Example #1
0
def run(method, level, generations=500, popsize=500, visualize_individual=None):
                
    shape = (3,3)
    task = TargetWeightsTask(substrate_shape=shape, noise=level, fitnessmeasure='sqerr')
        
    substrate = Substrate()
    substrate.add_nodes(shape, 'l')
    substrate.add_connections('l', 'l')
    
    if method == 'hyperneat':
        geno = lambda: NEATGenotype(feedforward=True, inputs=len(shape)*2, weight_range=(-3.0, 3.0), 
                                       prob_add_conn=0.3, prob_add_node=0.03,
                                       types=['sin', 'linear', 'gauss', 'sigmoid', 'abs'])
                                   
        pop = NEATPopulation(geno, popsize=popsize, target_species=8)
        developer = HyperNEATDeveloper(substrate=substrate, add_deltas=False, sandwich=False)
        
    elif method == '0hn':
        
        t = [(i, 4) for i in range(4)]
        geno = lambda: NEATGenotype(feedforward=True, inputs=len(shape)*2, weight_range=(-3.0, 3.0), 
                                       prob_add_conn=0.0, prob_add_node=0.00, topology=t,
                                       types=['sin', 'linear', 'gauss', 'sigmoid', 'abs'])
                                   
        pop = NEATPopulation(geno, popsize=popsize, target_species=8)
        developer = HyperNEATDeveloper(substrate=substrate, add_deltas=False, sandwich=False)
        

    elif method == 'wavelet':
        geno = lambda: WaveletGenotype(inputs=len(shape)*2)
        pop = SimplePopulation(geno, popsize=popsize)
        developer = WaveletDeveloper(substrate=substrate, add_deltas=False, sandwich=False)
    

    results = pop.epoch(generations=generations,
                        evaluator=partial(evaluate, task=task, developer=developer)
                        )
    return results
Example #2
0
def run(method,
        level,
        generations=500,
        popsize=500,
        visualize_individual=None):

    shape = (3, 3)
    task = TargetWeightsTask(substrate_shape=shape,
                             noise=level,
                             fitnessmeasure='sqerr')

    substrate = Substrate()
    substrate.add_nodes(shape, 'l')
    substrate.add_connections('l', 'l')

    if method == 'hyperneat':
        geno = lambda: NEATGenotype(
            feedforward=True,
            inputs=len(shape) * 2,
            weight_range=(-3.0, 3.0),
            prob_add_conn=0.3,
            prob_add_node=0.03,
            types=['sin', 'linear', 'gauss', 'sigmoid', 'abs'])

        pop = NEATPopulation(geno, popsize=popsize, target_species=8)
        developer = HyperNEATDeveloper(substrate=substrate,
                                       add_deltas=False,
                                       sandwich=False)

    elif method == '0hn':

        t = [(i, 4) for i in range(4)]
        geno = lambda: NEATGenotype(
            feedforward=True,
            inputs=len(shape) * 2,
            weight_range=(-3.0, 3.0),
            prob_add_conn=0.0,
            prob_add_node=0.00,
            topology=t,
            types=['sin', 'linear', 'gauss', 'sigmoid', 'abs'])

        pop = NEATPopulation(geno, popsize=popsize, target_species=8)
        developer = HyperNEATDeveloper(substrate=substrate,
                                       add_deltas=False,
                                       sandwich=False)

    elif method == 'wavelet':
        geno = lambda: WaveletGenotype(inputs=len(shape) * 2)
        pop = SimplePopulation(geno, popsize=popsize)
        developer = WaveletDeveloper(substrate=substrate,
                                     add_deltas=False,
                                     sandwich=False)

    results = pop.epoch(generations=generations,
                        evaluator=partial(evaluate,
                                          task=task,
                                          developer=developer))
    return results
Example #3
0
def run(method, setup, generations=250, popsize=100):
    # Create task and genotype->phenotype converter
    size = 11
    task_kwds = dict(size=size)
            
    if setup == 'big-little':
        task_kwds['targetshape'] = ShapeDiscriminationTask.makeshape('box', size//3)
        task_kwds['distractorshapes'] = [ShapeDiscriminationTask.makeshape('box', 1)]
    elif setup == 'triup-down':
        task_kwds['targetshape'] = np.triu(np.ones((size//3, size//3)))
        task_kwds['distractorshapes'] = [np.tril(np.ones((size//3, size//3)))]
        
    task = ShapeDiscriminationTask(**task_kwds)

    substrate = Substrate()
    substrate.add_nodes((size, size), 'l')
    substrate.add_connections('l', 'l')
    
    if method == 'wavelet':
        num_inputs = 6 if deltas else 4
        geno = lambda: WaveletGenotype(inputs=num_inputs)
        pop = SimplePopulation(geno, popsize=popsize)
        developer = WaveletDeveloper(substrate=substrate, add_deltas=True, sandwich=True)
    
