Example #1
0
class Count(object):

    params = [0, 1]
    param_names = ['axis']

    def setup(self, axis):
        self.df = DataFrame(np.random.randn(10000, 1000))
        self.df.ix[50:1000, 20:50] = np.nan
        self.df.ix[2000:3000] = np.nan
        self.df.ix[:, 60:70] = np.nan
        self.df_mixed = self.df.copy()
        self.df_mixed['foo'] = 'bar'

        self.df.index = MultiIndex.from_arrays([self.df.index, self.df.index])
        self.df.columns = MultiIndex.from_arrays([self.df.columns,
                                                  self.df.columns])
        self.df_mixed.index = MultiIndex.from_arrays([self.df_mixed.index,
                                                      self.df_mixed.index])
        self.df_mixed.columns = MultiIndex.from_arrays([self.df_mixed.columns,
                                                        self.df_mixed.columns])

    def time_count_level_multi(self, axis):
        self.df.count(axis=axis, level=1)

    def time_count_level_mixed_dtypes_multi(self, axis):
        self.df_mixed.count(axis=axis, level=1)
class LogAggregate:
    def __init__(self, dataset):
        self.dataset = DataFrame(dataset)

    def get_median(self, *arg, **kwarg):
        if kwarg.has_key('group_by'):
            return self.dataset.groupby(kwarg['group_by']).median()[kwarg['key']]
        else:
            return self.dataset.median()[kwarg['key']]

    def get_average(self, *arg, **kwarg):
        if kwarg.has_key('group_by'):
            return self.dataset.groupby(kwarg['group_by']).mean()[kwarg['key']]
        else:
            return self.dataset.mean()[kwarg['key']]

    def get_min(self, *arg, **kwarg):
        if kwarg.has_key('group_by'):
            return self.dataset.groupby(kwarg['group_by']).min()[kwarg['key']]
        else:
            return self.dataset.min()[kwarg['key']]
    
    def get_max(self, *arg, **kwarg):
        if kwarg.has_key('group_by'):
            return self.dataset.groupby(kwarg['group_by']).max()[kwarg['key']]
        else:
            return self.dataset.max()[kwarg['key']]

    def get_count(self, *arg, **kwarg):
        if kwarg.has_key('group_by'):
            return self.dataset.groupby(kwarg['group_by']).count()[kwarg['key']]
        else:
            return self.dataset.count()[kwarg['key']]
Example #3
0
    def test_non_callable_aggregates(self):

        # GH 16405
        # 'size' is a property of frame/series
        # validate that this is working
        df = DataFrame({'A': [None, 2, 3],
                        'B': [1.0, np.nan, 3.0],
                        'C': ['foo', None, 'bar']})

        # Function aggregate
        result = df.agg({'A': 'count'})
        expected = Series({'A': 2})

        assert_series_equal(result, expected)

        # Non-function aggregate
        result = df.agg({'A': 'size'})
        expected = Series({'A': 3})

        assert_series_equal(result, expected)

        # Mix function and non-function aggs
        result1 = df.agg(['count', 'size'])
        result2 = df.agg({'A': ['count', 'size'],
                          'B': ['count', 'size'],
                          'C': ['count', 'size']})
        expected = pd.DataFrame({'A': {'count': 2, 'size': 3},
                                 'B': {'count': 2, 'size': 3},
                                 'C': {'count': 2, 'size': 3}})

        assert_frame_equal(result1, result2, check_like=True)
        assert_frame_equal(result2, expected, check_like=True)

        # Just functional string arg is same as calling df.arg()
        result = df.agg('count')
        expected = df.count()

        assert_series_equal(result, expected)

        # Just a string attribute arg same as calling df.arg
        result = df.agg('size')
        expected = df.size

        assert result == expected
Example #4
0
import datetime,requests

basedir = os.path.dirname(os.path.dirname(__file__))

# path = basedir+"/spiders/jsons/infos.json"
path = basedir+"/spiders/jsons/infos.json"
datas = []
for line in open(path):
    try:
        datas.append(json.loads(line))
    except:
        continue

frame = DataFrame(datas)

print frame.count()

def get_salary_count():
    kd = frame.salary.value_counts()
    pie_chart = pygal.Pie()
    pie_chart.title = u'技术类薪酬分布'
    for ind, num in kd.iteritems():
        pie_chart.add("%s:%s" % (ind, num), num)
    pie_chart.render_to_file(os.path.dirname(__file__) + '/chart/salary.svg')

def get_kd_count():
    kd = frame.kd.value_counts()
    pie_chart = pygal.Pie()
    pie_chart.title = u'技术类职位数量分布'
    for ind, num in kd.iteritems():
        pie_chart.add("%s:%s" % (ind, num), num)
Example #5
0
class TestMultiLevel(unittest.TestCase):

    def setUp(self):
        index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
                                   ['one', 'two', 'three']],
                           labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
                                   [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
                           names=['first', 'second'])
        self.frame = DataFrame(np.random.randn(10, 3), index=index,
                               columns=Index(['A', 'B', 'C'], name='exp'))

        self.single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']],
                                       labels=[[0, 1, 2, 3]],
                                       names=['first'])

        # create test series object
        arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'],
                  ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
        tuples = zip(*arrays)
        index = MultiIndex.from_tuples(tuples)
        s = Series(randn(8), index=index)
        s[3] = np.NaN
        self.series = s

        tm.N = 100
        self.tdf = tm.makeTimeDataFrame()
        self.ymd = self.tdf.groupby([lambda x: x.year, lambda x: x.month,
                                     lambda x: x.day]).sum()

        # use Int64Index, to make sure things work
        self.ymd.index.levels = [lev.astype('i8')
                                 for lev in self.ymd.index.levels]
        self.ymd.index.names = ['year', 'month', 'day']

    def test_append(self):
        a, b = self.frame[:5], self.frame[5:]

        result = a.append(b)
        tm.assert_frame_equal(result, self.frame)

        result = a['A'].append(b['A'])
        tm.assert_series_equal(result, self.frame['A'])

    def test_reindex_level(self):
        # axis=0
        month_sums = self.ymd.sum(level='month')
        result = month_sums.reindex(self.ymd.index, level=1)
        expected = self.ymd.groupby(level='month').transform(np.sum)

        assert_frame_equal(result, expected)

        # Series
        result = month_sums['A'].reindex(self.ymd.index, level=1)
        expected = self.ymd['A'].groupby(level='month').transform(np.sum)
        assert_series_equal(result, expected)

        # axis=1
        month_sums = self.ymd.T.sum(axis=1, level='month')
        result = month_sums.reindex(columns=self.ymd.index, level=1)
        expected = self.ymd.groupby(level='month').transform(np.sum).T
        assert_frame_equal(result, expected)

    def test_binops_level(self):
        def _check_op(opname):
            op = getattr(DataFrame, opname)
            month_sums = self.ymd.sum(level='month')
            result = op(self.ymd, month_sums, level='month')
            broadcasted = self.ymd.groupby(level='month').transform(np.sum)
            expected = op(self.ymd, broadcasted)
            assert_frame_equal(result, expected)

            # Series
            op = getattr(Series, opname)
            result = op(self.ymd['A'], month_sums['A'], level='month')
            broadcasted = self.ymd['A'].groupby(level='month').transform(np.sum)
            expected = op(self.ymd['A'], broadcasted)
            assert_series_equal(result, expected)

        _check_op('sub')
        _check_op('add')
        _check_op('mul')
        _check_op('div')

    def test_pickle(self):
        import cPickle
        def _test_roundtrip(frame):
            pickled = cPickle.dumps(frame)
            unpickled = cPickle.loads(pickled)
            assert_frame_equal(frame, unpickled)

        _test_roundtrip(self.frame)
        _test_roundtrip(self.frame.T)
        _test_roundtrip(self.ymd)
        _test_roundtrip(self.ymd.T)

    def test_reindex(self):
        reindexed = self.frame.ix[[('foo', 'one'), ('bar', 'one')]]
        expected = self.frame.ix[[0, 3]]
        assert_frame_equal(reindexed, expected)

    def test_reindex_preserve_levels(self):
        new_index = self.ymd.index[::10]
        chunk = self.ymd.reindex(new_index)
        self.assert_(chunk.index is new_index)

        chunk = self.ymd.ix[new_index]
        self.assert_(chunk.index is new_index)

        ymdT = self.ymd.T
        chunk = ymdT.reindex(columns=new_index)
        self.assert_(chunk.columns is new_index)

        chunk = ymdT.ix[:, new_index]
        self.assert_(chunk.columns is new_index)

    def test_sort_index_preserve_levels(self):
        result = self.frame.sort_index()
        self.assertEquals(result.index.names, self.frame.index.names)

    def test_repr_to_string(self):
        repr(self.frame)
        repr(self.ymd)
        repr(self.frame.T)
        repr(self.ymd.T)

        buf = StringIO()
        self.frame.to_string(buf=buf)
        self.ymd.to_string(buf=buf)
        self.frame.T.to_string(buf=buf)
        self.ymd.T.to_string(buf=buf)

    def test_getitem_simple(self):
        df = self.frame.T

        col = df['foo', 'one']
        assert_almost_equal(col.values, df.values[:, 0])
        self.assertRaises(KeyError, df.__getitem__, ('foo', 'four'))
        self.assertRaises(KeyError, df.__getitem__, 'foobar')

    def test_series_getitem(self):
        s = self.ymd['A']

        result = s[2000, 3]
        result2 = s.ix[2000, 3]
        expected = s[42:65]
        expected.index = expected.index.droplevel(0).droplevel(0)
        assert_series_equal(result, expected)

        result = s[2000, 3, 10]
        expected = s[49]
        self.assertEquals(result, expected)

        # fancy
        result = s.ix[[(2000, 3, 10), (2000, 3, 13)]]
        expected = s[49:51]
        assert_series_equal(result, expected)

        # key error
        self.assertRaises(KeyError, s.__getitem__, (2000, 3, 4))

    def test_series_setitem(self):
        s = self.ymd['A']

        s[2000, 3] = np.nan
        self.assert_(isnull(s[42:65]).all())
        self.assert_(notnull(s[:42]).all())
        self.assert_(notnull(s[65:]).all())

        s[2000, 3, 10] = np.nan
        self.assert_(isnull(s[49]))

    def test_series_slice_partial(self):
        pass

    def test_xs(self):
        xs = self.frame.xs(('bar', 'two'))
        xs2 = self.frame.ix[('bar', 'two')]

        assert_series_equal(xs, xs2)
        assert_almost_equal(xs.values, self.frame.values[4])

    def test_xs_partial(self):
        result = self.frame.xs('foo')
        result2 = self.frame.ix['foo']
        expected = self.frame.T['foo'].T
        assert_frame_equal(result, expected)
        assert_frame_equal(result, result2)

    def test_fancy_2d(self):
        result = self.frame.ix['foo', 'B']
        expected = self.frame.xs('foo')['B']
        assert_series_equal(result, expected)

        ft = self.frame.T
        result = ft.ix['B', 'foo']
        expected = ft.xs('B')['foo']
        assert_series_equal(result, expected)

    def test_get_loc_single_level(self):
        s = Series(np.random.randn(len(self.single_level)),
                   index=self.single_level)
        for k in self.single_level.values:
            s[k]

    def test_getitem_toplevel(self):
        df = self.frame.T

        result = df['foo']
        expected = df.reindex(columns=df.columns[:3])
        expected.columns = expected.columns.droplevel(0)
        assert_frame_equal(result, expected)

        result = df['bar']
        result2 = df.ix[:, 'bar']

        expected = df.reindex(columns=df.columns[3:5])
        expected.columns = expected.columns.droplevel(0)
        assert_frame_equal(result, expected)
        assert_frame_equal(result, result2)

    def test_getitem_slice_integers(self):
        index = MultiIndex(levels=[[0, 1, 2], [0, 2]],
                           labels=[[0, 0, 1, 1, 2, 2],
                                   [0, 1, 0, 1, 0, 1]])

        frame =  DataFrame(np.random.randn(len(index), 4), index=index,
                           columns=['a', 'b', 'c', 'd'])
        res = frame.ix[1:2]
        exp = frame[2:]
        assert_frame_equal(res, exp)

        series =  Series(np.random.randn(len(index)), index=index)

        res = series.ix[1:2]
        exp = series[2:]
        assert_series_equal(res, exp)

    def test_getitem_int(self):
        levels = [[0, 1], [0, 1, 2]]
        labels = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]
        index = MultiIndex(levels=levels, labels=labels)

        frame = DataFrame(np.random.randn(6, 2), index=index)

        result = frame.ix[1]
        expected = frame[-3:]
        expected.index = expected.index.droplevel(0)
        assert_frame_equal(result, expected)

        # raises exception
        self.assertRaises(KeyError, frame.ix.__getitem__, 3)

        # however this will work
        result = self.frame.ix[2]
        expected = self.frame.xs(self.frame.index[2])
        assert_series_equal(result, expected)

    def test_getitem_partial(self):
        ymd = self.ymd.T
        result = ymd[2000, 2]

        expected = ymd.reindex(columns=ymd.columns[ymd.columns.labels[1] == 1])
        expected.columns = expected.columns.droplevel(0).droplevel(0)
        assert_frame_equal(result, expected)

    def test_getitem_slice_not_sorted(self):
        df = self.frame.sortlevel(1).T

        # buglet with int typechecking
        result = df.ix[:, :np.int32(3)]
        expected = df.reindex(columns=df.columns[:3])
        assert_frame_equal(result, expected)

    def test_setitem_change_dtype(self):
        dft = self.frame.T
        s = dft['foo', 'two']
        dft['foo', 'two'] = s > s.median()
        assert_series_equal(dft['foo', 'two'], s > s.median())
        self.assert_(isinstance(dft._data.blocks[1].items, MultiIndex))

        reindexed = dft.reindex(columns=[('foo', 'two')])
        assert_series_equal(reindexed['foo', 'two'], s > s.median())

    def test_frame_setitem_ix(self):
        self.frame.ix[('bar', 'two'), 'B'] = 5
        self.assertEquals(self.frame.ix[('bar', 'two'), 'B'], 5)

        # with integer labels
        df = self.frame.copy()
        df.columns = range(3)
        df.ix[('bar', 'two'), 1] = 7
        self.assertEquals(df.ix[('bar', 'two'), 1], 7)

    def test_fancy_slice_partial(self):
        result = self.frame.ix['bar':'baz']
        expected = self.frame[3:7]
        assert_frame_equal(result, expected)

        result = self.ymd.ix[(2000,2):(2000,4)]
        lev = self.ymd.index.labels[1]
        expected = self.ymd[(lev >= 1) & (lev <= 3)]
        assert_frame_equal(result, expected)

    def test_sortlevel(self):
        df = self.frame.copy()
        df.index = np.arange(len(df))
        self.assertRaises(Exception, df.sortlevel, 0)

        # axis=1

        # series
        a_sorted = self.frame['A'].sortlevel(0)
        self.assertRaises(Exception,
                          self.frame.reset_index()['A'].sortlevel)

        # preserve names
        self.assertEquals(a_sorted.index.names, self.frame.index.names)

    def test_delevel_infer_dtype(self):
        tuples = [tuple for tuple in cart_product(['foo', 'bar'],
                                                  [10, 20], [1.0, 1.1])]
        index = MultiIndex.from_tuples(tuples,
                                       names=['prm0', 'prm1', 'prm2'])
        df = DataFrame(np.random.randn(8,3), columns=['A', 'B', 'C'],
                       index=index)
        deleveled = df.reset_index()
        self.assert_(com.is_integer_dtype(deleveled['prm1']))
        self.assert_(com.is_float_dtype(deleveled['prm2']))

    def test_sortlevel_by_name(self):
        self.frame.index.names = ['first', 'second']
        result = self.frame.sortlevel(level='second')
        expected = self.frame.sortlevel(level=1)
        assert_frame_equal(result, expected)

    def test_sortlevel_mixed(self):
        sorted_before = self.frame.sortlevel(1)

        df = self.frame.copy()
        df['foo'] = 'bar'
        sorted_after = df.sortlevel(1)
        assert_frame_equal(sorted_before, sorted_after.drop(['foo'], axis=1))

        dft = self.frame.T
        sorted_before = dft.sortlevel(1, axis=1)
        dft['foo', 'three'] = 'bar'

        sorted_after = dft.sortlevel(1, axis=1)
        assert_frame_equal(sorted_before.drop([('foo', 'three')], axis=1),
                           sorted_after.drop([('foo', 'three')], axis=1))

    def test_count_level(self):
        def _check_counts(frame, axis=0):
            index = frame._get_axis(axis)
            for i in range(index.nlevels):
                result = frame.count(axis=axis, level=i)
                expected = frame.groupby(axis=axis, level=i).count(axis=axis)
                expected = expected.reindex_like(result).astype('i8')
                assert_frame_equal(result, expected)

        self.frame.ix[1, [1, 2]] = np.nan
        self.frame.ix[7, [0, 1]] = np.nan
        self.ymd.ix[1, [1, 2]] = np.nan
        self.ymd.ix[7, [0, 1]] = np.nan

