Example #1
0
    # Reconstruct calibration lines of sight?
    DoCal = experiment.parameters['ReconstructCalibrations']

    # --------------------------------------------------------------------
    # Load in stellar mass to halo relation, or make a new one:

    try:
        shmr = pangloss.readPickle('dummy')  #SHMfile)
    except IOError:
        print "Reconstruct: generating the stellar mass to halo mass grid."
        print "Reconstruct: this may take a moment..."
        shmr = pangloss.SHMR(method=SHMrelation)
        shmr.makeHaloMassFunction(HMFfile)
        shmr.makeCDFs()
        pangloss.writePickle(shmr, SHMfile)
        print "Reconstruct: SHMR saved to " + SHMfile

    # --------------------------------------------------------------------
    # Make redshift grid:

    grid = pangloss.Grid(zd, zs, nplanes=100)

    # --------------------------------------------------------------------
    # Read in lightcones from pickles:

    calcones = []
    for i in range(Nc):
        calcones.append(pangloss.readPickle(calpickles[i]))
    obscone = pangloss.readPickle(obspickle)
Example #2
0
    
    # Reconstruct calibration lines of sight?
    DoCal = experiment.parameters['ReconstructCalibrations']

    # --------------------------------------------------------------------
    # Load in stellar mass to halo relation, or make a new one:

    try:
        shmr = pangloss.readPickle('dummy')#SHMfile)
    except IOError:
        print "Reconstruct: generating the stellar mass to halo mass grid."
        print "Reconstruct: this may take a moment..."
        shmr = pangloss.SHMR(method=SHMrelation)
        shmr.makeHaloMassFunction(HMFfile)
        shmr.makeCDFs()
        pangloss.writePickle(shmr,SHMfile)
        print "Reconstruct: SHMR saved to "+SHMfile
    
    # --------------------------------------------------------------------
    # Make redshift grid:
    
    grid = pangloss.Grid(zd,zs,nplanes=100)
    
    # --------------------------------------------------------------------
    # Read in lightcones from pickles:

    calcones = []
    for i in range(Nc):
        calcones.append(pangloss.readPickle(calpickles[i]))
    obscone = pangloss.readPickle(obspickle)
Example #3
0
                D1s = self.Da_ps[i]
                D2  = self.Da_l
            D12 = self.Da_pl[i]
            self.beta[i] = (D12*self.Da_s)/(D2*D1s)

        return

# ---------------------------------------------------------------------------

    def snap(self,z):
        snapped_p = numpy.digitize(z,self.redshifts-(self.dz)/2.0)-1
        snapped_p[snapped_p < 0] = 0 # catalogs have some blue-shifted objects!
        snapped_z = self.redshifts[snapped_p]
        return snapped_z,snapped_p

# ---------------------------------------------------------------------------

    def __str__(self):
        return '1-D Grid of %i planes seperated in redshift by dz= %f' % (self.nplanes,self.dz)

# ============================================================================

if __name__ == '__main__':

    nplanes=100
    g=Grid(0.6,1.4,nplanes=nplanes)
    testfile = "/data/tcollett/Pangloss/grid%i.grid"%nplanes
    pangloss.writePickle(g,testfile)

# ============================================================================
Example #4
0
                    callist[i,0]=pdf[0]
                    callist[i,1]=pdf[1][0]
                
                elif comparatorType=="mean":
                    callist[i,0] = pdf.truth[0]
                    callist[i,1] = numpy.mean(pdf.samples)

                else: 
                    print "Calibrate: Unrecognised comparatorType "+comparatorType
                    print "Calibrate: If you want to use a comparatorType other than median "
                    print "Calibrate: or mean, you'll need to code it up!"
                    print "Calibrate: (This should be easy, but you can ask [email protected] for help)."
                    exit()
                jd.append(callist[i])

        pangloss.writePickle(callist,jointdistfile)
        
        # Also store the joint dist as a pangloss pdf:
        pangloss.writePickle(jd,jointdistasPDFfile)
        
        # Plot:
        plotfile = jointdistasPDFfile.split('.')[0]+'.png'
        jd.plot("Kappah_median","kappa_ext",weight=None,output=plotfile,title="The joint distribution of $\kappa_{\mathrm{ext}}$ and calibrator \n\n (more correlated means a better calibrator!)")

        print "Calibrate: calibration joint PDF saved in:"
        print "Calibrate:     "+jointdistfile
        print "Calibrate: and "+jointdistasPDFfile
        print "Calibrate: you can view this PDF in "+plotfile

    # --------------------------------------------------------------------
    # Mode 2: calibrate a real line of sight's Pr(kappah|D) using the
Example #5
0
            lc.plots('kappa',
                     output=CALIB_DIR +
                     "/example_snapshot_kappa_uncalib_z=1.4.png")
            lc.plots('mu',
                     output=CALIB_DIR +
                     "/example_snapshot_mu_uncalibz=1.4.png")

        del lc

    pk = numpy.array(pk)
    pmu = numpy.array(pmu)

    # --------------------------------------------------------------------
    # Write PDFs to pickles

    pangloss.writePickle(pk, CALIB_DIR + "/Pofk_z=" + str(zs) + ".pickle")
    pangloss.writePickle(pmu, CALIB_DIR + "/PofMu_z=" + str(zs) + ".pickle")

    del pk
    del pmu

    print "Magnifier: saved PofMu to " + CALIB_DIR + "/Pofk_z=" + str(
        zs) + ".pickle"

    pmu = pangloss.readPickle(CALIB_DIR + "/PofMu_z=" + str(zs) + ".pickle")
    pk = pangloss.readPickle(CALIB_DIR + "/Pofk_z=" + str(zs) + ".pickle")