    else:
        geno_kwds = dict(feedforward=True, 
                         inputs=6, 
                         weight_range=(-3.0, 3.0), 
                         prob_add_conn=0.1, 
                         prob_add_node=0.03,
                         bias_as_node=False,
                         types=['sin', 'bound', 'linear', 'gauss', 'sigmoid', 'abs'])
    
        if method == 'nhn':
            pass
        elif method == '0hnmax':
            geno_kwds['max_nodes'] = 7
        elif method == '1hnmax':
            geno_kwds['max_nodes'] = 8
    
        geno = lambda: NEATGenotype(**geno_kwds)
        pop = NEATPopulation(geno, popsize=popsize, target_species=8)
    	
        developer = HyperNEATDeveloper(substrate=substrate, 
                                       sandwich=True, 
                                       add_deltas=True,
                                       node_type='tanh')
                               
        # Run and save results
    results = pop.epoch(generations=generations,
                        evaluator=partial(evaluate, task=task, developer=developer),
                        solution=partial(solve, task=task, developer=developer),
                        )    
    
    return results
def run(method, setup, generations=15, popsize=10):
    """main function that drives the evolution"""
    
    # the following 'task_kwds' and 'task' variables should be ignored as they come from an example from the framework - I had no time to remove them yet.
    task_kwds = dict(field='eight',
                         observation='eight_striped',
                         max_steps=3000,
                         friction_scale=0.1,
                         damping=0.9,
                         motor_torque=3,
                         check_coverage=True,
                         flush_each_step=False,
                         initial_pos=(17, 256, np.pi*0.5)) #TODO: remove
    task = DetectorTask(**task_kwds) #TODO: remove
	
    # Detector has a specific topology: input 21x21; output 1x0
    substrate = Substrate()
    substrate.add_nodes([(r, theta) for r in np.linspace(-10,10,21) for theta in np.linspace(-10, 10, 21)], 'input', is_input=True)
    substrate.add_nodes([(r, theta) for r in np.linspace(0,0,1) for theta in np.linspace(0, 0, 1)], 'output')
    
    substrate.add_connections('input', 'output', -1)

    # evolutionary parameters
    geno_kwds = dict(feedforward=True, 
                     inputs=441,
                     outputs=1,
                     max_depth=3,
                     max_nodes=MAXIMUM_NODES,
                     weight_range=(-3.0, 3.0), 
                     prob_add_conn=0.3, 
                     prob_add_node=0.1,
                     bias_as_node=False,
                     types=['sigmoid'])

    geno = lambda: NEATGenotype(**geno_kwds)

    pop = NEATPopulation(geno, popsize=popsize, target_species=8)

    # sigmoid activation is only used for the generated ANN, since 'hnn' package can has only sigmoid activations
    developer = HyperNEATDeveloper(substrate=substrate, 
                                   add_deltas=False,
                                   sandwich=False,
                                   node_type='sigmoid')

    results = pop.epoch(generations=generations,
                        evaluator=partial(evaluate, task=task, developer=developer),
                        solution=partial(solve, task=task, developer=developer), 
                        )

    # output best solutions from every generation into a file 'best_solution_N', where 'N' is the ID of the detector
    fitnesses = list()

    fifo = open(os.path.join(os.path.dirname(__file__), '../../best_solution_N'), 'a+')
    for champion in results['champions']:
        fitnesses.append(champion.stats['fitness'])
        phenotype = developer.convert(champion)
        
        # option to visualise the detector ANN. Use some sort of counter so that the images won't be overwritten
        #dir = os.path.dirname('../../visual_N.png')
        #if not os.path.exists(dir):
        #   os.makedirs(dir)
        #phenotype.visualize('../../visual_N.png', inputs=441, outputs=1)
        
        rest = MAXIMUM_NODES - len((champion.get_network_data()[1])[1:])
        rest_array = np.linspace(4., 4., rest)
        
        for idx, node_type in enumerate((champion.get_network_data()[1])[1:]):
        	if (idx == len((champion.get_network_data()[1])[1:]) - 2):
				nodes_types_indexes.extend(rest_array)
        	try:
				nodes_types_indexes.append(float(['sin', 'bound', 'linear', 'gauss', 'sigmoid', 'abs'].index(node_type)))
        	except NameError:
				print "not defined!"
        
        fifo.write('fitness: '+str(champion.stats['fitness'])+' || ' + ' '.join(map(str, node_types)) + ' '+' '.join(map(str, phenotype.get_connectivity_matrix()))+'\n')
    fifo.close()