        _check_counts(self.frame)
        _check_counts(self.ymd)
        _check_counts(self.frame.T, axis=1)
        _check_counts(self.ymd.T, axis=1)

        # can't call with level on regular DataFrame
        df = tm.makeTimeDataFrame()
        self.assertRaises(Exception, df.count, level=0)

        self.frame['D'] = 'foo'
        result = self.frame.count(level=0, numeric_only=True)
        assert_almost_equal(result.columns, ['A', 'B', 'C'])

    def test_count_level_series(self):
        index = MultiIndex(levels=[['foo', 'bar', 'baz'],
                                   ['one', 'two', 'three', 'four']],
                           labels=[[0, 0, 0, 2, 2],
                                   [2, 0, 1, 1, 2]])

        s = Series(np.random.randn(len(index)), index=index)

        result = s.count(level=0)
        expected = s.groupby(level=0).count()
        assert_series_equal(result.astype('f8'),
                            expected.reindex(result.index).fillna(0))

        result = s.count(level=1)
        expected = s.groupby(level=1).count()
        assert_series_equal(result.astype('f8'),
                            expected.reindex(result.index).fillna(0))

    def test_count_level_corner(self):
        s = self.frame['A'][:0]
        result = s.count(level=0)
        expected = Series(0, index=s.index.levels[0])
        assert_series_equal(result, expected)

        df = self.frame[:0]
        result = df.count(level=0)
        expected = DataFrame({}, index=s.index.levels[0],
                             columns=df.columns).fillna(0).astype(int)
        assert_frame_equal(result, expected)

    def test_unstack(self):
        # just check that it works for now
        unstacked = self.ymd.unstack()
        unstacked2 = unstacked.unstack()

        # test that ints work
        unstacked = self.ymd.astype(int).unstack()

    def test_stack(self):
        # regular roundtrip
        unstacked = self.ymd.unstack()
        restacked = unstacked.stack()
        assert_frame_equal(restacked, self.ymd)

        unlexsorted = self.ymd.sortlevel(2)

        unstacked = unlexsorted.unstack(2)
        restacked = unstacked.stack()
        assert_frame_equal(restacked.sortlevel(0), self.ymd)

        unlexsorted = unlexsorted[::-1]
        unstacked = unlexsorted.unstack(1)
        restacked = unstacked.stack().swaplevel(1, 2)
        assert_frame_equal(restacked.sortlevel(0), self.ymd)

        unlexsorted = unlexsorted.swaplevel(0, 1)
        unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1)
        restacked = unstacked.stack(0).swaplevel(1, 2)
        assert_frame_equal(restacked.sortlevel(0), self.ymd)

        # columns unsorted
        unstacked = self.ymd.unstack()
        unstacked = unstacked.sort(axis=1, ascending=False)
        restacked = unstacked.stack()
        assert_frame_equal(restacked, self.ymd)

        # more than 2 levels in the columns
        unstacked = self.ymd.unstack(1).unstack(1)

        result = unstacked.stack(1)
        expected = self.ymd.unstack()
        assert_frame_equal(result, expected)

        result = unstacked.stack(2)
        expected = self.ymd.unstack(1)
        assert_frame_equal(result, expected)

        result = unstacked.stack(0)
        expected = self.ymd.stack().unstack(1).unstack(1)
        assert_frame_equal(result, expected)

        # not all levels present in each echelon
        unstacked = self.ymd.unstack(2).ix[:, ::3]
        stacked = unstacked.stack().stack()
        ymd_stacked = self.ymd.stack()
        assert_series_equal(stacked, ymd_stacked.reindex(stacked.index))

        # stack with negative number
        result = self.ymd.unstack(0).stack(-2)
        expected = self.ymd.unstack(0).stack(0)

    def test_stack_mixed_dtype(self):
        df = self.frame.T
        df['foo', 'four'] = 'foo'
        df = df.sortlevel(1, axis=1)

        stacked = df.stack()
        assert_series_equal(stacked['foo'], df['foo'].stack())
        self.assert_(stacked['bar'].dtype == np.float_)

    def test_unstack_bug(self):
        df = DataFrame({'state': ['naive','naive','naive',
                                  'activ','activ','activ'],
                        'exp':['a','b','b','b','a','a'],
                        'barcode':[1,2,3,4,1,3],
                        'v':['hi','hi','bye','bye','bye','peace'],
                        'extra': np.arange(6.)})

        result = df.groupby(['state','exp','barcode','v']).apply(len)
        unstacked = result.unstack()
        restacked = unstacked.stack()
        assert_series_equal(restacked,
                            result.reindex(restacked.index).astype(float))

    def test_stack_unstack_preserve_names(self):
        unstacked = self.frame.unstack()
        self.assertEquals(unstacked.index.name, 'first')
        self.assertEquals(unstacked.columns.names, ['exp', 'second'])

        restacked = unstacked.stack()
        self.assertEquals(restacked.index.names, self.frame.index.names)

    def test_unstack_level_name(self):
        result = self.frame.unstack('second')
        expected = self.frame.unstack(level=1)
        assert_frame_equal(result, expected)

    def test_stack_level_name(self):
        unstacked = self.frame.unstack('second')
        result = unstacked.stack('exp')
        expected = self.frame.unstack().stack(0)
        assert_frame_equal(result, expected)

        result = self.frame.stack('exp')
        expected = self.frame.stack()
        assert_series_equal(result, expected)

    def test_stack_unstack_multiple(self):
        unstacked = self.ymd.unstack(['year', 'month'])
        expected = self.ymd.unstack('year').unstack('month')
        assert_frame_equal(unstacked, expected)
        self.assertEquals(unstacked.columns.names,
                          expected.columns.names)

        # series
        s = self.ymd['A']
        s_unstacked = s.unstack(['year', 'month'])
        assert_frame_equal(s_unstacked, expected['A'])

        restacked = unstacked.stack(['year', 'month'])
        restacked = restacked.swaplevel(0, 1).swaplevel(1, 2)
        restacked = restacked.sortlevel(0)

        assert_frame_equal(restacked, self.ymd)
        self.assertEquals(restacked.index.names, self.ymd.index.names)

        # GH #451
        unstacked = self.ymd.unstack([1, 2])
        expected = self.ymd.unstack(1).unstack(1)
        assert_frame_equal(unstacked, expected)

        unstacked = self.ymd.unstack([2, 1])
        expected = self.ymd.unstack(2).unstack(1)
        assert_frame_equal(unstacked, expected)

    def test_groupby_transform(self):
        s = self.frame['A']
        grouper = s.index.get_level_values(0)

        grouped = s.groupby(grouper)

        applied = grouped.apply(lambda x: x * 2)
        expected = grouped.transform(lambda x: x * 2)
        assert_series_equal(applied.reindex(expected.index), expected)

    def test_join(self):
        a = self.frame.ix[:5, ['A']]
        b = self.frame.ix[2:, ['B', 'C']]

        joined = a.join(b, how='outer').reindex(self.frame.index)
        expected = self.frame.copy()
        expected.values[np.isnan(joined.values)] = np.nan

        self.assert_(not np.isnan(joined.values).all())

        assert_frame_equal(joined, expected)

    def test_swaplevel(self):
        swapped = self.frame['A'].swaplevel(0, 1)
        swapped2 = self.frame['A'].swaplevel('first', 'second')
        self.assert_(not swapped.index.equals(self.frame.index))
        assert_series_equal(swapped, swapped2)

        back = swapped.swaplevel(0, 1)
        back2 = swapped.swaplevel('second', 'first')
        self.assert_(back.index.equals(self.frame.index))
        assert_series_equal(back, back2)

        ft = self.frame.T
        swapped = ft.swaplevel('first', 'second', axis=1)
        exp = self.frame.swaplevel('first', 'second').T
        assert_frame_equal(swapped, exp)

    def test_swaplevel_panel(self):
        panel = Panel({'ItemA' : self.frame,
                       'ItemB' : self.frame * 2})

        result = panel.swaplevel(0, 1, axis='major')
        expected = panel.copy()
        expected.major_axis = expected.major_axis.swaplevel(0, 1)
        tm.assert_panel_equal(result, expected)

    def test_reorder_levels(self):
        result = self.ymd.reorder_levels(['month', 'day', 'year'])
        expected = self.ymd.swaplevel(0, 1).swaplevel(1, 2)
        assert_frame_equal(result, expected)

        result = self.ymd['A'].reorder_levels(['month', 'day', 'year'])
        expected = self.ymd['A'].swaplevel(0, 1).swaplevel(1, 2)
        assert_series_equal(result, expected)

        result = self.ymd.T.reorder_levels(['month', 'day', 'year'], axis=1)
        expected = self.ymd.T.swaplevel(0, 1, axis=1).swaplevel(1, 2, axis=1)
        assert_frame_equal(result, expected)

        self.assertRaises(Exception, self.ymd.index.reorder_levels,
                          [1, 2, 3])

    def test_insert_index(self):
        df = self.ymd[:5].T
        df[2000, 1, 10] = df[2000, 1, 7]
        self.assert_(isinstance(df.columns, MultiIndex))
        self.assert_((df[2000, 1, 10] == df[2000, 1, 7]).all())

    def test_alignment(self):
        x = Series(data=[1,2,3],
                   index=MultiIndex.from_tuples([("A", 1), ("A", 2), ("B",3)]))

        y = Series(data=[4,5,6],
                   index=MultiIndex.from_tuples([("Z", 1), ("Z", 2), ("B",3)]))

        res = x - y
        exp_index = x.index.union(y.index)
        exp = x.reindex(exp_index) - y.reindex(exp_index)
        assert_series_equal(res, exp)

        # hit non-monotonic code path
        res = x[::-1] - y[::-1]
        exp_index = x.index.union(y.index)
        exp = x.reindex(exp_index) - y.reindex(exp_index)
        assert_series_equal(res, exp)

    def test_is_lexsorted(self):
        levels = [[0, 1], [0, 1, 2]]

        index = MultiIndex(levels=levels,
                           labels=[[0, 0, 0, 1, 1, 1],
                                   [0, 1, 2, 0, 1, 2]])
        self.assert_(index.is_lexsorted())

        index = MultiIndex(levels=levels,
                           labels=[[0, 0, 0, 1, 1, 1],
                                   [0, 1, 2, 0, 2, 1]])
        self.assert_(not index.is_lexsorted())

        index = MultiIndex(levels=levels,
                           labels=[[0, 0, 1, 0, 1, 1],
                                   [0, 1, 0, 2, 2, 1]])
        self.assert_(not index.is_lexsorted())
        self.assert_(index.lexsort_depth == 0)

    def test_frame_getitem_view(self):
        df = self.frame.T
        df['foo'].values[:] = 0
        self.assert_((df['foo'].values == 0).all())

        # but not if it's mixed-type
        df['foo', 'four'] = 'foo'
        df = df.sortlevel(0, axis=1)
        df['foo']['one'] = 2
        self.assert_((df['foo', 'one'] == 0).all())

    def test_frame_getitem_not_sorted(self):
        df = self.frame.T
        df['foo', 'four'] = 'foo'

        arrays = [np.array(x) for x in zip(*df.columns.get_tuple_index())]

        result = df['foo']
        result2 = df.ix[:, 'foo']
        expected = df.reindex(columns=df.columns[arrays[0] == 'foo'])
        expected.columns = expected.columns.droplevel(0)
        assert_frame_equal(result, expected)
        assert_frame_equal(result2, expected)

        df = df.T
        result = df.xs('foo')
        result2 = df.ix['foo']
        expected = df.reindex(df.index[arrays[0] == 'foo'])
        expected.index = expected.index.droplevel(0)
        assert_frame_equal(result, expected)
        assert_frame_equal(result2, expected)

    def test_series_getitem_not_sorted(self):
        arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'],
        ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
        tuples = zip(*arrays)
        index = MultiIndex.from_tuples(tuples)
        s = Series(randn(8), index=index)

        arrays = [np.array(x) for x in zip(*index.get_tuple_index())]

        result = s['qux']
        result2 = s.ix['qux']
        expected = s[arrays[0] == 'qux']
        expected.index = expected.index.droplevel(0)
        assert_series_equal(result, expected)
        assert_series_equal(result2, expected)

    AGG_FUNCTIONS = ['sum', 'prod', 'min', 'max', 'median', 'mean', 'skew',
                     'mad', 'std', 'var']

    def test_series_group_min_max(self):
        for op, level, skipna in cart_product(self.AGG_FUNCTIONS,
                                              range(2),
                                              [False, True]):
            grouped = self.series.groupby(level=level)
            aggf = lambda x: getattr(x, op)(skipna=skipna)
            # skipna=True
            leftside = grouped.agg(aggf)
            rightside = getattr(self.series, op)(level=level, skipna=skipna)
            assert_series_equal(leftside, rightside)

    def test_frame_group_ops(self):
        self.frame.ix[1, [1, 2]] = np.nan
        self.frame.ix[7, [0, 1]] = np.nan

        for op, level, axis, skipna in cart_product(self.AGG_FUNCTIONS,
                                                    range(2), range(2),
                                                    [False, True]):
            if axis == 0:
                frame = self.frame
            else:
                frame = self.frame.T

            grouped = frame.groupby(level=level, axis=axis)

            aggf = lambda x: getattr(x, op)(skipna=skipna, axis=axis)
            leftside = grouped.agg(aggf)
            rightside = getattr(frame, op)(level=level, axis=axis,
                                           skipna=skipna)

            # for good measure, groupby detail
            level_index = frame._get_axis(axis).levels[level]

            self.assert_(leftside._get_axis(axis).equals(level_index))
            self.assert_(rightside._get_axis(axis).equals(level_index))

            assert_frame_equal(leftside, rightside)

    def test_frame_series_agg_multiple_levels(self):
        result = self.ymd.sum(level=['year', 'month'])
        expected = self.ymd.groupby(level=['year', 'month']).sum()
        assert_frame_equal(result, expected)

        result = self.ymd['A'].sum(level=['year', 'month'])
        expected = self.ymd['A'].groupby(level=['year', 'month']).sum()
        assert_series_equal(result, expected)

    def test_groupby_multilevel(self):
        result = self.ymd.groupby(level=[0, 1]).mean()

        k1 = self.ymd.index.get_level_values(0)
        k2 = self.ymd.index.get_level_values(1)

        expected = self.ymd.groupby([k1, k2]).mean()

        assert_frame_equal(result, expected)
        self.assertEquals(result.index.names, self.ymd.index.names[:2])

        result2 = self.ymd.groupby(level=self.ymd.index.names[:2]).mean()
        assert_frame_equal(result, result2)

    def test_groupby_multilevel_with_transform(self):
        pass

    def test_multilevel_consolidate(self):
        index = MultiIndex.from_tuples([('foo', 'one'), ('foo', 'two'),
                                        ('bar', 'one'), ('bar', 'two')])
        df = DataFrame(np.random.randn(4, 4), index=index, columns=index)
        df['Totals', ''] = df.sum(1)
        df = df.consolidate()

    def test_ix_preserve_names(self):
        result = self.ymd.ix[2000]
        result2 = self.ymd['A'].ix[2000]
        self.assertEquals(result.index.names, self.ymd.index.names[1:])
        self.assertEquals(result2.index.names, self.ymd.index.names[1:])

        result = self.ymd.ix[2000, 2]
        result2 = self.ymd['A'].ix[2000, 2]
        self.assertEquals(result.index.name, self.ymd.index.names[2])
        self.assertEquals(result2.index.name, self.ymd.index.names[2])

    def test_partial_set(self):
        # GH #397
        df = self.ymd.copy()
        exp = self.ymd.copy()
        df.ix[2000, 4] = 0
        exp.ix[2000, 4].values[:] = 0
        assert_frame_equal(df, exp)

        df['A'].ix[2000, 4] = 1
        exp['A'].ix[2000, 4].values[:] = 1
        assert_frame_equal(df, exp)

        df.ix[2000] = 5
        exp.ix[2000].values[:] = 5
        assert_frame_equal(df, exp)