    # --------------------------------------------------------------------
    # Plot contributions to total kappa and mass at redshifts

    if plot_contributions:
Example #6
0
            print "Drill: Pickling lightcones from this patch of sky..."
            for k in range(Ncones):
                if k % 200 == 0 and k !=0:
                    print ("Drill: ...on cone %i out of %i..." % (k,Ncones))

                lc = pangloss.Lightcone(table,'simulated',[x[k],y[k]],Rc)

                if kappamaps is not None:
                    lc.kappa_hilbert = MSconvergence.at(x[k],y[k],coordinate_system='physical')

                # Coming soon...
                #   lc.gamma1_hilbert = MSgamma1.at(x[k],y[k],coordinate_system='physical')
                #   lc.gamma2_hilbert = MSgamma2.at(x[k],y[k],coordinate_system='physical')

                calpickle = experiment.getLightconePickleName('simulated',pointing=count)
                pangloss.writePickle(lc,calpickle)

                count += 1
            
            
            # Save memory! 
            del table
            del lc
            del catalog
            
            print "Drill: ...done."

        print ("Drill: All %i calibration lightcones made." % (count))

    # --------------------------------------------------------------------
    # Now, make any observed lightcones required:
Example #7
0
                D1s = self.Da_ps[i]
                D2  = self.Da_l
            D12 = self.Da_pl[i]
            self.beta[i] = (D12*self.Da_s)/(D2*D1s)

        return

# ---------------------------------------------------------------------------

    def snap(self,z):
        snapped_p = numpy.digitize(z,self.redshifts-(self.dz)/2.0)-1
        snapped_p[snapped_p < 0] = 0 # catalogs have some blue-shifted objects!
        snapped_z = self.redshifts[snapped_p]
        return snapped_z,snapped_p

# ---------------------------------------------------------------------------

    def __str__(self):
        return '1-D Grid of %i planes seperated in redshift by dz= %f' % (self.nplanes,self.dz)

# ============================================================================

if __name__ == '__main__':

    nplanes=100
    g=Grid(0.6,1.4,nplanes=nplanes)
    testfile = "/data/tcollett/Pangloss/grid%i.grid"%nplanes
    pangloss.writePickle(g,testfile)

# ============================================================================
Example #8
0
                    callist[i, 0] = pdf[0]
                    callist[i, 1] = pdf[1][0]

                elif comparatorType == "mean":
                    callist[i, 0] = pdf.truth[0]
                    callist[i, 1] = numpy.mean(pdf.samples)

                else:
                    print "Calibrate: Unrecognised comparatorType " + comparatorType
                    print "Calibrate: If you want to use a comparatorType other than median "
                    print "Calibrate: or mean, you'll need to code it up!"
                    print "Calibrate: (This should be easy, but you can ask [email protected] for help)."
                    exit()
                jd.append(callist[i])

        pangloss.writePickle(callist, jointdistfile)

        # Also store the joint dist as a pangloss pdf:
        pangloss.writePickle(jd, jointdistasPDFfile)

        # Plot:
        plotfile = jointdistasPDFfile.split('.')[0] + '.png'
        jd.plot(
            "Kappah_median",
            "kappa_ext",
            weight=None,
            output=plotfile,
            title=
            "The joint distribution of $\kappa_{\mathrm{ext}}$ and calibrator \n\n (more correlated means a better calibrator!)"
        )
Example #9
0
                              (k, Ncones))

                    lc = pangloss.Lightcone(table, 'simulated', [x[k], y[k]],
                                            Rc)

                    if kappamaps is not None:
                        lc.kappa_hilbert = MSconvergence.at(
                            x[k], y[k], coordinate_system='physical')

                    # Coming soon...
                    #   lc.gamma1_hilbert = MSgamma1.at(x[k],y[k],coordinate_system='physical')
                    #   lc.gamma2_hilbert = MSgamma2.at(x[k],y[k],coordinate_system='physical')

                    calpickle = experiment.getLightconePickleName(
                        'simulated', pointing=count)
                    pangloss.writePickle(lc, calpickle)

                    count += 1

                # Save memory!
                del table
                del lc
                del catalog

                print "Drill: ...done."

            print("Drill: All %i calibration lightcones made." % (count))

    # --------------------------------------------------------------------
    # Now, make any observed lightcones required:
    if obscat != 'none':
Example #10
0
            Mstell_cont[j:,] = lc.findContributions("stellarmass")

        # Make a nice visualisation of one of the lightcones
        if j == 0:
            lc.plots("kappa", output=CALIB_DIR + "/example_snapshot_kappa_uncalib_z=1.4.png")
            lc.plots("mu", output=CALIB_DIR + "/example_snapshot_mu_uncalibz=1.4.png")

        del lc

    pk = numpy.array(pk)
    pmu = numpy.array(pmu)

    # --------------------------------------------------------------------
    # Write PDFs to pickles

    pangloss.writePickle(pk, CALIB_DIR + "/Pofk_z=" + str(zs) + ".pickle")
    pangloss.writePickle(pmu, CALIB_DIR + "/PofMu_z=" + str(zs) + ".pickle")

    del pk
    del pmu

    print "Magnifier: saved PofMu to " + CALIB_DIR + "/Pofk_z=" + str(zs) + ".pickle"

    pmu = pangloss.readPickle(CALIB_DIR + "/PofMu_z=" + str(zs) + ".pickle")
    pk = pangloss.readPickle(CALIB_DIR + "/Pofk_z=" + str(zs) + ".pickle")

    # --------------------------------------------------------------------
    # Plot contributions to total kappa and mass at redshifts

    if plot_contributions:
        mean_kappa_cont = numpy.mean(kappa_cont, axis=0)