGD algorithm
weight = np.zeros((np.size(feature,
                           axis=1), ))  #initialize weight vector to all zeros
i = 0
'''
# of iterations allowed should be the minimum of (maximum iteration specified by the user, 
and the # of observations in our dataset - i.e. the # of rows in feature matrix)
'''
iter_limit = min(max_iters, len(feature))
history = [
]  #initialize a list called history to record the update history for visualization

while i < iter_limit:  #keep SGD updates until reaching the maximum # of iterations allowed
    #compute the gradient of the loss with respect to w
    grad = (linalg.dot(np.transpose(weight), feature[i]) -
            target[i]) * feature[i] + beta * weight
    update = lr * grad  #compute amount needs to be updated to the current weight vector
    weight = weight - update  #SGD update
    history.append(update.mean())  #log the average update magnitude
    #If the absolute value of average update is smaller than our tolerance, stop the SGD process
    if np.absolute(update.mean()) < tol: break
    i += 1

#print("Last 10 updates:")
#print(history[-1:-10:-1])
np.savetxt(output, weight,
           delimiter=' ')  #save final weight vector to output path

#visualizing the update process, see if converges
plt.plot(history)
 def compute_cos_similarity(self, doc_vector, query_vector):
     return linalg.dot(doc_vector, query_vector) / (
         linalg.norm(doc_vector) * linalg.norm(query_vector))
Example #25
0
	def get_clipping_pos( self ) :
		pos = la.dot( self.currp , la.dot( self.currmv , np.array( [0,0,0,1] ) ) )
		pos = pos / pos[3]
		return pos[:3]
Example #26
0
 def multlistcut(mat, vec):
     vec = la.dot(mat, vec)
     vec /= vec[3]
     return list(vec)[0:3]
def Akl(k, l):
    if fixed is None: s = lam
    else:
        if k == 0 and l == 0: s = lam
        else: s = 0.
    for m in measurements:
        d = 1. / m.uncertainty**2
        if k == l and (m.i == k or m.j == k): s += d
        if (m.i == k and m.j == l) or (m.j == k and m.i == l): s -= d
    return s


# Equation 17
v = [vk(k) for k in range(Na)]
M = matrix([[Akl(k, l) for k in range(Na)] for l in range(Na)])
print dot(inv(M), v)


def print_matrix(mat):
    if not isinstance(mat, dict):
        m = {}
        for i in range(Na):
            for j in range(Na):
                m["A%d" % i, "A%d" % j] = mat[i, j]
    else:
        m = mat
    print "\n".join([
        " ".join(["%8.2g" % m["A%d" % i, "A%d" % j] for j in range(Na)])
        for i in range(Na)
    ])