        # this works...for now
        df['A'].ix[14] = 5
        self.assertEquals(df['A'][14], 5)

    def test_unstack_preserve_types(self):
        # GH #403
        self.ymd['E'] = 'foo'
        self.ymd['F'] = 2

        unstacked = self.ymd.unstack('month')
        self.assert_(unstacked['A', 1].dtype == np.float64)
        self.assert_(unstacked['E', 1].dtype == np.object_)
        self.assert_(unstacked['F', 1].dtype == np.float64)

    def test_partial_ix_missing(self):
        result = self.ymd.ix[2000, 0]
        expected = self.ymd.ix[2000]['A']
        assert_series_equal(result, expected)

        # need to put in some work here

        # self.ymd.ix[2000, 0] = 0
        # self.assert_((self.ymd.ix[2000]['A'] == 0).all())

        self.assertRaises(Exception, self.ymd.ix.__getitem__, (2000, 6))
        self.assertRaises(Exception, self.ymd.ix.__getitem__, (2000, 6), 0)

    def test_to_html(self):
        self.ymd.columns.name = 'foo'
        self.ymd.to_html()
        self.ymd.T.to_html()
Example #6
0
class TestMultiLevel(unittest.TestCase):

    def setUp(self):
        index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
                                   ['one', 'two', 'three']],
                           labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
                                   [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
                           names=['first', 'second'])
        self.frame = DataFrame(np.random.randn(10, 3), index=index,
                               columns=Index(['A', 'B', 'C'], name='exp'))

        self.single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']],
                                       labels=[[0, 1, 2, 3]],
                                       names=['first'])

        # create test series object
        arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'],
                  ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
        tuples = zip(*arrays)
        index = MultiIndex.from_tuples(tuples)
        s = Series(randn(8), index=index)
        s[3] = np.NaN
        self.series = s

        tm.N = 100
        self.tdf = tm.makeTimeDataFrame()
        self.ymd = self.tdf.groupby([lambda x: x.year, lambda x: x.month,
                                     lambda x: x.day]).sum()

        # use Int64Index, to make sure things work
        self.ymd.index.levels = [lev.astype('i8')
                                 for lev in self.ymd.index.levels]
        self.ymd.index.names = ['year', 'month', 'day']

    def test_append(self):
        a, b = self.frame[:5], self.frame[5:]

        result = a.append(b)
        tm.assert_frame_equal(result, self.frame)

        result = a['A'].append(b['A'])
        tm.assert_series_equal(result, self.frame['A'])

    def test_dataframe_constructor(self):
        multi = DataFrame(np.random.randn(4, 4),
                          index=[np.array(['a', 'a', 'b', 'b']),
                                 np.array(['x', 'y', 'x', 'y'])])
        self.assert_(isinstance(multi.index, MultiIndex))
        self.assert_(not isinstance(multi.columns, MultiIndex))

        multi = DataFrame(np.random.randn(4, 4),
                          columns=[['a', 'a', 'b', 'b'],
                                   ['x', 'y', 'x', 'y']])
        self.assert_(isinstance(multi.columns, MultiIndex))

    def test_series_constructor(self):
        multi = Series(1., index=[np.array(['a', 'a', 'b', 'b']),
                                  np.array(['x', 'y', 'x', 'y'])])
        self.assert_(isinstance(multi.index, MultiIndex))

        multi = Series(1., index=[['a', 'a', 'b', 'b'],
                                  ['x', 'y', 'x', 'y']])
        self.assert_(isinstance(multi.index, MultiIndex))

        multi = Series(range(4), index=[['a', 'a', 'b', 'b'],
                                        ['x', 'y', 'x', 'y']])
        self.assert_(isinstance(multi.index, MultiIndex))

    def test_reindex_level(self):
        # axis=0
        month_sums = self.ymd.sum(level='month')
        result = month_sums.reindex(self.ymd.index, level=1)
        expected = self.ymd.groupby(level='month').transform(np.sum)

        assert_frame_equal(result, expected)

        # Series
        result = month_sums['A'].reindex(self.ymd.index, level=1)
        expected = self.ymd['A'].groupby(level='month').transform(np.sum)
        assert_series_equal(result, expected)

        # axis=1
        month_sums = self.ymd.T.sum(axis=1, level='month')
        result = month_sums.reindex(columns=self.ymd.index, level=1)
        expected = self.ymd.groupby(level='month').transform(np.sum).T
        assert_frame_equal(result, expected)

    def test_binops_level(self):
        def _check_op(opname):
            op = getattr(DataFrame, opname)
            month_sums = self.ymd.sum(level='month')
            result = op(self.ymd, month_sums, level='month')

            broadcasted = self.ymd.groupby(level='month').transform(np.sum)
            expected = op(self.ymd, broadcasted)
            assert_frame_equal(result, expected)

            # Series
            op = getattr(Series, opname)
            result = op(self.ymd['A'], month_sums['A'], level='month')
            broadcasted = self.ymd['A'].groupby(level='month').transform(np.sum)
            expected = op(self.ymd['A'], broadcasted)
            assert_series_equal(result, expected)

        _check_op('sub')
        _check_op('add')
        _check_op('mul')
        _check_op('div')

    def test_pickle(self):
        import cPickle
        def _test_roundtrip(frame):
            pickled = cPickle.dumps(frame)
            unpickled = cPickle.loads(pickled)
            assert_frame_equal(frame, unpickled)

        _test_roundtrip(self.frame)
        _test_roundtrip(self.frame.T)
        _test_roundtrip(self.ymd)
        _test_roundtrip(self.ymd.T)

    def test_reindex(self):
        reindexed = self.frame.ix[[('foo', 'one'), ('bar', 'one')]]
        expected = self.frame.ix[[0, 3]]
        assert_frame_equal(reindexed, expected)

    def test_reindex_preserve_levels(self):
        new_index = self.ymd.index[::10]
        chunk = self.ymd.reindex(new_index)
        self.assert_(chunk.index is new_index)

        chunk = self.ymd.ix[new_index]
        self.assert_(chunk.index is new_index)

        ymdT = self.ymd.T
        chunk = ymdT.reindex(columns=new_index)
        self.assert_(chunk.columns is new_index)

        chunk = ymdT.ix[:, new_index]
        self.assert_(chunk.columns is new_index)

    def test_sort_index_preserve_levels(self):
        result = self.frame.sort_index()
        self.assertEquals(result.index.names, self.frame.index.names)

    def test_repr_to_string(self):
        repr(self.frame)
        repr(self.ymd)
        repr(self.frame.T)
        repr(self.ymd.T)

        buf = StringIO()
        self.frame.to_string(buf=buf)
        self.ymd.to_string(buf=buf)
        self.frame.T.to_string(buf=buf)
        self.ymd.T.to_string(buf=buf)

    def test_repr_name_coincide(self):
        index = MultiIndex.from_tuples([('a', 0, 'foo'), ('b', 1, 'bar')],
                                       names=['a', 'b', 'c'])

        df = DataFrame({'value': [0, 1]}, index=index)

        lines = repr(df).split('\n')
        self.assert_(lines[2].startswith('a 0 foo'))

    def test_getitem_simple(self):
        df = self.frame.T

        col = df['foo', 'one']
        assert_almost_equal(col.values, df.values[:, 0])
        self.assertRaises(KeyError, df.__getitem__, ('foo', 'four'))
        self.assertRaises(KeyError, df.__getitem__, 'foobar')

    def test_series_getitem(self):
        s = self.ymd['A']

        result = s[2000, 3]
        result2 = s.ix[2000, 3]
        expected = s.reindex(s.index[42:65])
        expected.index = expected.index.droplevel(0).droplevel(0)
        assert_series_equal(result, expected)

        result = s[2000, 3, 10]
        expected = s[49]
        self.assertEquals(result, expected)

        # fancy
        result = s.ix[[(2000, 3, 10), (2000, 3, 13)]]
        expected = s.reindex(s.index[49:51])
        assert_series_equal(result, expected)

        # key error
        self.assertRaises(KeyError, s.__getitem__, (2000, 3, 4))

    def test_series_getitem_corner(self):
        s = self.ymd['A']

        # don't segfault, GH #495
        # out of bounds access
        self.assertRaises(IndexError, s.__getitem__, len(self.ymd))

        # generator
        result = s[(x > 0 for x in s)]
        expected = s[s > 0]
        assert_series_equal(result, expected)

    def test_series_setitem(self):
        s = self.ymd['A']

        s[2000, 3] = np.nan
        self.assert_(isnull(s.values[42:65]).all())
        self.assert_(notnull(s.values[:42]).all())
        self.assert_(notnull(s.values[65:]).all())

        s[2000, 3, 10] = np.nan
        self.assert_(isnull(s[49]))

    def test_series_slice_partial(self):
        pass

    def test_frame_getitem_setitem_slice(self):
        # getitem
        result = self.frame.ix[:4]
        expected = self.frame[:4]
        assert_frame_equal(result, expected)

        # setitem
        cp = self.frame.copy()
        cp.ix[:4] = 0

        self.assert_((cp.values[:4] == 0).all())
        self.assert_((cp.values[4:] != 0).all())

    def test_frame_getitem_setitem_multislice(self):
        levels = [['t1', 't2'], ['a','b','c']]
        labels = [[0,0,0,1,1], [0,1,2,0,1]]
        midx = MultiIndex(labels=labels, levels=levels, names=[None, 'id'])
        df = DataFrame({'value':[1,2,3,7,8]}, index=midx)

        result = df.ix[:,'value']
        assert_series_equal(df['value'], result)

        result = df.ix[1:3,'value']
        assert_series_equal(df['value'][1:3], result)

        result = df.ix[:,:]
        assert_frame_equal(df, result)

        result = df
        df.ix[:, 'value'] = 10
        result['value'] = 10
        assert_frame_equal(df, result)

        df.ix[:,:] = 10
        assert_frame_equal(df, result)

    def test_getitem_tuple_plus_slice(self):
        # GH #671
        df = DataFrame({'a' : range(10),
                        'b' : range(10),
                        'c' : np.random.randn(10),
                        'd' : np.random.randn(10)})

        idf = df.set_index(['a', 'b'])

        result = idf.ix[(0, 0), :]
        expected = idf.ix[0, 0]
        expected2 = idf.xs((0, 0))

        assert_series_equal(result, expected)
        assert_series_equal(result, expected2)

    def test_getitem_setitem_tuple_plus_columns(self):
        # GH #1013

        df = self.ymd[:5]

        result = df.ix[(2000, 1, 6), ['A', 'B', 'C']]
        expected = df.ix[2000, 1, 6][['A', 'B', 'C']]
        assert_series_equal(result, expected)

    def test_xs(self):
        xs = self.frame.xs(('bar', 'two'))
        xs2 = self.frame.ix[('bar', 'two')]

        assert_series_equal(xs, xs2)
        assert_almost_equal(xs.values, self.frame.values[4])

    def test_xs_partial(self):
        result = self.frame.xs('foo')
        result2 = self.frame.ix['foo']
        expected = self.frame.T['foo'].T
        assert_frame_equal(result, expected)
        assert_frame_equal(result, result2)

    def test_xs_level(self):
        result = self.frame.xs('two', level='second')
        expected = self.frame[self.frame.index.get_level_values(1) == 'two']
        expected.index = expected.index.droplevel(1)

        assert_frame_equal(result, expected)

        index = MultiIndex.from_tuples([('x', 'y', 'z'), ('a', 'b', 'c'),
                                        ('p', 'q', 'r')])
        df = DataFrame(np.random.randn(3, 5), index=index)
        result = df.xs('c', level=2)
        expected = df[1:2]
        expected.index = expected.index.droplevel(2)
        assert_frame_equal(result, expected)

    def test_xs_level_multiple(self):
        from pandas import read_table
        from StringIO import StringIO
        text = """                      A       B       C       D        E
one two three   four
a   b   10.0032 5    -0.5109 -2.3358 -0.4645  0.05076  0.3640
a   q   20      4     0.4473  1.4152  0.2834  1.00661  0.1744
x   q   30      3    -0.6662 -0.5243 -0.3580  0.89145  2.5838"""

        df = read_table(StringIO(text), sep='\s+')

        result = df.xs(('a', 4), level=['one', 'four'])
        expected = df.xs('a').xs(4, level='four')
        assert_frame_equal(result, expected)

    def test_xs_level0(self):
        from pandas import read_table
        from StringIO import StringIO
        text = """                      A       B       C       D        E
one two three   four
a   b   10.0032 5    -0.5109 -2.3358 -0.4645  0.05076  0.3640
a   q   20      4     0.4473  1.4152  0.2834  1.00661  0.1744
x   q   30      3    -0.6662 -0.5243 -0.3580  0.89145  2.5838"""

        df = read_table(StringIO(text), sep='\s+')

        result = df.xs('a', level=0)
        expected = df.xs('a')
        self.assertEqual(len(result), 2)
        assert_frame_equal(result, expected)

    def test_xs_level_series(self):
        s = self.frame['A']
        result = s[:, 'two']
        expected = self.frame.xs('two', level=1)['A']
        assert_series_equal(result, expected)

        s = self.ymd['A']
        result = s[2000, 5]
        expected = self.ymd.ix[2000, 5]['A']
        assert_series_equal(result, expected)

        # not implementing this for now

        self.assertRaises(TypeError, s.__getitem__, (2000, slice(3, 4)))

        # result = s[2000, 3:4]
        # lv =s.index.get_level_values(1)
        # expected = s[(lv == 3) | (lv == 4)]
        # expected.index = expected.index.droplevel(0)
        # assert_series_equal(result, expected)

        # can do this though

    def test_get_loc_single_level(self):
        s = Series(np.random.randn(len(self.single_level)),
                   index=self.single_level)
        for k in self.single_level.values:
            s[k]

    def test_getitem_toplevel(self):
        df = self.frame.T

        result = df['foo']
        expected = df.reindex(columns=df.columns[:3])
        expected.columns = expected.columns.droplevel(0)
        assert_frame_equal(result, expected)

        result = df['bar']
        result2 = df.ix[:, 'bar']

        expected = df.reindex(columns=df.columns[3:5])
        expected.columns = expected.columns.droplevel(0)
        assert_frame_equal(result, expected)
        assert_frame_equal(result, result2)

    def test_getitem_setitem_slice_integers(self):
        index = MultiIndex(levels=[[0, 1, 2], [0, 2]],
                           labels=[[0, 0, 1, 1, 2, 2],
                                   [0, 1, 0, 1, 0, 1]])

        frame =  DataFrame(np.random.randn(len(index), 4), index=index,
                           columns=['a', 'b', 'c', 'd'])
        res = frame.ix[1:2]
        exp = frame.reindex(frame.index[2:])
        assert_frame_equal(res, exp)

        frame.ix[1:2] = 7
        self.assert_((frame.ix[1:2] == 7).values.all())

        series =  Series(np.random.randn(len(index)), index=index)

        res = series.ix[1:2]
        exp = series.reindex(series.index[2:])
        assert_series_equal(res, exp)

        series.ix[1:2] = 7
        self.assert_((series.ix[1:2] == 7).values.all())

    def test_getitem_int(self):
        levels = [[0, 1], [0, 1, 2]]
        labels = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]
        index = MultiIndex(levels=levels, labels=labels)

        frame = DataFrame(np.random.randn(6, 2), index=index)

        result = frame.ix[1]
        expected = frame[-3:]
        expected.index = expected.index.droplevel(0)
        assert_frame_equal(result, expected)

        # raises exception
        self.assertRaises(KeyError, frame.ix.__getitem__, 3)

        # however this will work
        result = self.frame.ix[2]
        expected = self.frame.xs(self.frame.index[2])
        assert_series_equal(result, expected)

    def test_getitem_partial(self):
        ymd = self.ymd.T
        result = ymd[2000, 2]

        expected = ymd.reindex(columns=ymd.columns[ymd.columns.labels[1] == 1])
        expected.columns = expected.columns.droplevel(0).droplevel(0)
        assert_frame_equal(result, expected)

    def test_getitem_slice_not_sorted(self):
        df = self.frame.sortlevel(1).T

        # buglet with int typechecking
        result = df.ix[:, :np.int32(3)]
        expected = df.reindex(columns=df.columns[:3])
        assert_frame_equal(result, expected)

    def test_setitem_change_dtype(self):
        dft = self.frame.T
        s = dft['foo', 'two']
        dft['foo', 'two'] = s > s.median()
        assert_series_equal(dft['foo', 'two'], s > s.median())
        self.assert_(isinstance(dft._data.blocks[1].items, MultiIndex))

        reindexed = dft.reindex(columns=[('foo', 'two')])
        assert_series_equal(reindexed['foo', 'two'], s > s.median())

    def test_frame_setitem_ix(self):
        self.frame.ix[('bar', 'two'), 'B'] = 5
        self.assertEquals(self.frame.ix[('bar', 'two'), 'B'], 5)