    # Visualize evolution in a graph
    import matplotlib.pyplot as plt
    from matplotlib.ticker import MaxNLocator

    plt.figure()
    x = range(len(results['champions']))
    y = np.asarray(fitnesses)
    xa = plt.gca().get_xaxis()
    xa.set_major_locator(MaxNLocator(integer=True))
    plt.plot(x, y)
    plt.axis('on')
    plt.savefig(os.path.join(os.getcwd(), '../../fitness_evolution_N'), bbox_inches='tight', pad_inches=0)
    plt.close()

    return results
def run(method, setup, generations=100, popsize=100):
    """ Use hyperneat for a walking gait task
    """
    # Create task and genotype->phenotype converter
    

    if setup == 'easy':
        task_kwds = dict(field='eight',
                         observation='eight',
                         max_steps=3000,
                         friction_scale=0.3,
                         damping=0.3,
                         motor_torque=10,
                         check_coverage=False,
                         flush_each_step=False,
                         initial_pos=(282, 300, np.pi*0.35))

    elif setup == 'hard':
        task_kwds = dict(field='eight',
                         observation='eight_striped',
                         max_steps=3000,
                         friction_scale=0.3,
                         damping=0.3,
                         motor_torque=10,
                         check_coverage=False,
                         flush_each_step=True,
                         force_global=True,
                         initial_pos=(282, 300, np.pi*0.35))

    elif setup == 'force':
        task_kwds = dict(field='eight',
                         observation='eight',
                         max_steps=3000,
                         friction_scale=0.1,
                         damping=0.9,
                         motor_torque=3,
                         check_coverage=True,
                         flush_each_step=True,
                         force_global=True,
                         initial_pos=(17, 256, np.pi*0.5))

    elif setup == 'prop':
        task_kwds = dict(field='eight',
                         observation='eight_striped',
                         max_steps=3000,
                         friction_scale=0.3,
                         damping=0.3,
                         motor_torque=10,
                         check_coverage=False,
                         flush_each_step=False,
                         initial_pos=(282, 300, np.pi*0.35))
    
    elif setup == 'cover':
        task_kwds = dict(field='eight',
                         observation='eight_striped',
                         max_steps=3000,
                         friction_scale=0.1,
                         damping=0.9,
                         motor_torque=3,
                         check_coverage=True,
                         flush_each_step=False,
                         initial_pos=(17, 256, np.pi*0.5))
                 
    task = LineFollowingTask(**task_kwds)

    # The line following experiment has quite a specific topology for its network:    
    substrate = Substrate()
    substrate.add_nodes([(0,0)], 'bias')
    substrate.add_nodes([(r, theta) for r in np.linspace(0,1,3)
                              for theta in np.linspace(-1, 1, 5)], 'input')
    substrate.add_nodes([(r, theta) for r in np.linspace(0,1,3)
                              for theta in np.linspace(-1, 1, 3)], 'layer')
    substrate.add_connections('input', 'layer',-1)
    substrate.add_connections('bias', 'layer', -2)
    substrate.add_connections('layer', 'layer',-3)
        
    if method == 'wvl':
        geno = lambda: WaveletGenotype(inputs=4, layers=3)
        pop = SimplePopulation(geno, popsize=popsize)
        developer = WaveletDeveloper(substrate=substrate, 
                                     add_deltas=False, 
                                     sandwich=False,
                                     node_type='tanh')
                
    else:
        geno_kwds = dict(feedforward=True, 
                         inputs=4,
                         outputs=3,
                         weight_range=(-3.0, 3.0), 
                         prob_add_conn=0.1, 
                         prob_add_node=0.03,
                         bias_as_node=False,
                         types=['sin', 'bound', 'linear', 'gauss', 'sigmoid', 'abs'])
                         
        if method == 'nhn':
            pass
        elif method == '0hnmax':
            geno_kwds['max_nodes'] = 7
        elif method == '1hnmax':
            geno_kwds['max_nodes'] = 8
    
        geno = lambda: NEATGenotype(**geno_kwds)

        pop = NEATPopulation(geno, popsize=popsize, target_species=8)
    
        developer = HyperNEATDeveloper(substrate=substrate, 
                                       add_deltas=False,
                                       sandwich=False,
                                       node_type='tanh')
                        
    
    results = pop.epoch(generations=generations,
                        evaluator=partial(evaluate, task=task, developer=developer),
                        solution=partial(solve, task=task, developer=developer), 
                        )

    return results
Example #6
0
def run(method, splits, generations=500, popsize=500):
    complexity = 'half'
    splits = int(splits)
    
    funcs = []
    
    if complexity in ['half', 'flat', 'slope']:
        funcs.append((True, np.random.random() * 6. - 3))        
     
    for num in range(splits):
        axis = random_direction_vector()
        offset = np.random.random() - 0.2
        where = partial(area, axis=axis, offset=offset)
        