        # with integer labels
        df = self.frame.copy()
        df.columns = range(3)
        df.ix[('bar', 'two'), 1] = 7
        self.assertEquals(df.ix[('bar', 'two'), 1], 7)

    def test_fancy_slice_partial(self):
        result = self.frame.ix['bar':'baz']
        expected = self.frame[3:7]
        assert_frame_equal(result, expected)

        result = self.ymd.ix[(2000,2):(2000,4)]
        lev = self.ymd.index.labels[1]
        expected = self.ymd[(lev >= 1) & (lev <= 3)]
        assert_frame_equal(result, expected)

    def test_sortlevel(self):
        df = self.frame.copy()
        df.index = np.arange(len(df))
        self.assertRaises(Exception, df.sortlevel, 0)

        # axis=1

        # series
        a_sorted = self.frame['A'].sortlevel(0)
        self.assertRaises(Exception,
                          self.frame.reset_index()['A'].sortlevel)

        # preserve names
        self.assertEquals(a_sorted.index.names, self.frame.index.names)

    def test_delevel_infer_dtype(self):
        tuples = [tuple for tuple in cart_product(['foo', 'bar'],
                                                  [10, 20], [1.0, 1.1])]
        index = MultiIndex.from_tuples(tuples,
                                       names=['prm0', 'prm1', 'prm2'])
        df = DataFrame(np.random.randn(8,3), columns=['A', 'B', 'C'],
                       index=index)
        deleveled = df.reset_index()
        self.assert_(com.is_integer_dtype(deleveled['prm1']))
        self.assert_(com.is_float_dtype(deleveled['prm2']))

    def test_reset_index_with_drop(self):
        deleveled = self.ymd.reset_index(drop = True)
        self.assertEquals(len(deleveled.columns), len(self.ymd.columns))

        deleveled = self.series.reset_index()
        self.assert_(isinstance(deleveled, DataFrame))
        self.assert_(len(deleveled.columns) == len(self.series.index.levels)+1)

        deleveled = self.series.reset_index(drop = True)
        self.assert_(isinstance(deleveled, Series))

    def test_sortlevel_by_name(self):
        self.frame.index.names = ['first', 'second']
        result = self.frame.sortlevel(level='second')
        expected = self.frame.sortlevel(level=1)
        assert_frame_equal(result, expected)

    def test_sortlevel_mixed(self):
        sorted_before = self.frame.sortlevel(1)

        df = self.frame.copy()
        df['foo'] = 'bar'
        sorted_after = df.sortlevel(1)
        assert_frame_equal(sorted_before, sorted_after.drop(['foo'], axis=1))

        dft = self.frame.T
        sorted_before = dft.sortlevel(1, axis=1)
        dft['foo', 'three'] = 'bar'

        sorted_after = dft.sortlevel(1, axis=1)
        assert_frame_equal(sorted_before.drop([('foo', 'three')], axis=1),
                           sorted_after.drop([('foo', 'three')], axis=1))

    def test_count_level(self):
        def _check_counts(frame, axis=0):
            index = frame._get_axis(axis)
            for i in range(index.nlevels):
                result = frame.count(axis=axis, level=i)
                expected = frame.groupby(axis=axis, level=i).count(axis=axis)
                expected = expected.reindex_like(result).astype('i8')
                assert_frame_equal(result, expected)

        self.frame.ix[1, [1, 2]] = np.nan
        self.frame.ix[7, [0, 1]] = np.nan
        self.ymd.ix[1, [1, 2]] = np.nan
        self.ymd.ix[7, [0, 1]] = np.nan

        _check_counts(self.frame)
        _check_counts(self.ymd)
        _check_counts(self.frame.T, axis=1)
        _check_counts(self.ymd.T, axis=1)

        # can't call with level on regular DataFrame
        df = tm.makeTimeDataFrame()
        self.assertRaises(Exception, df.count, level=0)

        self.frame['D'] = 'foo'
        result = self.frame.count(level=0, numeric_only=True)
        assert_almost_equal(result.columns, ['A', 'B', 'C'])

    def test_count_level_series(self):
        index = MultiIndex(levels=[['foo', 'bar', 'baz'],
                                   ['one', 'two', 'three', 'four']],
                           labels=[[0, 0, 0, 2, 2],
                                   [2, 0, 1, 1, 2]])

        s = Series(np.random.randn(len(index)), index=index)

        result = s.count(level=0)
        expected = s.groupby(level=0).count()
        assert_series_equal(result.astype('f8'),
                            expected.reindex(result.index).fillna(0))

        result = s.count(level=1)
        expected = s.groupby(level=1).count()
        assert_series_equal(result.astype('f8'),
                            expected.reindex(result.index).fillna(0))

    def test_count_level_corner(self):
        s = self.frame['A'][:0]
        result = s.count(level=0)
        expected = Series(0, index=s.index.levels[0])
        assert_series_equal(result, expected)

        df = self.frame[:0]
        result = df.count(level=0)
        expected = DataFrame({}, index=s.index.levels[0],
                             columns=df.columns).fillna(0).astype(int)
        assert_frame_equal(result, expected)

    def test_unstack(self):
        # just check that it works for now
        unstacked = self.ymd.unstack()
        unstacked2 = unstacked.unstack()

        # test that ints work
        unstacked = self.ymd.astype(int).unstack()

    def test_unstack_multiple_no_empty_columns(self):
        index = MultiIndex.from_tuples([(0, 'foo', 0), (0, 'bar', 0),
                                        (1, 'baz', 1), (1, 'qux', 1)])

        s = Series(np.random.randn(4), index=index)

        unstacked = s.unstack([1, 2])
        expected = unstacked.dropna(axis=1, how='all')
        assert_frame_equal(unstacked, expected)

    def test_stack(self):
        # regular roundtrip
        unstacked = self.ymd.unstack()
        restacked = unstacked.stack()
        assert_frame_equal(restacked, self.ymd)

        unlexsorted = self.ymd.sortlevel(2)

        unstacked = unlexsorted.unstack(2)
        restacked = unstacked.stack()
        assert_frame_equal(restacked.sortlevel(0), self.ymd)

        unlexsorted = unlexsorted[::-1]
        unstacked = unlexsorted.unstack(1)
        restacked = unstacked.stack().swaplevel(1, 2)
        assert_frame_equal(restacked.sortlevel(0), self.ymd)

        unlexsorted = unlexsorted.swaplevel(0, 1)
        unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1)
        restacked = unstacked.stack(0).swaplevel(1, 2)
        assert_frame_equal(restacked.sortlevel(0), self.ymd)

        # columns unsorted
        unstacked = self.ymd.unstack()
        unstacked = unstacked.sort(axis=1, ascending=False)
        restacked = unstacked.stack()
        assert_frame_equal(restacked, self.ymd)

        # more than 2 levels in the columns
        unstacked = self.ymd.unstack(1).unstack(1)

        result = unstacked.stack(1)
        expected = self.ymd.unstack()
        assert_frame_equal(result, expected)

        result = unstacked.stack(2)
        expected = self.ymd.unstack(1)
        assert_frame_equal(result, expected)

        result = unstacked.stack(0)
        expected = self.ymd.stack().unstack(1).unstack(1)
        assert_frame_equal(result, expected)

        # not all levels present in each echelon
        unstacked = self.ymd.unstack(2).ix[:, ::3]
        stacked = unstacked.stack().stack()
        ymd_stacked = self.ymd.stack()
        assert_series_equal(stacked, ymd_stacked.reindex(stacked.index))

        # stack with negative number
        result = self.ymd.unstack(0).stack(-2)
        expected = self.ymd.unstack(0).stack(0)

    def test_stack_mixed_dtype(self):
        df = self.frame.T
        df['foo', 'four'] = 'foo'
        df = df.sortlevel(1, axis=1)

        stacked = df.stack()
        assert_series_equal(stacked['foo'], df['foo'].stack())
        self.assert_(stacked['bar'].dtype == np.float_)

    def test_unstack_bug(self):
        df = DataFrame({'state': ['naive','naive','naive',
                                  'activ','activ','activ'],
                        'exp':['a','b','b','b','a','a'],
                        'barcode':[1,2,3,4,1,3],
                        'v':['hi','hi','bye','bye','bye','peace'],
                        'extra': np.arange(6.)})

        result = df.groupby(['state','exp','barcode','v']).apply(len)

        unstacked = result.unstack()
        restacked = unstacked.stack()
        assert_series_equal(restacked,
                            result.reindex(restacked.index).astype(float))

    def test_stack_unstack_preserve_names(self):
        unstacked = self.frame.unstack()
        self.assertEquals(unstacked.index.name, 'first')
        self.assertEquals(unstacked.columns.names, ['exp', 'second'])

        restacked = unstacked.stack()
        self.assertEquals(restacked.index.names, self.frame.index.names)

    def test_unstack_level_name(self):
        result = self.frame.unstack('second')
        expected = self.frame.unstack(level=1)
        assert_frame_equal(result, expected)

    def test_stack_level_name(self):
        unstacked = self.frame.unstack('second')
        result = unstacked.stack('exp')
        expected = self.frame.unstack().stack(0)
        assert_frame_equal(result, expected)

        result = self.frame.stack('exp')
        expected = self.frame.stack()
        assert_series_equal(result, expected)

    def test_stack_unstack_multiple(self):
        unstacked = self.ymd.unstack(['year', 'month'])
        expected = self.ymd.unstack('year').unstack('month')
        assert_frame_equal(unstacked, expected)
        self.assertEquals(unstacked.columns.names,
                          expected.columns.names)

        # series
        s = self.ymd['A']
        s_unstacked = s.unstack(['year', 'month'])
        assert_frame_equal(s_unstacked, expected['A'])

        restacked = unstacked.stack(['year', 'month'])
        restacked = restacked.swaplevel(0, 1).swaplevel(1, 2)
        restacked = restacked.sortlevel(0)

        assert_frame_equal(restacked, self.ymd)
        self.assertEquals(restacked.index.names, self.ymd.index.names)

        # GH #451
        unstacked = self.ymd.unstack([1, 2])
        expected = self.ymd.unstack(1).unstack(1).dropna(axis=1, how='all')
        assert_frame_equal(unstacked, expected)

        unstacked = self.ymd.unstack([2, 1])
        expected = self.ymd.unstack(2).unstack(1).dropna(axis=1, how='all')
        assert_frame_equal(unstacked, expected.ix[:, unstacked.columns])

    def test_groupby_transform(self):
        s = self.frame['A']
        grouper = s.index.get_level_values(0)

        grouped = s.groupby(grouper)

        applied = grouped.apply(lambda x: x * 2)
        expected = grouped.transform(lambda x: x * 2)
        assert_series_equal(applied.reindex(expected.index), expected)

    def test_groupby_corner(self):
        midx = MultiIndex(levels=[['foo'],['bar'],['baz']],
                          labels=[[0],[0],[0]], names=['one','two','three'])
        df = DataFrame([np.random.rand(4)], columns=['a','b','c','d'],
                       index=midx)
        # should work
        df.groupby(level='three')

    def test_join(self):
        a = self.frame.ix[:5, ['A']]
        b = self.frame.ix[2:, ['B', 'C']]

        joined = a.join(b, how='outer').reindex(self.frame.index)
        expected = self.frame.copy()
        expected.values[np.isnan(joined.values)] = np.nan

        self.assert_(not np.isnan(joined.values).all())

        assert_frame_equal(joined, expected)

    def test_swaplevel(self):
        swapped = self.frame['A'].swaplevel(0, 1)
        swapped2 = self.frame['A'].swaplevel('first', 'second')
        self.assert_(not swapped.index.equals(self.frame.index))
        assert_series_equal(swapped, swapped2)

        back = swapped.swaplevel(0, 1)
        back2 = swapped.swaplevel('second', 'first')
        self.assert_(back.index.equals(self.frame.index))
        assert_series_equal(back, back2)

        ft = self.frame.T
        swapped = ft.swaplevel('first', 'second', axis=1)
        exp = self.frame.swaplevel('first', 'second').T
        assert_frame_equal(swapped, exp)

    def test_swaplevel_panel(self):
        panel = Panel({'ItemA' : self.frame,
                       'ItemB' : self.frame * 2})

        result = panel.swaplevel(0, 1, axis='major')
        expected = panel.copy()
        expected.major_axis = expected.major_axis.swaplevel(0, 1)
        tm.assert_panel_equal(result, expected)

    def test_reorder_levels(self):
        result = self.ymd.reorder_levels(['month', 'day', 'year'])
        expected = self.ymd.swaplevel(0, 1).swaplevel(1, 2)
        assert_frame_equal(result, expected)

        result = self.ymd['A'].reorder_levels(['month', 'day', 'year'])
        expected = self.ymd['A'].swaplevel(0, 1).swaplevel(1, 2)
        assert_series_equal(result, expected)

        result = self.ymd.T.reorder_levels(['month', 'day', 'year'], axis=1)
        expected = self.ymd.T.swaplevel(0, 1, axis=1).swaplevel(1, 2, axis=1)
        assert_frame_equal(result, expected)

        self.assertRaises(Exception, self.ymd.index.reorder_levels,
                          [1, 2, 3])

    def test_insert_index(self):
        df = self.ymd[:5].T
        df[2000, 1, 10] = df[2000, 1, 7]
        self.assert_(isinstance(df.columns, MultiIndex))
        self.assert_((df[2000, 1, 10] == df[2000, 1, 7]).all())

    def test_alignment(self):
        x = Series(data=[1,2,3],
                   index=MultiIndex.from_tuples([("A", 1), ("A", 2), ("B",3)]))

        y = Series(data=[4,5,6],
                   index=MultiIndex.from_tuples([("Z", 1), ("Z", 2), ("B",3)]))

        res = x - y
        exp_index = x.index.union(y.index)
        exp = x.reindex(exp_index) - y.reindex(exp_index)
        assert_series_equal(res, exp)

        # hit non-monotonic code path
        res = x[::-1] - y[::-1]
        exp_index = x.index.union(y.index)
        exp = x.reindex(exp_index) - y.reindex(exp_index)
        assert_series_equal(res, exp)

    def test_is_lexsorted(self):
        levels = [[0, 1], [0, 1, 2]]

        index = MultiIndex(levels=levels,
                           labels=[[0, 0, 0, 1, 1, 1],
                                   [0, 1, 2, 0, 1, 2]])
        self.assert_(index.is_lexsorted())

        index = MultiIndex(levels=levels,
                           labels=[[0, 0, 0, 1, 1, 1],
                                   [0, 1, 2, 0, 2, 1]])
        self.assert_(not index.is_lexsorted())

        index = MultiIndex(levels=levels,
                           labels=[[0, 0, 1, 0, 1, 1],
                                   [0, 1, 0, 2, 2, 1]])
        self.assert_(not index.is_lexsorted())
        self.assert_(index.lexsort_depth == 0)

    def test_frame_getitem_view(self):
        df = self.frame.T
        df['foo'].values[:] = 0
        self.assert_((df['foo'].values == 0).all())

        # but not if it's mixed-type
        df['foo', 'four'] = 'foo'
        df = df.sortlevel(0, axis=1)
        df['foo']['one'] = 2
        self.assert_((df['foo', 'one'] == 0).all())

    def test_frame_getitem_not_sorted(self):
        df = self.frame.T
        df['foo', 'four'] = 'foo'

        arrays = [np.array(x) for x in zip(*df.columns.get_tuple_index())]

        result = df['foo']
        result2 = df.ix[:, 'foo']
        expected = df.reindex(columns=df.columns[arrays[0] == 'foo'])
        expected.columns = expected.columns.droplevel(0)
        assert_frame_equal(result, expected)
        assert_frame_equal(result2, expected)

        df = df.T
        result = df.xs('foo')
        result2 = df.ix['foo']
        expected = df.reindex(df.index[arrays[0] == 'foo'])
        expected.index = expected.index.droplevel(0)
        assert_frame_equal(result, expected)
        assert_frame_equal(result2, expected)

    def test_series_getitem_not_sorted(self):
        arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'],
        ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
        tuples = zip(*arrays)
        index = MultiIndex.from_tuples(tuples)
        s = Series(randn(8), index=index)

        arrays = [np.array(x) for x in zip(*index.get_tuple_index())]

        result = s['qux']
        result2 = s.ix['qux']
        expected = s[arrays[0] == 'qux']
        expected.index = expected.index.droplevel(0)
        assert_series_equal(result, expected)
        assert_series_equal(result2, expected)

    def test_count(self):
        frame = self.frame.copy()
        frame.index.names = ['a', 'b']

        result = frame.count(level='b')
        expect = self.frame.count(level=1)
        assert_frame_equal(result, expect)

        result = frame.count(level='a')
        expect = self.frame.count(level=0)
        assert_frame_equal(result, expect)

        series = self.series.copy()
        series.index.names = ['a', 'b']

        result = series.count(level='b')
        expect = self.series.count(level=1)
        assert_series_equal(result, expect)

        result = series.count(level='a')
        expect = self.series.count(level=0)
        assert_series_equal(result, expect)

        self.assertRaises(Exception, series.count, 'x')
        self.assertRaises(Exception, frame.count, level='x')

    AGG_FUNCTIONS = ['sum', 'prod', 'min', 'max', 'median', 'mean', 'skew',
                     'mad', 'std', 'var']

    def test_series_group_min_max(self):
        for op, level, skipna in cart_product(self.AGG_FUNCTIONS,
                                              range(2),
                                              [False, True]):
            grouped = self.series.groupby(level=level)
            aggf = lambda x: getattr(x, op)(skipna=skipna)
            # skipna=True
            leftside = grouped.agg(aggf)
            rightside = getattr(self.series, op)(level=level, skipna=skipna)
            assert_series_equal(leftside, rightside)

    def test_frame_group_ops(self):
        self.frame.ix[1, [1, 2]] = np.nan
        self.frame.ix[7, [0, 1]] = np.nan

        for op, level, axis, skipna in cart_product(self.AGG_FUNCTIONS,
                                                    range(2), range(2),
                                                    [False, True]):
            if axis == 0:
                frame = self.frame
            else:
                frame = self.frame.T

            grouped = frame.groupby(level=level, axis=axis)

            pieces = []
            def aggf(x):
                pieces.append(x)
                return getattr(x, op)(skipna=skipna, axis=axis)
            leftside = grouped.agg(aggf)
            rightside = getattr(frame, op)(level=level, axis=axis,
                                           skipna=skipna)

            # for good measure, groupby detail
            level_index = frame._get_axis(axis).levels[level]

            self.assert_(leftside._get_axis(axis).equals(level_index))
            self.assert_(rightside._get_axis(axis).equals(level_index))

            assert_frame_equal(leftside, rightside)

    def test_std_var_pass_ddof(self):
        index = MultiIndex.from_arrays([np.arange(5).repeat(10),
                                        np.tile(np.arange(10), 5)])
        df = DataFrame(np.random.randn(len(index), 5), index=index)

        for meth in ['var', 'std']:
            ddof = 4
            alt = lambda x: getattr(x, meth)(ddof=ddof)

            result = getattr(df[0], meth)(level=0, ddof=ddof)
            expected = df[0].groupby(level=0).agg(alt)
            assert_series_equal(result, expected)

            result = getattr(df, meth)(level=0, ddof=ddof)
            expected = df.groupby(level=0).agg(alt)
            assert_frame_equal(result, expected)


    def test_frame_series_agg_multiple_levels(self):
        result = self.ymd.sum(level=['year', 'month'])
        expected = self.ymd.groupby(level=['year', 'month']).sum()
        assert_frame_equal(result, expected)

        result = self.ymd['A'].sum(level=['year', 'month'])
        expected = self.ymd['A'].groupby(level=['year', 'month']).sum()
        assert_series_equal(result, expected)

    def test_groupby_multilevel(self):
        result = self.ymd.groupby(level=[0, 1]).mean()

        k1 = self.ymd.index.get_level_values(0)
        k2 = self.ymd.index.get_level_values(1)

        expected = self.ymd.groupby([k1, k2]).mean()

        assert_frame_equal(result, expected)
        self.assertEquals(result.index.names, self.ymd.index.names[:2])

        result2 = self.ymd.groupby(level=self.ymd.index.names[:2]).mean()
        assert_frame_equal(result, result2)

    def test_groupby_multilevel_with_transform(self):
        pass

    def test_multilevel_consolidate(self):
        index = MultiIndex.from_tuples([('foo', 'one'), ('foo', 'two'),
                                        ('bar', 'one'), ('bar', 'two')])
        df = DataFrame(np.random.randn(4, 4), index=index, columns=index)
        df['Totals', ''] = df.sum(1)
        df = df.consolidate()

    def test_ix_preserve_names(self):
        result = self.ymd.ix[2000]
        result2 = self.ymd['A'].ix[2000]
        self.assertEquals(result.index.names, self.ymd.index.names[1:])
        self.assertEquals(result2.index.names, self.ymd.index.names[1:])

        result = self.ymd.ix[2000, 2]
        result2 = self.ymd['A'].ix[2000, 2]
        self.assertEquals(result.index.name, self.ymd.index.names[2])
        self.assertEquals(result2.index.name, self.ymd.index.names[2])

    def test_partial_set(self):
        # GH #397
        df = self.ymd.copy()
        exp = self.ymd.copy()
        df.ix[2000, 4] = 0
        exp.ix[2000, 4].values[:] = 0
        assert_frame_equal(df, exp)

        df['A'].ix[2000, 4] = 1
        exp['A'].ix[2000, 4].values[:] = 1
        assert_frame_equal(df, exp)

        df.ix[2000] = 5
        exp.ix[2000].values[:] = 5
        assert_frame_equal(df, exp)

        # this works...for now
        df['A'].ix[14] = 5
        self.assertEquals(df['A'][14], 5)

    def test_unstack_preserve_types(self):
        # GH #403
        self.ymd['E'] = 'foo'
        self.ymd['F'] = 2

        unstacked = self.ymd.unstack('month')
        self.assert_(unstacked['A', 1].dtype == np.float64)
        self.assert_(unstacked['E', 1].dtype == np.object_)
        self.assert_(unstacked['F', 1].dtype == np.float64)

    def test_getitem_lowerdim_corner(self):
        self.assertRaises(KeyError, self.frame.ix.__getitem__,
                          (('bar', 'three'), 'B'))

        self.assertRaises(KeyError, self.frame.ix.__setitem__,
                          (('bar', 'three'), 'B'), 0)

    #----------------------------------------------------------------------
    # AMBIGUOUS CASES!

    def test_partial_ix_missing(self):
        raise nose.SkipTest

        result = self.ymd.ix[2000, 0]
        expected = self.ymd.ix[2000]['A']
        assert_series_equal(result, expected)

        # need to put in some work here

        # self.ymd.ix[2000, 0] = 0
        # self.assert_((self.ymd.ix[2000]['A'] == 0).all())

        self.assertRaises(Exception, self.ymd.ix.__getitem__, (2000, 6))
        self.assertRaises(Exception, self.ymd.ix.__getitem__, (2000, 6), 0)

    #----------------------------------------------------------------------

    def test_to_html(self):
        self.ymd.columns.name = 'foo'
        self.ymd.to_html()
        self.ymd.T.to_html()

    def test_level_with_tuples(self):
        index = MultiIndex(levels=[[('foo', 'bar', 0), ('foo', 'baz', 0),
                                    ('foo', 'qux', 0)],
                                   [0, 1]],
                           labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]])

        series = Series(np.random.randn(6), index=index)
        frame = DataFrame(np.random.randn(6, 4), index=index)

        result = series[('foo', 'bar', 0)]
        result2 = series.ix[('foo', 'bar', 0)]
        expected = series[:2]
        expected.index = expected.index.droplevel(0)
        assert_series_equal(result, expected)
        assert_series_equal(result2, expected)

        self.assertRaises(KeyError, series.__getitem__, (('foo', 'bar', 0), 2))

        result = frame.ix[('foo', 'bar', 0)]
        result2 = frame.xs(('foo', 'bar', 0))
        expected = frame[:2]
        expected.index = expected.index.droplevel(0)
        assert_frame_equal(result, expected)
        assert_frame_equal(result2, expected)

        index = MultiIndex(levels=[[('foo', 'bar'), ('foo', 'baz'),
                                    ('foo', 'qux')],
                                   [0, 1]],
                           labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]])

        series = Series(np.random.randn(6), index=index)
        frame = DataFrame(np.random.randn(6, 4), index=index)

        result = series[('foo', 'bar')]
        result2 = series.ix[('foo', 'bar')]
        expected = series[:2]
        expected.index = expected.index.droplevel(0)
        assert_series_equal(result, expected)
        assert_series_equal(result2, expected)

        result = frame.ix[('foo', 'bar')]
        result2 = frame.xs(('foo', 'bar'))
        expected = frame[:2]
        expected.index = expected.index.droplevel(0)
        assert_frame_equal(result, expected)
        assert_frame_equal(result2, expected)

    def test_int_series_slicing(self):
        s = self.ymd['A']
        result = s[5:]
        expected = s.reindex(s.index[5:])
        assert_series_equal(result, expected)

        exp = self.ymd['A'].copy()
        s[5:] = 0
        exp.values[5:] = 0
        self.assert_(np.array_equal(s.values, exp.values))

        result = self.ymd[5:]
        expected = self.ymd.reindex(s.index[5:])
        assert_frame_equal(result, expected)

    def test_mixed_depth_get(self):
        arrays = [[  'a', 'top', 'top', 'routine1', 'routine1', 'routine2'],
                  [   '',  'OD',  'OD', 'result1',   'result2',  'result1'],
                  [   '',  'wx',  'wy',        '',          '',         '']]

        tuples = zip(*arrays)
        tuples.sort()
        index = MultiIndex.from_tuples(tuples)
        df = DataFrame(randn(4,6),columns = index)

        result = df['a']
        expected = df['a','','']
        assert_series_equal(result, expected)
        self.assertEquals(result.name, 'a')

        result = df['routine1','result1']
        expected = df['routine1','result1','']
        assert_series_equal(result, expected)
        self.assertEquals(result.name, ('routine1', 'result1'))

    def test_mixed_depth_insert(self):
        arrays = [[  'a', 'top', 'top', 'routine1', 'routine1', 'routine2'],
                  [   '',  'OD',  'OD', 'result1',   'result2',  'result1'],
                  [   '',  'wx',  'wy',        '',          '',         '']]

        tuples = zip(*arrays)
        tuples.sort()
        index = MultiIndex.from_tuples(tuples)
        df = DataFrame(randn(4,6),columns = index)

        result = df.copy()
        expected = df.copy()
        result['b'] = [1,2,3,4]
        expected['b','',''] = [1,2,3,4]
        assert_frame_equal(result, expected)

    def test_mixed_depth_drop(self):
        arrays = [[  'a', 'top', 'top', 'routine1', 'routine1', 'routine2'],
                  [   '',  'OD',  'OD', 'result1',   'result2',  'result1'],
                  [   '',  'wx',  'wy',        '',          '',         '']]

        tuples = zip(*arrays)
        tuples.sort()
        index = MultiIndex.from_tuples(tuples)
        df = DataFrame(randn(4,6),columns = index)

        result = df.drop('a',axis=1)
        expected = df.drop([('a','','')],axis=1)
        assert_frame_equal(expected, result)

        result = df.drop(['top'],axis=1)
        expected = df.drop([('top','OD','wx')], axis=1)
        expected = expected.drop([('top','OD','wy')], axis=1)
        assert_frame_equal(expected, result)

        result = df.drop(('top', 'OD', 'wx'), axis=1)
        expected = df.drop([('top','OD','wx')], axis=1)
        assert_frame_equal(expected, result)

        expected = df.drop([('top','OD','wy')], axis=1)
        expected = df.drop('top', axis=1)

        result = df.drop('result1', level=1, axis=1)
        expected = df.drop([('routine1', 'result1', ''),
                            ('routine2', 'result1', '')], axis=1)
        assert_frame_equal(expected, result)

    def test_mixed_depth_pop(self):
        arrays = [[  'a', 'top', 'top', 'routine1', 'routine1', 'routine2'],
                  [   '',  'OD',  'OD', 'result1',   'result2',  'result1'],
                  [   '',  'wx',  'wy',        '',          '',         '']]

        tuples = zip(*arrays)
        tuples.sort()
        index = MultiIndex.from_tuples(tuples)
        df = DataFrame(randn(4,6),columns = index)

        df1 = df.copy()
        df2 = df.copy()
        result = df1.pop('a')
        expected = df2.pop(('a','',''))
        assert_series_equal(expected, result)
        assert_frame_equal(df1, df2)
        self.assertEquals(result.name,'a')

        expected = df1['top']
        df1 = df1.drop(['top'],axis=1)
        result = df2.pop('top')
        assert_frame_equal(expected, result)
        assert_frame_equal(df1, df2)

    def test_reindex_level_partial_selection(self):
        result = self.frame.reindex(['foo', 'qux'], level=0)
        expected = self.frame.ix[[0, 1, 2, 7, 8, 9]]
        assert_frame_equal(result, expected)

        result = self.frame.T.reindex_axis(['foo', 'qux'], axis=1, level=0)
        assert_frame_equal(result, expected.T)

        result = self.frame.ix[['foo', 'qux']]
        assert_frame_equal(result, expected)

        result = self.frame['A'].ix[['foo', 'qux']]
        assert_series_equal(result, expected['A'])

        result = self.frame.T.ix[:, ['foo', 'qux']]
        assert_frame_equal(result, expected.T)

    def test_setitem_multiple_partial(self):
        expected = self.frame.copy()
        result = self.frame.copy()
        result.ix[['foo', 'bar']] = 0
        expected.ix['foo'] = 0
        expected.ix['bar'] = 0
        assert_frame_equal(result, expected)

        expected = self.frame.copy()
        result = self.frame.copy()
        result.ix['foo':'bar'] = 0
        expected.ix['foo'] = 0
        expected.ix['bar'] = 0
        assert_frame_equal(result, expected)

        expected = self.frame['A'].copy()
        result = self.frame['A'].copy()
        result.ix[['foo', 'bar']] = 0
        expected.ix['foo'] = 0
        expected.ix['bar'] = 0
        assert_series_equal(result, expected)

        expected = self.frame['A'].copy()
        result = self.frame['A'].copy()
        result.ix['foo':'bar'] = 0
        expected.ix['foo'] = 0
        expected.ix['bar'] = 0
        assert_series_equal(result, expected)

    def test_drop_level(self):
        result = self.frame.drop(['bar', 'qux'], level='first')
        expected = self.frame.ix[[0, 1, 2, 5, 6]]
        assert_frame_equal(result, expected)

        result = self.frame.drop(['two'], level='second')
        expected = self.frame.ix[[0, 2, 3, 6, 7, 9]]
        assert_frame_equal(result, expected)

        result = self.frame.T.drop(['bar', 'qux'], axis=1, level='first')
        expected = self.frame.ix[[0, 1, 2, 5, 6]].T
        assert_frame_equal(result, expected)

        result = self.frame.T.drop(['two'], axis=1, level='second')
        expected = self.frame.ix[[0, 2, 3, 6, 7, 9]].T
        assert_frame_equal(result, expected)

    def test_unicode_repr_issues(self):
        levels = [Index([u'a/\u03c3', u'b/\u03c3',u'c/\u03c3']),
                  Index([0, 1])]
        labels = [np.arange(3).repeat(2), np.tile(np.arange(2), 3)]
        index = MultiIndex(levels=levels, labels=labels)

        repr(index.levels)
    def post(self, request, format=None):
        storage = Storage()
        #storage.clear()
        request_data = request.data
        print request_data
        response_data = {'rankTable' : None, 'rankingsNamesList' : None, 'yearsList' : None, 'selectedYear' : None, 'paginationParameters' : {'recordsPerPageSelectionList' : [100, 200], 'currentPageNum' : 1, 'totalTableRecords' : 1000, 'totalPages' : 0, 'correlationMatrix' : None}}
        current_page_num = request_data.get('currentPageNum')
        if current_page_num is None:
            current_page_num = 1
        records_per_page = request_data.get('recordsPerPage')
        if records_per_page is None:
            records_per_page = response_data['paginationParameters']['recordsPerPageSelectionList'][0]
        short_rankings_names = [ranking_name.short_name for ranking_name in RankingDescription.objects.all()] #This is right!
        short_rankings_names = [ranking_name for ranking_name in short_rankings_names if ranking_name in ranking_descriptions.keys()] # This is temp?
        years = range(FINISH_AGGREGATE_YEAR, START_AGGREGATE_YEAR - 1, -1)

        selected_rankings_names = short_rankings_names

        selected_year = FINISH_AGGREGATE_YEAR # This is right!