        if complexity == 'half':
            
            xs = 0 if num % 2 == 0 else 1
            mp = 1 if (num//2) % 2 == 0 else -1
            if num < 2:
                d = 0 
            elif num < 2 + 4:
                d = 0.5
            elif num < 2 + 4 + 4:
                d = 0.25
            elif num < 2 + 4 + 4 + 4:
                d = 0.75
            
            where = partial(split, axis=xs, flip=mp, distance=d)
            what = lambda c, v: v + np.random.random() * 6. - 3
                    
        funcs.append((where, what))
                
    task = TargetWeightsTask(substrate_shape=(8,), funcs=funcs, fitnessmeasure='sqerr', uniquefy=True)
        
    substrate = Substrate()
    substrate.add_nodes((8,), 'l')
    substrate.add_connections('l', 'l')
    
    if method == 'hyperneat':
        geno = lambda: NEATGenotype(feedforward=True, inputs=2, weight_range=(-3.0, 3.0), 
                                       prob_add_conn=0.3, prob_add_node=0.03,
                                       types=['sin', 'ident', 'gauss', 'sigmoid', 'abs'])
                                   
        pop = NEATPopulation(geno, popsize=popsize, target_species=8)
        developer = HyperNEATDeveloper(substrate=substrate, add_deltas=False, sandwich=False)
        
        
    elif method == '0hnmax':
        geno = lambda: NEATGenotype(feedforward=True, inputs=2, weight_range=(-3.0, 3.0), 
                                    max_nodes=3,
                                    types=['sin', 'ident', 'gauss', 'sigmoid', 'abs'])
                                   
        pop = NEATPopulation(geno, popsize=popsize, target_species=8)
        developer = HyperNEATDeveloper(substrate=substrate, add_deltas=False, sandwich=False)
        

    elif method == 'wavelet':
        geno = lambda: WaveletGenotype(inputs=2)
        pop = SimplePopulation(geno, popsize=popsize)
        developer = WaveletDeveloper(substrate=substrate, add_deltas=False, sandwich=False)
    
    
    results = pop.epoch(generations=generations,
                        evaluator=partial(evaluate, task=task, developer=developer),
                        )
    
    return results
Example #7
0
def run(method, splits, generations=500, popsize=500):
    complexity = 'half'
    splits = int(splits)

    funcs = []

    if complexity in ['half', 'flat', 'slope']:
        funcs.append((True, np.random.random() * 6. - 3))

    for num in range(splits):
        axis = random_direction_vector()
        offset = np.random.random() - 0.2
        where = partial(area, axis=axis, offset=offset)

        if complexity == 'half':

            xs = 0 if num % 2 == 0 else 1
            mp = 1 if (num // 2) % 2 == 0 else -1
            if num < 2:
                d = 0
            elif num < 2 + 4:
                d = 0.5
            elif num < 2 + 4 + 4:
                d = 0.25
            elif num < 2 + 4 + 4 + 4:
                d = 0.75

            where = partial(split, axis=xs, flip=mp, distance=d)
            what = lambda c, v: v + np.random.random() * 6. - 3

        funcs.append((where, what))

    task = TargetWeightsTask(substrate_shape=(8, ),
                             funcs=funcs,
                             fitnessmeasure='sqerr',
                             uniquefy=True)

    substrate = Substrate()
    substrate.add_nodes((8, ), 'l')
    substrate.add_connections('l', 'l')

    if method == 'hyperneat':
        geno = lambda: NEATGenotype(
            feedforward=True,
            inputs=2,
            weight_range=(-3.0, 3.0),
            prob_add_conn=0.3,
            prob_add_node=0.03,
            types=['sin', 'ident', 'gauss', 'sigmoid', 'abs'])

        pop = NEATPopulation(geno, popsize=popsize, target_species=8)
        developer = HyperNEATDeveloper(substrate=substrate,
                                       add_deltas=False,
                                       sandwich=False)

    elif method == '0hnmax':
        geno = lambda: NEATGenotype(
            feedforward=True,
            inputs=2,
            weight_range=(-3.0, 3.0),
            max_nodes=3,
            types=['sin', 'ident', 'gauss', 'sigmoid', 'abs'])

        pop = NEATPopulation(geno, popsize=popsize, target_species=8)
        developer = HyperNEATDeveloper(substrate=substrate,
                                       add_deltas=False,
                                       sandwich=False)

    elif method == 'wavelet':
        geno = lambda: WaveletGenotype(inputs=2)
        pop = SimplePopulation(geno, popsize=popsize)
        developer = WaveletDeveloper(substrate=substrate,
                                     add_deltas=False,
                                     sandwich=False)

    results = pop.epoch(
        generations=generations,
        evaluator=partial(evaluate, task=task, developer=developer),
    )

    return results