        if (request_data['selectedRankingNames'] != None) and (request_data['selectedRankingNames'] != []):
            selected_rankings_names = request_data['selectedRankingNames']
            selected_rankings_names = [ranking_name for ranking_name in selected_rankings_names if ranking_name in ranking_descriptions.keys()] # This is temp!
            if request_data['selectedYear'] != None:
                selected_year = request_data['selectedYear']
        else:
            response_data['rankingsNamesList'] = short_rankings_names
            response_data['yearsList'] = years
            if request_data['selectedYear'] != None:
                selected_year = request_data['selectedYear']
        response_data['paginationParameters']['recordsPerPage']  = records_per_page
        response_data['paginationParameters']['currentPageNum'] = current_page_num

        response_data['selectedYear'] = selected_year

        aggregate_ranking_dataframe = DataFrame()

        print 'Before generating various storgae keys'
        aggregate_ranking_dataframe_storage_key = assemble_filename(selected_rankings_names, selected_year, 'ranktable')
        print 'Before save/retrieve aggregate_ranking_dataframe to/from storage'

        print 'aggregate_ranking_dataframe_storage_key: ', aggregate_ranking_dataframe_storage_key



        saved_aggregate_ranking_dataframe = storage.get(aggregate_ranking_dataframe_storage_key)
        if saved_aggregate_ranking_dataframe == None:
            print 'before call assemble_aggregate_ranking_dataframe'
            aggregate_ranking_dataframe = assemble_aggregate_ranking_dataframe(selected_rankings_names, int(selected_year))
            aggregate_ranking_dataframe = fix_columns(aggregate_ranking_dataframe)
            storage.save(key=aggregate_ranking_dataframe_storage_key, value=to_mem_csv(aggregate_ranking_dataframe))

        else:
            print 'saved_aggregate_ranking_dataframe != None'
            print 'retrieve aggregate_ranking_dataframe from storage'
            aggregate_ranking_dataframe = pd.read_csv(StringIO(saved_aggregate_ranking_dataframe), sep=';', encoding='utf-8', index_col=None)


        correlation_matrix = DataFrame()
        correlation_matrix_storage_key = assemble_filename(selected_rankings_names, selected_year, 'correlation')

        print 'Before save/retrieve correlation_matrix to/from storage'
        print 'correlation_matrix_storage_key: ', correlation_matrix_storage_key

        saved_correlation_matrix = storage.get(correlation_matrix_storage_key)
        if saved_correlation_matrix == None:
            print 'before call calculate_correlation_matrix'
            correlation_matrix = calculate_correlation_matrix(aggregate_ranking_dataframe)
            storage.save(key=correlation_matrix_storage_key, value=to_mem_csv(correlation_matrix, index=True))
        else:
            print 'saved_correlation_matrix != None'
            print 'retrieve correlation_matrix from storage'
            correlation_matrix = pd.read_csv(StringIO(saved_correlation_matrix), sep=';', encoding='utf-8', index_col=0)


        #prepared_for_response_correlation_matrix = None
        #if request_data['needsToBeUpdated']:
        #    prepared_for_response_correlation_matrix = prepare_correlation_matrix_to_response(correlation_matrix)
        #else:
        #    prepared_for_response_correlation_matrix = None

        print 'Before call prepare_correlation_matrix_to_response'
        prepared_for_response_correlation_matrix = prepare_correlation_matrix_to_response(correlation_matrix)
        print 'After call prepare_correlation_matrix_to_response'
        response_data['correlationMatrix'] = prepared_for_response_correlation_matrix

        aggregate_ranking_dataframe_len = aggregate_ranking_dataframe.count()[0]
        if records_per_page >= aggregate_ranking_dataframe_len:
            current_page_num = 1

        last_page_record_num = current_page_num * records_per_page
        first_page_record_num = last_page_record_num - records_per_page
        
        if last_page_record_num > aggregate_ranking_dataframe_len:
            last_page_record_num = aggregate_ranking_dataframe_len

        #ranktable = prepare_ranktable_to_response(selected_rankings_names, aggregate_ranking_dataframe[first_page_record_num:last_page_record_num])
        ranktable = prepare_ranktable_to_response(aggregate_ranking_dataframe[first_page_record_num:last_page_record_num])
        total_records = aggregate_ranking_dataframe_len
        total_pages = total_records / records_per_page 

        if total_records % records_per_page > 0:
            total_pages = total_pages + 1

        response_data['paginationParameters']['totalPages'] = total_pages
        response_data['rankTable'] = ranktable
        
        print 'Before creating response'
        response = Response(response_data, status=status.HTTP_200_OK)
        print 'After creating response and before return'

        return response
Example #8
0
    cols = list(brfs_filtered.columns)    
    brfs_normalized[cols]
    
    for col in cols:
        col_zscore = col + '_zscore'
        brfs_normalized[col_zscore] = (brfs_filtered[col] - brfs_filtered[col].mean())/brfs_filtered[col].std(ddof=0)

    GENHLTH_avg = brfs_filtered['GENHLTH'].mean()
    GENHLTH_sd = brfs_filtered['GENHLTH'].std(ddof=0)
    
    brfs_zero = brfs_normalized.copy()
    brfs_zero = brfs_normalized.fillna(0)

# Drop columns that don't have enough non-null values
    brfs_full_col = brfs_normalized.copy()
    CountNonNull = brfs_normalized.count(axis=0, level=None, numeric_only=True)
    for col in cols:
        if CountNonNull[col+'_zscore'] < 30000:
            brfs_full_col = brfs_full_col.drop(col+'_zscore', 1)
    brfs_zero = brfs_full_col.fillna(0)
    
# Create NumPy Arrays from pandas DataFrame
    fit_column = 'GENHLTH_zscore'
    factor_df = brfs_zero.drop(fit_column, 1)
    len(factor_df.columns)
    len(brfs_zero.columns)
    factor_array = factor_df.values    
    fit_array = brfs_zero[fit_column].values
    len(brfs_zero.columns)
    len(brfs_normalized.columns)
    
Example #9
0
class TestMultiLevel(unittest.TestCase):
    def setUp(self):
        index = MultiIndex(
            levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]],
            labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
            names=["first", "second"],
        )
        self.frame = DataFrame(np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp"))

        self.single_level = MultiIndex(levels=[["foo", "bar", "baz", "qux"]], labels=[[0, 1, 2, 3]], names=["first"])

        # create test series object
        arrays = [
            ["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"],
            ["one", "two", "one", "two", "one", "two", "one", "two"],
        ]
        tuples = zip(*arrays)
        index = MultiIndex.from_tuples(tuples)
        s = Series(randn(8), index=index)
        s[3] = np.NaN
        self.series = s

        tm.N = 100
        self.tdf = tm.makeTimeDataFrame()
        self.ymd = self.tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum()

        # use Int64Index, to make sure things work
        self.ymd.index.levels = [lev.astype("i8") for lev in self.ymd.index.levels]
        self.ymd.index.names = ["year", "month", "day"]

    def test_append(self):
        a, b = self.frame[:5], self.frame[5:]

        result = a.append(b)
        tm.assert_frame_equal(result, self.frame)

        result = a["A"].append(b["A"])
        tm.assert_series_equal(result, self.frame["A"])

    def test_reindex_level(self):
        # axis=0
        month_sums = self.ymd.sum(level="month")
        result = month_sums.reindex(self.ymd.index, level=1)
        expected = self.ymd.groupby(level="month").transform(np.sum)

        assert_frame_equal(result, expected)

        # Series
        result = month_sums["A"].reindex(self.ymd.index, level=1)
        expected = self.ymd["A"].groupby(level="month").transform(np.sum)
        assert_series_equal(result, expected)

        # axis=1
        month_sums = self.ymd.T.sum(axis=1, level="month")
        result = month_sums.reindex(columns=self.ymd.index, level=1)
        expected = self.ymd.groupby(level="month").transform(np.sum).T
        assert_frame_equal(result, expected)

    def test_binops_level(self):
        def _check_op(opname):
            op = getattr(DataFrame, opname)
            month_sums = self.ymd.sum(level="month")
            result = op(self.ymd, month_sums, level="month")
            broadcasted = self.ymd.groupby(level="month").transform(np.sum)
            expected = op(self.ymd, broadcasted)
            assert_frame_equal(result, expected)

            # Series
            op = getattr(Series, opname)
            result = op(self.ymd["A"], month_sums["A"], level="month")
            broadcasted = self.ymd["A"].groupby(level="month").transform(np.sum)
            expected = op(self.ymd["A"], broadcasted)
            assert_series_equal(result, expected)

        _check_op("sub")
        _check_op("add")
        _check_op("mul")
        _check_op("div")

    def test_pickle(self):
        import cPickle

        def _test_roundtrip(frame):
            pickled = cPickle.dumps(frame)
            unpickled = cPickle.loads(pickled)
            assert_frame_equal(frame, unpickled)

        _test_roundtrip(self.frame)
        _test_roundtrip(self.frame.T)
        _test_roundtrip(self.ymd)
        _test_roundtrip(self.ymd.T)

    def test_reindex(self):
        reindexed = self.frame.ix[[("foo", "one"), ("bar", "one")]]
        expected = self.frame.ix[[0, 3]]
        assert_frame_equal(reindexed, expected)

    def test_reindex_preserve_levels(self):
        new_index = self.ymd.index[::10]
        chunk = self.ymd.reindex(new_index)
        self.assert_(chunk.index is new_index)

        chunk = self.ymd.ix[new_index]
        self.assert_(chunk.index is new_index)

        ymdT = self.ymd.T
        chunk = ymdT.reindex(columns=new_index)
        self.assert_(chunk.columns is new_index)

        chunk = ymdT.ix[:, new_index]
        self.assert_(chunk.columns is new_index)

    def test_sort_index_preserve_levels(self):
        result = self.frame.sort_index()
        self.assertEquals(result.index.names, self.frame.index.names)

    def test_repr_to_string(self):
        repr(self.frame)
        repr(self.ymd)
        repr(self.frame.T)
        repr(self.ymd.T)

        buf = StringIO()
        self.frame.to_string(buf=buf)
        self.ymd.to_string(buf=buf)
        self.frame.T.to_string(buf=buf)
        self.ymd.T.to_string(buf=buf)

    def test_getitem_simple(self):
        df = self.frame.T

        col = df["foo", "one"]
        assert_almost_equal(col.values, df.values[:, 0])
        self.assertRaises(KeyError, df.__getitem__, ("foo", "four"))
        self.assertRaises(KeyError, df.__getitem__, "foobar")

    def test_series_getitem(self):
        s = self.ymd["A"]

        result = s[2000, 3]
        result2 = s.ix[2000, 3]
        expected = s.reindex(s.index[42:65])
        expected.index = expected.index.droplevel(0).droplevel(0)
        assert_series_equal(result, expected)

        result = s[2000, 3, 10]
        expected = s[49]
        self.assertEquals(result, expected)

        # fancy
        result = s.ix[[(2000, 3, 10), (2000, 3, 13)]]
        expected = s.reindex(s.index[49:51])
        assert_series_equal(result, expected)

        # key error
        self.assertRaises(KeyError, s.__getitem__, (2000, 3, 4))

    def test_series_getitem_corner(self):
        s = self.ymd["A"]

        # don't segfault, GH #495
        # out of bounds access
        self.assertRaises(IndexError, s.__getitem__, len(self.ymd))

        # generator
        result = s[(x > 0 for x in s)]
        expected = s[s > 0]
        assert_series_equal(result, expected)

    def test_series_setitem(self):
        s = self.ymd["A"]

        s[2000, 3] = np.nan
        self.assert_(isnull(s.values[42:65]).all())
        self.assert_(notnull(s.values[:42]).all())
        self.assert_(notnull(s.values[65:]).all())

        s[2000, 3, 10] = np.nan
        self.assert_(isnull(s[49]))

    def test_series_slice_partial(self):
        pass

    def test_frame_getitem_setitem_slice(self):
        # getitem
        result = self.frame.ix[:4]
        expected = self.frame[:4]
        assert_frame_equal(result, expected)

        # setitem
        cp = self.frame.copy()
        cp.ix[:4] = 0

        self.assert_((cp.values[:4] == 0).all())
        self.assert_((cp.values[4:] != 0).all())

    def test_frame_getitem_setitem_multislice(self):
        levels = [["t1", "t2"], ["a", "b", "c"]]
        labels = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]]
        midx = MultiIndex(labels=labels, levels=levels, names=[None, "id"])
        df = DataFrame({"value": [1, 2, 3, 7, 8]}, index=midx)

        result = df.ix[:, "value"]
        assert_series_equal(df["value"], result)

        result = df.ix[1:3, "value"]
        assert_series_equal(df["value"][1:3], result)

        result = df.ix[:, :]
        assert_frame_equal(df, result)

        result = df
        df.ix[:, "value"] = 10
        result["value"] = 10
        assert_frame_equal(df, result)

        df.ix[:, :] = 10
        assert_frame_equal(df, result)

    def test_getitem_tuple_plus_slice(self):
        # GH #671
        df = DataFrame({"a": range(10), "b": range(10), "c": np.random.randn(10), "d": np.random.randn(10)})

        idf = df.set_index(["a", "b"])

        result = idf.ix[(0, 0), :]
        expected = idf.ix[0, 0]
        expected2 = idf.xs((0, 0))

        assert_series_equal(result, expected)
        assert_series_equal(result, expected2)

    def test_xs(self):
        xs = self.frame.xs(("bar", "two"))
        xs2 = self.frame.ix[("bar", "two")]

        assert_series_equal(xs, xs2)
        assert_almost_equal(xs.values, self.frame.values[4])

    def test_xs_partial(self):
        result = self.frame.xs("foo")
        result2 = self.frame.ix["foo"]
        expected = self.frame.T["foo"].T
        assert_frame_equal(result, expected)
        assert_frame_equal(result, result2)

    def test_xs_level(self):
        result = self.frame.xs("two", level="second")
        expected = self.frame[self.frame.index.get_level_values(1) == "two"]
        expected.index = expected.index.droplevel(1)

        assert_frame_equal(result, expected)

        index = MultiIndex.from_tuples([("x", "y", "z"), ("a", "b", "c"), ("p", "q", "r")])
        df = DataFrame(np.random.randn(3, 5), index=index)
        result = df.xs("c", level=2)
        expected = df[1:2]
        expected.index = expected.index.droplevel(2)
        assert_frame_equal(result, expected)

    def test_xs_level_multiple(self):
        from pandas import read_table
        from StringIO import StringIO

        text = """                      A       B       C       D        E
one two three   four
a   b   10.0032 5    -0.5109 -2.3358 -0.4645  0.05076  0.3640
a   q   20      4     0.4473  1.4152  0.2834  1.00661  0.1744
x   q   30      3    -0.6662 -0.5243 -0.3580  0.89145  2.5838"""

        df = read_table(StringIO(text), sep="\s+")

        result = df.xs(("a", 4), level=["one", "four"])
        expected = df.xs("a").xs(4, level="four")
        assert_frame_equal(result, expected)

    def test_xs_level0(self):
        from pandas import read_table
        from StringIO import StringIO

        text = """                      A       B       C       D        E
one two three   four
a   b   10.0032 5    -0.5109 -2.3358 -0.4645  0.05076  0.3640
a   q   20      4     0.4473  1.4152  0.2834  1.00661  0.1744
x   q   30      3    -0.6662 -0.5243 -0.3580  0.89145  2.5838"""

        df = read_table(StringIO(text), sep="\s+")

        result = df.xs("a", level=0)
        expected = df.xs("a")
        self.assertEqual(len(result), 2)
        assert_frame_equal(result, expected)

    def test_xs_level_series(self):
        s = self.frame["A"]
        result = s[:, "two"]
        expected = self.frame.xs("two", level=1)["A"]
        assert_series_equal(result, expected)

        s = self.ymd["A"]
        result = s[2000, 5]
        expected = self.ymd.ix[2000, 5]["A"]
        assert_series_equal(result, expected)

        # not implementing this for now

        self.assertRaises(TypeError, s.__getitem__, (2000, slice(3, 4)))

        # result = s[2000, 3:4]
        # lv =s.index.get_level_values(1)
        # expected = s[(lv == 3) | (lv == 4)]
        # expected.index = expected.index.droplevel(0)
        # assert_series_equal(result, expected)

        # can do this though

    def test_get_loc_single_level(self):
        s = Series(np.random.randn(len(self.single_level)), index=self.single_level)
        for k in self.single_level.values:
            s[k]

    def test_getitem_toplevel(self):
        df = self.frame.T

        result = df["foo"]
        expected = df.reindex(columns=df.columns[:3])
        expected.columns = expected.columns.droplevel(0)
        assert_frame_equal(result, expected)

        result = df["bar"]
        result2 = df.ix[:, "bar"]

        expected = df.reindex(columns=df.columns[3:5])
        expected.columns = expected.columns.droplevel(0)
        assert_frame_equal(result, expected)
        assert_frame_equal(result, result2)

    def test_getitem_setitem_slice_integers(self):
        index = MultiIndex(levels=[[0, 1, 2], [0, 2]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]])

        frame = DataFrame(np.random.randn(len(index), 4), index=index, columns=["a", "b", "c", "d"])
        res = frame.ix[1:2]
        exp = frame.reindex(frame.index[2:])
        assert_frame_equal(res, exp)

        frame.ix[1:2] = 7
        self.assert_((frame.ix[1:2] == 7).values.all())

        series = Series(np.random.randn(len(index)), index=index)

        res = series.ix[1:2]
        exp = series.reindex(series.index[2:])
        assert_series_equal(res, exp)

        series.ix[1:2] = 7
        self.assert_((series.ix[1:2] == 7).values.all())

    def test_getitem_int(self):
        levels = [[0, 1], [0, 1, 2]]
        labels = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]
        index = MultiIndex(levels=levels, labels=labels)

        frame = DataFrame(np.random.randn(6, 2), index=index)

        result = frame.ix[1]
        expected = frame[-3:]
        expected.index = expected.index.droplevel(0)
        assert_frame_equal(result, expected)

        # raises exception
        self.assertRaises(KeyError, frame.ix.__getitem__, 3)

        # however this will work
        result = self.frame.ix[2]
        expected = self.frame.xs(self.frame.index[2])
        assert_series_equal(result, expected)

    def test_getitem_partial(self):
        ymd = self.ymd.T
        result = ymd[2000, 2]

        expected = ymd.reindex(columns=ymd.columns[ymd.columns.labels[1] == 1])
        expected.columns = expected.columns.droplevel(0).droplevel(0)
        assert_frame_equal(result, expected)

    def test_getitem_slice_not_sorted(self):
        df = self.frame.sortlevel(1).T

        # buglet with int typechecking
        result = df.ix[:, : np.int32(3)]
        expected = df.reindex(columns=df.columns[:3])
        assert_frame_equal(result, expected)

    def test_setitem_change_dtype(self):
        dft = self.frame.T
        s = dft["foo", "two"]
        dft["foo", "two"] = s > s.median()
        assert_series_equal(dft["foo", "two"], s > s.median())
        self.assert_(isinstance(dft._data.blocks[1].items, MultiIndex))

        reindexed = dft.reindex(columns=[("foo", "two")])
        assert_series_equal(reindexed["foo", "two"], s > s.median())

    def test_frame_setitem_ix(self):
        self.frame.ix[("bar", "two"), "B"] = 5
        self.assertEquals(self.frame.ix[("bar", "two"), "B"], 5)

        # with integer labels
        df = self.frame.copy()
        df.columns = range(3)
        df.ix[("bar", "two"), 1] = 7
        self.assertEquals(df.ix[("bar", "two"), 1], 7)

    def test_fancy_slice_partial(self):
        result = self.frame.ix["bar":"baz"]
        expected = self.frame[3:7]
        assert_frame_equal(result, expected)

        result = self.ymd.ix[(2000, 2):(2000, 4)]
        lev = self.ymd.index.labels[1]
        expected = self.ymd[(lev >= 1) & (lev <= 3)]
        assert_frame_equal(result, expected)

    def test_sortlevel(self):
        df = self.frame.copy()
        df.index = np.arange(len(df))
        self.assertRaises(Exception, df.sortlevel, 0)

        # axis=1

        # series
        a_sorted = self.frame["A"].sortlevel(0)
        self.assertRaises(Exception, self.frame.reset_index()["A"].sortlevel)

        # preserve names
        self.assertEquals(a_sorted.index.names, self.frame.index.names)

    def test_delevel_infer_dtype(self):
        tuples = [tuple for tuple in cart_product(["foo", "bar"], [10, 20], [1.0, 1.1])]
        index = MultiIndex.from_tuples(tuples, names=["prm0", "prm1", "prm2"])
        df = DataFrame(np.random.randn(8, 3), columns=["A", "B", "C"], index=index)
        deleveled = df.reset_index()
        self.assert_(com.is_integer_dtype(deleveled["prm1"]))
        self.assert_(com.is_float_dtype(deleveled["prm2"]))

    def test_reset_index_with_drop(self):
        deleveled = self.ymd.reset_index(drop=True)
        self.assertEquals(len(deleveled.columns), len(self.ymd.columns))

        deleveled = self.series.reset_index()
        self.assert_(isinstance(deleveled, DataFrame))
        self.assert_(len(deleveled.columns) == len(self.series.index.levels) + 1)

        deleveled = self.series.reset_index(drop=True)
        self.assert_(isinstance(deleveled, Series))

    def test_sortlevel_by_name(self):
        self.frame.index.names = ["first", "second"]
        result = self.frame.sortlevel(level="second")
        expected = self.frame.sortlevel(level=1)
        assert_frame_equal(result, expected)

    def test_sortlevel_mixed(self):
        sorted_before = self.frame.sortlevel(1)

        df = self.frame.copy()
        df["foo"] = "bar"
        sorted_after = df.sortlevel(1)
        assert_frame_equal(sorted_before, sorted_after.drop(["foo"], axis=1))

        dft = self.frame.T
        sorted_before = dft.sortlevel(1, axis=1)
        dft["foo", "three"] = "bar"

        sorted_after = dft.sortlevel(1, axis=1)
        assert_frame_equal(
            sorted_before.drop([("foo", "three")], axis=1), sorted_after.drop([("foo", "three")], axis=1)
        )

    def test_count_level(self):
        def _check_counts(frame, axis=0):
            index = frame._get_axis(axis)
            for i in range(index.nlevels):
                result = frame.count(axis=axis, level=i)
                expected = frame.groupby(axis=axis, level=i).count(axis=axis)
                expected = expected.reindex_like(result).astype("i8")
                assert_frame_equal(result, expected)

        self.frame.ix[1, [1, 2]] = np.nan
        self.frame.ix[7, [0, 1]] = np.nan
        self.ymd.ix[1, [1, 2]] = np.nan
        self.ymd.ix[7, [0, 1]] = np.nan

        _check_counts(self.frame)
        _check_counts(self.ymd)
        _check_counts(self.frame.T, axis=1)
        _check_counts(self.ymd.T, axis=1)

        # can't call with level on regular DataFrame
        df = tm.makeTimeDataFrame()
        self.assertRaises(Exception, df.count, level=0)

        self.frame["D"] = "foo"
        result = self.frame.count(level=0, numeric_only=True)
        assert_almost_equal(result.columns, ["A", "B", "C"])

    def test_count_level_series(self):
        index = MultiIndex(
            levels=[["foo", "bar", "baz"], ["one", "two", "three", "four"]], labels=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]]
        )

        s = Series(np.random.randn(len(index)), index=index)

        result = s.count(level=0)
        expected = s.groupby(level=0).count()
        assert_series_equal(result.astype("f8"), expected.reindex(result.index).fillna(0))

        result = s.count(level=1)
        expected = s.groupby(level=1).count()
        assert_series_equal(result.astype("f8"), expected.reindex(result.index).fillna(0))

    def test_count_level_corner(self):
        s = self.frame["A"][:0]
        result = s.count(level=0)
        expected = Series(0, index=s.index.levels[0])
        assert_series_equal(result, expected)

        df = self.frame[:0]
        result = df.count(level=0)
        expected = DataFrame({}, index=s.index.levels[0], columns=df.columns).fillna(0).astype(int)
        assert_frame_equal(result, expected)

    def test_unstack(self):
        # just check that it works for now
        unstacked = self.ymd.unstack()
        unstacked2 = unstacked.unstack()

        # test that ints work
        unstacked = self.ymd.astype(int).unstack()

    def test_stack(self):
        # regular roundtrip
        unstacked = self.ymd.unstack()
        restacked = unstacked.stack()
        assert_frame_equal(restacked, self.ymd)

        unlexsorted = self.ymd.sortlevel(2)

        unstacked = unlexsorted.unstack(2)
        restacked = unstacked.stack()
        assert_frame_equal(restacked.sortlevel(0), self.ymd)

        unlexsorted = unlexsorted[::-1]
        unstacked = unlexsorted.unstack(1)
        restacked = unstacked.stack().swaplevel(1, 2)
        assert_frame_equal(restacked.sortlevel(0), self.ymd)

        unlexsorted = unlexsorted.swaplevel(0, 1)
        unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1)
        restacked = unstacked.stack(0).swaplevel(1, 2)
        assert_frame_equal(restacked.sortlevel(0), self.ymd)

        # columns unsorted
        unstacked = self.ymd.unstack()
        unstacked = unstacked.sort(axis=1, ascending=False)
        restacked = unstacked.stack()
        assert_frame_equal(restacked, self.ymd)

        # more than 2 levels in the columns
        unstacked = self.ymd.unstack(1).unstack(1)

        result = unstacked.stack(1)
        expected = self.ymd.unstack()
        assert_frame_equal(result, expected)

        result = unstacked.stack(2)
        expected = self.ymd.unstack(1)
        assert_frame_equal(result, expected)

        result = unstacked.stack(0)
        expected = self.ymd.stack().unstack(1).unstack(1)
        assert_frame_equal(result, expected)

        # not all levels present in each echelon
        unstacked = self.ymd.unstack(2).ix[:, ::3]
        stacked = unstacked.stack().stack()
        ymd_stacked = self.ymd.stack()
        assert_series_equal(stacked, ymd_stacked.reindex(stacked.index))

        # stack with negative number
        result = self.ymd.unstack(0).stack(-2)
        expected = self.ymd.unstack(0).stack(0)

    def test_stack_mixed_dtype(self):
        df = self.frame.T
        df["foo", "four"] = "foo"
        df = df.sortlevel(1, axis=1)

        stacked = df.stack()
        assert_series_equal(stacked["foo"], df["foo"].stack())
        self.assert_(stacked["bar"].dtype == np.float_)

    def test_unstack_bug(self):
        df = DataFrame(
            {
                "state": ["naive", "naive", "naive", "activ", "activ", "activ"],
                "exp": ["a", "b", "b", "b", "a", "a"],
                "barcode": [1, 2, 3, 4, 1, 3],
                "v": ["hi", "hi", "bye", "bye", "bye", "peace"],
                "extra": np.arange(6.0),
            }
        )

        result = df.groupby(["state", "exp", "barcode", "v"]).apply(len)

        unstacked = result.unstack()
        restacked = unstacked.stack()
        assert_series_equal(restacked, result.reindex(restacked.index).astype(float))

    def test_stack_unstack_preserve_names(self):
        unstacked = self.frame.unstack()
        self.assertEquals(unstacked.index.name, "first")
        self.assertEquals(unstacked.columns.names, ["exp", "second"])

        restacked = unstacked.stack()
        self.assertEquals(restacked.index.names, self.frame.index.names)

    def test_unstack_level_name(self):
        result = self.frame.unstack("second")
        expected = self.frame.unstack(level=1)
        assert_frame_equal(result, expected)

    def test_stack_level_name(self):
        unstacked = self.frame.unstack("second")
        result = unstacked.stack("exp")
        expected = self.frame.unstack().stack(0)
        assert_frame_equal(result, expected)

        result = self.frame.stack("exp")
        expected = self.frame.stack()
        assert_series_equal(result, expected)

    def test_stack_unstack_multiple(self):
        unstacked = self.ymd.unstack(["year", "month"])
        expected = self.ymd.unstack("year").unstack("month")
        assert_frame_equal(unstacked, expected)
        self.assertEquals(unstacked.columns.names, expected.columns.names)

        # series
        s = self.ymd["A"]
        s_unstacked = s.unstack(["year", "month"])
        assert_frame_equal(s_unstacked, expected["A"])

        restacked = unstacked.stack(["year", "month"])
        restacked = restacked.swaplevel(0, 1).swaplevel(1, 2)
        restacked = restacked.sortlevel(0)

        assert_frame_equal(restacked, self.ymd)
        self.assertEquals(restacked.index.names, self.ymd.index.names)

        # GH #451
        unstacked = self.ymd.unstack([1, 2])
        expected = self.ymd.unstack(1).unstack(1)
        assert_frame_equal(unstacked, expected)

        unstacked = self.ymd.unstack([2, 1])
        expected = self.ymd.unstack(2).unstack(1)
        assert_frame_equal(unstacked, expected)

    def test_groupby_transform(self):
        s = self.frame["A"]
        grouper = s.index.get_level_values(0)

        grouped = s.groupby(grouper)

        applied = grouped.apply(lambda x: x * 2)
        expected = grouped.transform(lambda x: x * 2)
        assert_series_equal(applied.reindex(expected.index), expected)

    def test_groupby_corner(self):
        midx = MultiIndex(levels=[["foo"], ["bar"], ["baz"]], labels=[[0], [0], [0]], names=["one", "two", "three"])
        df = DataFrame([np.random.rand(4)], columns=["a", "b", "c", "d"], index=midx)
        # should work
        df.groupby(level="three")

    def test_join(self):
        a = self.frame.ix[:5, ["A"]]
        b = self.frame.ix[2:, ["B", "C"]]

        joined = a.join(b, how="outer").reindex(self.frame.index)
        expected = self.frame.copy()
        expected.values[np.isnan(joined.values)] = np.nan

        self.assert_(not np.isnan(joined.values).all())

        assert_frame_equal(joined, expected)

    def test_swaplevel(self):
        swapped = self.frame["A"].swaplevel(0, 1)
        swapped2 = self.frame["A"].swaplevel("first", "second")
        self.assert_(not swapped.index.equals(self.frame.index))
        assert_series_equal(swapped, swapped2)

        back = swapped.swaplevel(0, 1)
        back2 = swapped.swaplevel("second", "first")
        self.assert_(back.index.equals(self.frame.index))
        assert_series_equal(back, back2)

        ft = self.frame.T
        swapped = ft.swaplevel("first", "second", axis=1)
        exp = self.frame.swaplevel("first", "second").T
        assert_frame_equal(swapped, exp)

    def test_swaplevel_panel(self):
        panel = Panel({"ItemA": self.frame, "ItemB": self.frame * 2})

        result = panel.swaplevel(0, 1, axis="major")
        expected = panel.copy()
        expected.major_axis = expected.major_axis.swaplevel(0, 1)
        tm.assert_panel_equal(result, expected)

    def test_reorder_levels(self):
        result = self.ymd.reorder_levels(["month", "day", "year"])
        expected = self.ymd.swaplevel(0, 1).swaplevel(1, 2)
        assert_frame_equal(result, expected)

        result = self.ymd["A"].reorder_levels(["month", "day", "year"])
        expected = self.ymd["A"].swaplevel(0, 1).swaplevel(1, 2)
        assert_series_equal(result, expected)

        result = self.ymd.T.reorder_levels(["month", "day", "year"], axis=1)
        expected = self.ymd.T.swaplevel(0, 1, axis=1).swaplevel(1, 2, axis=1)
        assert_frame_equal(result, expected)

        self.assertRaises(Exception, self.ymd.index.reorder_levels, [1, 2, 3])

    def test_insert_index(self):
        df = self.ymd[:5].T
        df[2000, 1, 10] = df[2000, 1, 7]
        self.assert_(isinstance(df.columns, MultiIndex))
        self.assert_((df[2000, 1, 10] == df[2000, 1, 7]).all())

    def test_alignment(self):
        x = Series(data=[1, 2, 3], index=MultiIndex.from_tuples([("A", 1), ("A", 2), ("B", 3)]))

        y = Series(data=[4, 5, 6], index=MultiIndex.from_tuples([("Z", 1), ("Z", 2), ("B", 3)]))

        res = x - y
        exp_index = x.index.union(y.index)
        exp = x.reindex(exp_index) - y.reindex(exp_index)
        assert_series_equal(res, exp)

        # hit non-monotonic code path
        res = x[::-1] - y[::-1]
        exp_index = x.index.union(y.index)
        exp = x.reindex(exp_index) - y.reindex(exp_index)
        assert_series_equal(res, exp)

    def test_is_lexsorted(self):
        levels = [[0, 1], [0, 1, 2]]

        index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]])
        self.assert_(index.is_lexsorted())

        index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]])
        self.assert_(not index.is_lexsorted())

        index = MultiIndex(levels=levels, labels=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]])
        self.assert_(not index.is_lexsorted())
        self.assert_(index.lexsort_depth == 0)

    def test_frame_getitem_view(self):
        df = self.frame.T
        df["foo"].values[:] = 0
        self.assert_((df["foo"].values == 0).all())

        # but not if it's mixed-type
        df["foo", "four"] = "foo"
        df = df.sortlevel(0, axis=1)
        df["foo"]["one"] = 2
        self.assert_((df["foo", "one"] == 0).all())

    def test_frame_getitem_not_sorted(self):
        df = self.frame.T
        df["foo", "four"] = "foo"

        arrays = [np.array(x) for x in zip(*df.columns.get_tuple_index())]

        result = df["foo"]
        result2 = df.ix[:, "foo"]
        expected = df.reindex(columns=df.columns[arrays[0] == "foo"])
        expected.columns = expected.columns.droplevel(0)
        assert_frame_equal(result, expected)
        assert_frame_equal(result2, expected)

        df = df.T
        result = df.xs("foo")
        result2 = df.ix["foo"]
        expected = df.reindex(df.index[arrays[0] == "foo"])
        expected.index = expected.index.droplevel(0)
        assert_frame_equal(result, expected)
        assert_frame_equal(result2, expected)

    def test_series_getitem_not_sorted(self):
        arrays = [
            ["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"],
            ["one", "two", "one", "two", "one", "two", "one", "two"],
        ]
        tuples = zip(*arrays)
        index = MultiIndex.from_tuples(tuples)
        s = Series(randn(8), index=index)

        arrays = [np.array(x) for x in zip(*index.get_tuple_index())]

        result = s["qux"]
        result2 = s.ix["qux"]
        expected = s[arrays[0] == "qux"]
        expected.index = expected.index.droplevel(0)
        assert_series_equal(result, expected)
        assert_series_equal(result2, expected)

    def test_count(self):
        frame = self.frame.copy()
        frame.index.names = ["a", "b"]

        result = frame.count(level="b")
        expect = self.frame.count(level=1)
        assert_frame_equal(result, expect)

        result = frame.count(level="a")
        expect = self.frame.count(level=0)
        assert_frame_equal(result, expect)

        series = self.series.copy()
        series.index.names = ["a", "b"]

        result = series.count(level="b")
        expect = self.series.count(level=1)
        assert_series_equal(result, expect)

        result = series.count(level="a")
        expect = self.series.count(level=0)
        assert_series_equal(result, expect)

        self.assertRaises(Exception, series.count, "x")
        self.assertRaises(Exception, frame.count, level="x")

    AGG_FUNCTIONS = ["sum", "prod", "min", "max", "median", "mean", "skew", "mad", "std", "var"]

    def test_series_group_min_max(self):
        for op, level, skipna in cart_product(self.AGG_FUNCTIONS, range(2), [False, True]):
            grouped = self.series.groupby(level=level)
            aggf = lambda x: getattr(x, op)(skipna=skipna)
            # skipna=True
            leftside = grouped.agg(aggf)
            rightside = getattr(self.series, op)(level=level, skipna=skipna)
            assert_series_equal(leftside, rightside)

    def test_frame_group_ops(self):
        self.frame.ix[1, [1, 2]] = np.nan
        self.frame.ix[7, [0, 1]] = np.nan

        for op, level, axis, skipna in cart_product(self.AGG_FUNCTIONS, range(2), range(2), [False, True]):
            if axis == 0:
                frame = self.frame
            else:
                frame = self.frame.T

            grouped = frame.groupby(level=level, axis=axis)

            aggf = lambda x: getattr(x, op)(skipna=skipna, axis=axis)
            leftside = grouped.agg(aggf)
            rightside = getattr(frame, op)(level=level, axis=axis, skipna=skipna)

            # for good measure, groupby detail
            level_index = frame._get_axis(axis).levels[level]

            self.assert_(leftside._get_axis(axis).equals(level_index))
            self.assert_(rightside._get_axis(axis).equals(level_index))

            assert_frame_equal(leftside, rightside)

    def test_frame_series_agg_multiple_levels(self):
        result = self.ymd.sum(level=["year", "month"])
        expected = self.ymd.groupby(level=["year", "month"]).sum()
        assert_frame_equal(result, expected)

        result = self.ymd["A"].sum(level=["year", "month"])
        expected = self.ymd["A"].groupby(level=["year", "month"]).sum()
        assert_series_equal(result, expected)

    def test_groupby_multilevel(self):
        result = self.ymd.groupby(level=[0, 1]).mean()

        k1 = self.ymd.index.get_level_values(0)
        k2 = self.ymd.index.get_level_values(1)

        expected = self.ymd.groupby([k1, k2]).mean()

        assert_frame_equal(result, expected)
        self.assertEquals(result.index.names, self.ymd.index.names[:2])

        result2 = self.ymd.groupby(level=self.ymd.index.names[:2]).mean()
        assert_frame_equal(result, result2)

    def test_groupby_multilevel_with_transform(self):
        pass

    def test_multilevel_consolidate(self):
        index = MultiIndex.from_tuples([("foo", "one"), ("foo", "two"), ("bar", "one"), ("bar", "two")])
        df = DataFrame(np.random.randn(4, 4), index=index, columns=index)
        df["Totals", ""] = df.sum(1)
        df = df.consolidate()

    def test_ix_preserve_names(self):
        result = self.ymd.ix[2000]
        result2 = self.ymd["A"].ix[2000]
        self.assertEquals(result.index.names, self.ymd.index.names[1:])
        self.assertEquals(result2.index.names, self.ymd.index.names[1:])

        result = self.ymd.ix[2000, 2]
        result2 = self.ymd["A"].ix[2000, 2]
        self.assertEquals(result.index.name, self.ymd.index.names[2])
        self.assertEquals(result2.index.name, self.ymd.index.names[2])

    def test_partial_set(self):
        # GH #397
        df = self.ymd.copy()
        exp = self.ymd.copy()
        df.ix[2000, 4] = 0
        exp.ix[2000, 4].values[:] = 0
        assert_frame_equal(df, exp)

        df["A"].ix[2000, 4] = 1
        exp["A"].ix[2000, 4].values[:] = 1
        assert_frame_equal(df, exp)

        df.ix[2000] = 5
        exp.ix[2000].values[:] = 5
        assert_frame_equal(df, exp)

        # this works...for now
        df["A"].ix[14] = 5
        self.assertEquals(df["A"][14], 5)

    def test_unstack_preserve_types(self):
        # GH #403
        self.ymd["E"] = "foo"
        self.ymd["F"] = 2

        unstacked = self.ymd.unstack("month")
        self.assert_(unstacked["A", 1].dtype == np.float64)
        self.assert_(unstacked["E", 1].dtype == np.object_)
        self.assert_(unstacked["F", 1].dtype == np.float64)

    def test_getitem_lowerdim_corner(self):
        self.assertRaises(KeyError, self.frame.ix.__getitem__, (("bar", "three"), "B"))

        self.assertRaises(KeyError, self.frame.ix.__setitem__, (("bar", "three"), "B"), 0)

    # ----------------------------------------------------------------------
    # AMBIGUOUS CASES!

    def test_partial_ix_missing(self):
        raise nose.SkipTest

        result = self.ymd.ix[2000, 0]
        expected = self.ymd.ix[2000]["A"]
        assert_series_equal(result, expected)

        # need to put in some work here

        # self.ymd.ix[2000, 0] = 0
        # self.assert_((self.ymd.ix[2000]['A'] == 0).all())

        self.assertRaises(Exception, self.ymd.ix.__getitem__, (2000, 6))
        self.assertRaises(Exception, self.ymd.ix.__getitem__, (2000, 6), 0)

    def test_fancy_2d(self):
        raise nose.SkipTest

        result = self.frame.ix["foo", "B"]
        expected = self.frame.xs("foo")["B"]
        assert_series_equal(result, expected)

        ft = self.frame.T
        result = ft.ix["B", "foo"]
        expected = ft.xs("B")["foo"]
        assert_series_equal(result, expected)

    # ----------------------------------------------------------------------

    def test_to_html(self):
        self.ymd.columns.name = "foo"
        self.ymd.to_html()
        self.ymd.T.to_html()

    def test_level_with_tuples(self):
        index = MultiIndex(
            levels=[[("foo", "bar", 0), ("foo", "baz", 0), ("foo", "qux", 0)], [0, 1]],
            labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
        )

        series = Series(np.random.randn(6), index=index)
        frame = DataFrame(np.random.randn(6, 4), index=index)

        result = series[("foo", "bar", 0)]
        result2 = series.ix[("foo", "bar", 0)]
        expected = series[:2]
        expected.index = expected.index.droplevel(0)
        assert_series_equal(result, expected)
        assert_series_equal(result2, expected)

        self.assertRaises(KeyError, series.__getitem__, (("foo", "bar", 0), 2))

        result = frame.ix[("foo", "bar", 0)]
        result2 = frame.xs(("foo", "bar", 0))
        expected = frame[:2]
        expected.index = expected.index.droplevel(0)
        assert_frame_equal(result, expected)
        assert_frame_equal(result2, expected)

        index = MultiIndex(
            levels=[[("foo", "bar"), ("foo", "baz"), ("foo", "qux")], [0, 1]],
            labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
        )

        series = Series(np.random.randn(6), index=index)
        frame = DataFrame(np.random.randn(6, 4), index=index)

        result = series[("foo", "bar")]
        result2 = series.ix[("foo", "bar")]
        expected = series[:2]
        expected.index = expected.index.droplevel(0)
        assert_series_equal(result, expected)
        assert_series_equal(result2, expected)

        result = frame.ix[("foo", "bar")]
        result2 = frame.xs(("foo", "bar"))
        expected = frame[:2]
        expected.index = expected.index.droplevel(0)
        assert_frame_equal(result, expected)
        assert_frame_equal(result2, expected)

    def test_int_series_slicing(self):
        s = self.ymd["A"]
        result = s[5:]
        expected = s.reindex(s.index[5:])
        assert_series_equal(result, expected)

        exp = self.ymd["A"].copy()
        s[5:] = 0
        exp.values[5:] = 0
        self.assert_(np.array_equal(s.values, exp.values))

        result = self.ymd[5:]
        expected = self.ymd.reindex(s.index[5:])
        assert_frame_equal(result, expected)

    def test_mixed_depth_get(self):
        arrays = [
            ["a", "top", "top", "routine1", "routine1", "routine2"],
            ["", "OD", "OD", "result1", "result2", "result1"],
            ["", "wx", "wy", "", "", ""],
        ]

        tuples = zip(*arrays)
        tuples.sort()
        index = MultiIndex.from_tuples(tuples)
        df = DataFrame(randn(4, 6), columns=index)

        result = df["a"]
        expected = df["a", "", ""]
        assert_series_equal(result, expected)
        self.assertEquals(result.name, "a")

        result = df["routine1", "result1"]
        expected = df["routine1", "result1", ""]
        assert_series_equal(result, expected)
        self.assertEquals(result.name, ("routine1", "result1"))

    def test_mixed_depth_insert(self):
        arrays = [
            ["a", "top", "top", "routine1", "routine1", "routine2"],
            ["", "OD", "OD", "result1", "result2", "result1"],
            ["", "wx", "wy", "", "", ""],
        ]

        tuples = zip(*arrays)
        tuples.sort()
        index = MultiIndex.from_tuples(tuples)
        df = DataFrame(randn(4, 6), columns=index)

        result = df.copy()
        expected = df.copy()
        result["b"] = [1, 2, 3, 4]
        expected["b", "", ""] = [1, 2, 3, 4]
        assert_frame_equal(result, expected)

    def test_mixed_depth_drop(self):
        arrays = [
            ["a", "top", "top", "routine1", "routine1", "routine2"],
            ["", "OD", "OD", "result1", "result2", "result1"],
            ["", "wx", "wy", "", "", ""],
        ]

        tuples = zip(*arrays)
        tuples.sort()
        index = MultiIndex.from_tuples(tuples)
        df = DataFrame(randn(4, 6), columns=index)

        result = df.drop("a", axis=1)
        expected = df.drop([("a", "", "")], axis=1)
        assert_frame_equal(expected, result)

        result = df.drop(["top"], axis=1)
        expected = df.drop([("top", "OD", "wx")], axis=1)
        expected = expected.drop([("top", "OD", "wy")], axis=1)
        assert_frame_equal(expected, result)

    def test_mixed_depth_pop(self):
        arrays = [
            ["a", "top", "top", "routine1", "routine1", "routine2"],
            ["", "OD", "OD", "result1", "result2", "result1"],
            ["", "wx", "wy", "", "", ""],
        ]

        tuples = zip(*arrays)
        tuples.sort()
        index = MultiIndex.from_tuples(tuples)
        df = DataFrame(randn(4, 6), columns=index)

        df1 = df.copy()
        df2 = df.copy()
        result = df1.pop("a")
        expected = df2.pop(("a", "", ""))
        assert_series_equal(expected, result)
        assert_frame_equal(df1, df2)
        self.assertEquals(result.name, "a")

        expected = df1["top"]
        df1 = df1.drop(["top"], axis=1)
        result = df2.pop("top")
        assert_frame_equal(expected, result)
        assert_frame_equal(df1, df2)
Example #10
0
    def get_fig_for_dataframe(self):
        form_data = self.get_column_form_data()
        string_expressions = {form_datum["name"] : form_datum["initial"] for form_datum in form_data["string_field_uniques"]}
        df = self.data_mapping_revision.get_data()
        row_mask = df.isin(string_expressions)[[form_datum["name"]  for form_datum in form_data["string_field_uniques"]]]
        df = DataFrame(df[row_mask.all(1)])
        split_y_axis_by = self.split_y_axis_by if self.split_y_axis_by !='None' else None
        split_colour_by = self.split_colour_by if self.split_colour_by !='None' else None

        kwargs = {"size": 5, 
                    "aspect": 1.75,
                     "sharex":True, 
                     "sharey":True,
                     "hue" : split_colour_by,
                     "legend" : False,
                     "legend_out" : True,
                      #'legend.frameon': False
                    }
        split_by = self.split_by if self.split_by !='None' else None
        if split_by:
            kwargs["row"] = None
            kwargs["col"] = split_by
            kwargs["col_wrap"] = 4
        if GRAPH_MAPPINGS[self.visualisation_type]["xy"] == True:
            if df.count()[0] > 0 :
                xlim = (0, float(max(df[self.x_axis]))*1.3)
                ylim = (0, float(max(df[self.y_axis]))*1.1)
                kwargs["xlim"] = xlim
                kwargs["ylim"] = ylim
         

        with plotting_context( "poster" ):
            sns.set_style("white")
            labels = GRAPH_MAPPINGS[self.visualisation_type]["get_label_function"](self, df) 
            # g = sns.factorplot(self.x_axis,
            #      y=self.y_axis, data=df, 
            #      row=self.split_y_axis_by if self.split_y_axis_by !='None' else None, 
            #      x_order=labels, 
            #      col=self.split_colour_by if self.split_colour_by !='None' else None,)
            g_kwargs = {}
            if labels:
                g_kwargs["x_order"] =labels  
            print kwargs
            g = sns.FacetGrid(df,**kwargs )
            
            g.map(GRAPH_MAPPINGS[self.visualisation_type]["function"], self.x_axis, self.y_axis, **g_kwargs);
            if labels:
                if split_by:
                    for ax in g.axes:
                        ax.set_xticklabels(labels, rotation=90)
                else:
                    
                    g.set_xticklabels(labels, rotation=90)
            g.set_legend()
            # frame = g.fig.legend().get_frame()
            #if labels and not split_by :
             #   g.set_xticklabels(labels, rotation=90) 
            if self.visualisation_title:
                g.fig.tight_layout()
                height_in_inches = g.fig.get_figheight()
                title_height_fraction = 0.2 / (height_in_inches ** (0.5)) #20px is ~0.3 inches
                g.fig.suptitle(self.visualisation_title, fontsize=20)
                g.fig.tight_layout(rect=(0,0,1,1 - title_height_fraction))
            else:
                g.fig.tight_layout()            
            g.fig.patch.set_alpha(0.0)
            return g.fig
Example #11
0
from pandas import DataFrame, read_csv


# -- Import metabolomics
# Import metabolites and samples information
index = read_csv('%s/data/kirc_metabolomics_index.txt' % wd, sep='\t', index_col=1)
columns = read_csv('%s/data/kirc_metabolomics_columns.txt' % wd, sep='\t', header=None, index_col=0).T.set_index('Group HMDB')

# Import data-set
metab = read_csv('%s/data/kirc_metabolomics.txt' % wd, sep='\t', index_col=0)
print metab.head()

# Log2 transformation
metab = np.log2(metab)
print metab.head()

# Export absolute intensities
metab.to_csv('%s/data/kirc_metabolomics_abs.txt' % wd, sep='\t')
print '[INFO] Done'

# Differential analysis
samples = set(columns['MATCHING INDEX'])
metab = DataFrame({i: metab[columns[(columns['MATCHING INDEX'] == i) & (columns['TISSUE TYPE'] == 'T')].index[0]].subtract(metab[columns[(columns['MATCHING INDEX'] == i) & (columns['TISSUE TYPE'] == 'N')].index[0]]) for i in samples})

# Consider metabolites measured in at least 50% of the conditions
metab = metab.loc[metab.count(1) > float(metab.shape[1]) / 2]

# Export
metab.to_csv('%s/data/kirc_metabolomics_de.txt' % wd, sep='\t')
print '[INFO] Done'